
OverSketched Newton: Fast Convex Optimization for
Serverless Systems

Vipul Gupta1, Swanand Kadhe1, Thomas Courtade1, Michael W. Mahoney2, and
Kannan Ramchandran1

1Department of EECS, University of California, Berkeley
2ICSI and Statistics Department, University of California, Berkeley

Abstract

Motivated by recent developments in serverless systems for large-scale computation as
well as improvements in scalable randomized matrix algorithms, we develop OverSketched
Newton, a randomized Hessian-based optimization algorithm to solve large-scale convex
optimization problems in serverless systems. OverSketched Newton leverages matrix
sketching ideas from Randomized Numerical Linear Algebra to compute the Hessian
approximately. These sketching methods lead to inbuilt resiliency against stragglers that
are a characteristic of serverless architectures. Depending on whether the problem is
strongly convex or not, we propose different iteration updates using the approximate
Hessian. For both cases, we establish convergence guarantees for OverSketched Newton
and empirically validate our results by solving large-scale supervised learning problems
on real-world datasets. Experiments demonstrate a reduction of ∼50% in total running
time on AWS Lambda, compared to state-of-the-art distributed optimization schemes.

1 Introduction

In recent years, there has been tremendous growth in users performing distributed computing
operations on the cloud, largely due to extensive and inexpensive commercial offerings like
Amazon Web Services (AWS), Google Cloud, Microsoft Azure, etc. Serverless platforms—
such as AWS Lambda, Cloud functions and Azure Functions—penetrate a large user base
by provisioning and managing the servers on which the computation is performed. These
platforms abstract away the need for maintaining servers, since this is done by the cloud
provider and is hidden from the user—hence the name serverless. Moreover, allocation of
these servers is done expeditiously which provides greater elasticity and easy scalability. For
example, up to ten thousand machines can be allocated on AWS Lambda in less than ten
seconds [1–4].

The use of serverless systems is gaining significant research traction, primarily due to its
massive scalability and convenience in operation. It is forecasted that the market share of
serverless will grow by USD 9.16 billion during 2019-2023 (at a CAGR of 11%) [5]. Indeed,

1

ar
X

iv
:1

90
3.

08
85

7v
3

 [
cs

.D
C

]
 2

7
A

ug
 2

02
0

Average	Runtimes	on	AWS	Lambda

0 500 1000 1500 2000 2500 3000 3500 4000
Workers returned

40

60

80

100

120

140

160

180

Ti
m

e
(s

ec
on

ds
)

3450 3500 3550 3600

140

145

150

155

160

165

170

175

~2%	stragglers

Figure 1: Average job times for 3600 AWS Lambda nodes over 10 trials for distributed matrix
multiplication. The median job time is around 135 seconds, and around 2% of the nodes take up to
180 seconds on average.

according to the Berkeley view on Serverless Computing [6], serverless systems are expected to
dominate the cloud scenario and become the default computing paradigm in the coming years
while client-server based computing will witness a considerable decline. For these reasons,
using serverless systems for large-scale computation has garnered significant attention from
the systems community [3, 4, 7–12].

Due to several crucial differences between the traditional High Performance Computing
(HPC) / serverful and serverless architectures, existing distributed algorithms cannot, in
general, be extended to serverless computing. First, unlike serverful computing, the number
of inexpensive workers in serverless platforms is flexible, often scaling into the thousands [3,4].
This heavy gain in the computation power, however, comes with the disadvantage that the
commodity workers in serverless architecture are ephemeral and have low memory.1 The
ephemeral nature of the workers in serverless systems requires that new workers should be
invoked every few iterations and data should be communicated to them. Moreover, the
workers do not communicate amongst themselves, and instead they read/write data directly
from/to a single high-latency data storage entity (e.g., cloud storage like AWS S3 [3]).

Second, unlike HPC/serverful systems, nodes in the serverless systems suffer degradation
due to what is known as system noise. This can be a result of limited availability of shared
resources, hardware failure, network latency, etc. [13, 14]. This results in job time variability,
and hence a subset of much slower nodes, often called stragglers. These stragglers significantly
slow the overall computation time, especially in large or iterative jobs. In Fig. 1, we plot the
running times for a distributed matrix multiplication job with 3600 workers on AWS Lambda
and demonstrate the effect of stragglers on the total job time. In fact, our experiments
consistently demonstrate that at least 2% workers take significantly longer than the median
job time, severely degrading the overall efficiency of the system.

Due to these issues, first-order methods, e.g., gradient descent and Nesterov Accelerated
Gradient (NAG) methods, tend to perform poorly on distributed serverless architectures [15].

1For example, serverless nodes in AWS Lambda, Google Cloud Functions and Microsoft Azure Functions
have a maximum memory of 3 GB, 2 GB and 1.5 GB, respectively, and a maximum runtime of 900 seconds,
540 seconds and 300 seconds, respectively (these numbers may change over time).

2

Their slower convergence is made worse on serverless platforms due to persistent stragglers.
The straggler effect incurs heavy slowdown due to the accumulation of tail times as a result
of a subset of slow workers occurring in each iteration.

Compared to first-order optimization algorithms, second-order methods—which use the
gradient as well as Hessian information—enjoy superior convergence rates. For instance,
Newton’s method enjoys quadratic convergence for strongly convex and smooth problems,
compared to the linear convergence of gradient descent [16]. Moreover, second-order methods
do not require step-size tuning and unit step-size provably works for most problems. These
methods have a long history in optimization and scientific computing (see, e.g., [16]), but they
are less common in machine learning and data science. This is partly since stochastic first
order methods suffice for downstream problems [17] and partly since naive implementations of
second order methods can perform poorly [18]. However, recent theoretical work has addressed
many of these issues [19–23], and recent implementations have shown that high-quality
implementations of second order stochastic optimization algorithms can beat state-of-the-art
in machine learning applications [24–28] in traditional systems.

1.1 Main Contributions

In this paper, we argue that second-order methods are highly compatible with serverless
systems that provide extensive computing power by invoking thousands of workers but are
limited by the communication costs and hence the number of iterations; and, to address the
challenges of ephemeral workers and stragglers in serverless systems, we propose and analyze
a randomized and distributed second-order optimization algorithm, called OverSketched
Newton. OverSketched Newton uses the technique of matrix sketching from Sub-Sampled
Newton (SSN) methods [19–22], which are based on sketching methods from Randomized
Numerical Linear Algebra (RandNLA) [29–31], to obtain a good approximation for the
Hessian, instead of calculating the full Hessian.

OverSketched Newton has two key components. For straggler-resilient Hessian calculation
in serverless systems, we use the sparse sketching based randomized matrix multiplication
method from [32]. For straggler mitigation during gradient calculation, we use the recently
proposed technique based on error-correcting codes to create redundant computation [33–35].
We prove that, for strongly convex functions, the local convergence rate of OverSketched
Newton is linear-quadratic, while its global convergence rate is linear. Then, going beyond
the usual strong convexity assumption for second-order methods, we adapt OverSketched
Newton using ideas from [22]. For such functions, we prove that a linear convergence rate
can be guaranteed with OverSketched Newton. To the best of our knowledge, this is the
first work to prove convergence guarantees for weakly-convex problems when the Hessian is
computed approximately using ideas from RandNLA.

We extensively evaluate OverSketched Newton on AWS Lambda using several real-
world datasets obtained from the LIBSVM repository [36], and we compare OverSketched
Newton with several first-order (gradient descent, Nesterov’s method, etc.) and second-order
(exact Newton’s method [16], GIANT [24], etc.) baselines for distributed optimization.

3

We further evaluate and compare different techniques for straggler mitigation, such as
speculative execution, coded computing [33, 34], randomization-based sketching [32] and
gradient coding [37]. We demonstrate that OverSketched Newton is at least 9x and 2x
faster than state-of-the-art first-order and second-order schemes, respectively, in terms of
end-to-end training time on AWS Lambda. Moreover, we show that OverSketched Newton
on serverless systems outperforms existing distributed optimization algorithms in serverful
systems by at least 30%.

1.2 Related Work

Our results tie together three quite different lines of work, each of which we review here
briefly.

Existing Straggler Mitigation Schemes: Strategies like speculative execution have
been traditionally used to mitigate stragglers in popular distributed computing frameworks
like Hadoop MapReduce [38] and Apache Spark [39]. Speculative execution works by
detecting workers that are running slower than expected and then allocating their tasks to
new workers without shutting down the original straggling task. The worker that finishes
first communicates its results. This has several drawbacks, e.g. constant monitoring of tasks
is required and late stragglers can still hurt the efficiency.

Recently, many coding-theoretic ideas have been proposed to introduce redundancy into
the distributed computation for straggler mitigation (e.g. see [33–35,37, 40, 41]). The idea of
coded computation is to generate redundant copies of the result of distributed computation
by encoding the input data using error-correcting-codes. These redundant copies are then
used to decode the output of the missing stragglers. Our algorithm to compute gradients in
a distributed straggler-resilient manner uses codes to mitigate stragglers, and we compare
our performance with speculative execution.

Approximate Second-order Methods: In many machine learning applications, where
the data itself is noisy, using the exact Hessian is not necessary. Indeed, using ideas from
RandNLA, one can prove convergence guarantees for SSN methods on a single machine,
when the Hessian is computed approximately [19–21,23]. To accomplish this, many sketching
schemes can be used (sub-Gaussian, Hadamard, random row sampling, sparse Johnson-
Lindenstrauss, etc. [29, 30]), but these methods cannot tolerate stragglers, and thus they do
not perform well in serverless environments.

This motivates the use of the OverSketch sketch from our recent work in [32]. OverSketch
has many nice properties, like subspace embedding, sparsity, input obliviousness, and
amenability to distributed implementation. To the best of our knowledge, this is the first
work to prove and evaluate convergence guarantees for algorithms based on OverSketch. Our
guarantees take into account the amount of communication at each worker and the number
of stragglers, both of which are a property of distributed systems.

There has also been a growing research interest in designing and analyzing distributed
implementations of stochastic second-order methods [24,42–46]. However, these implemen-

4

tations are tailored for serverful distributed systems. Our focus, on the other hand, is on
serverless systems.

Distributed Optimization on Serverless Systems: Optimization over the serverless
framework has garnered significant interest from the research community. However, these
works either evaluate and benchmark existing algorithms (e.g., see [9–11]) or focus on designing
new systems frameworks for faster optimization (e.g., see [12]) on serverless. To the best of our
knowledge, this is the first work that proposes a large-scale distributed optimization algorithm
that specifically caters to serverless architectures with provable convergence guarantees. We
exploit the advantages offered by serverless systems while mitigating the drawbacks such as
stragglers and additional overhead per invocation of workers.

2 Newton’s Method: An Overview

We are interested in solving on serverless systems in a distributed and straggler-resilient
manner problems of the form:

f(w∗) = min
w∈Rd

f(w), (1)

where f : Rd → R is a closed and convex function bounded from below. In the Newton’s
method, the update at the (t+1)-th iteration is obtained by minimizing the Taylor’s expansion
of the objective function f(·) at wt, that is

wt+1 = arg min
w∈Rd

{
f(wt) +∇f(wt)

T (w −wt)

+
1

2
(w −wt)

T∇2f(wt)(w −wt)
}
. (2)

For strongly convex f(·), that is, when ∇2f(·) is invertible, Eq. (2) becomes wt+1 =
wt −H−1t ∇f(wt), where Ht = ∇2f(wt) is the Hessian matrix at the t-th iteration. Given a
good initialization and assuming that the Hessian is Lipschitz, the Newton’s method satisfies
the update ||wt+1 − w∗||2 ≤ c||wt − w∗||22, for some constant c > 0, implying quadratic
convergence [16].

One shortcoming for the classical Newton’s method is that it works only for strongly
convex objective functions. In particular, if f is weakly-convex2, that is, if the Hessian matrix
is not positive definite, then the objective function in (2) may be unbounded from below. To
address this shortcoming, authors in [22] recently proposed a variant of Newton’s method,
called Newton-Minimum-Residual (Newton-MR). Instead of (1), Newton-MR considers the
following auxiliary optimization problem:

min
w∈Rd

||∇f(w)||2.

Note that the minimizers of this auxiliary problem and (1) are the same when f(·) is convex.
Then, the update direction in the (t+ 1)-th iteration is obtained by minimizing the Taylor’s

2For the sake of clarity, we call a convex function weakly-convex if it is not strongly convex.

5

expansion of ||∇f(wt + p)||2, that is,

pt = arg min
w∈Rd

||∇f(wt) + Htp||2.

The general solution of the above problem is given by p = −[Ht]
†∇f(wt)+(I−Ht[Ht]

†)q, ∀ q ∈
Rd, where [·]† is the Moore-Penrose inverse. Among these, the minimum norm solution is
chosen, which gives the update direction in the t-th iteration as pt = −H†t∇f(wt). Thus,
the model update is

wt+1 = wt + pt = wt − [∇2f(wt)]
†∇f(wt). (3)

OverSketched Newton considers both of these variants.

3 OverSketched Newton

In many applications like machine learning where the training data itself is noisy, using the
exact Hessian is not necessary. Indeed, many results in the literature prove convergence
guarantees for Newton’s method when the Hessian is computed approximately using ideas
from RandNLA for a single machine (e.g. [19, 20, 23, 47]). In particular, these methods
perform a form of dimensionality reduction for the Hessian using random matrices, called
sketching matrices. Many popular sketching schemes have been proposed in the literature,
for example, sub-Gaussian, Hadamard, random row sampling, sparse Johnson-Lindenstrauss,
etc. [29, 30]. Inspired from these works, we present OverSketched Newton, a stochastic
second order algorithm for solving—on serverless systems, in a distributed, straggler-resilient
manner—problems of the form (1).

Distributed straggler-resilient gradient computation: OverSketched Newton com-
putes the full gradient in each iteration by using tools from error-correcting codes [33,34]. Our
key observation is that, for several commonly encountered optimization problems, gradient
computation relies on matrix-vector multiplications (see Sec. 4 for examples). We leverage
coded matrix multiplication technique from [34] to perform the large-scale matrix-vector mul-
tiplication in a distributed straggler-resilient manner. The idea of coded matrix multiplication
is explained in Fig. 2; detailed steps are provided in Algorithm 1.

Distributed straggler-resilient approximate Hessian computation: For several
commonly encountered optimization problems, Hessian computation involves matrix-matrix
multiplication for a pair of large matrices (see Sec. 4 for several examples). For computing the
large-scale matrix-matrix multiplication in parallel in serverless systems, we propose to use a
straggler-resilient scheme called OverSketch from [32]. OverSketch does blocked partitioning
of input matrices where each worker works on square blocks of dimension b. Hence, it is more
communication efficient than existing coding-based straggler mitigation schemes that do
naïve row-column partition of input matrices [40, 48]. We note that it is well known in HPC
that blocked partitioning of input matrices can lead to communication-efficient methods for
distributed multiplication [32,49,50].

6

Algorithm 1: Straggler-resilient distributed computation of Ax using codes
Input :Matrix A ∈ Rt×s, vector x ∈ Rs, and block size parameter b
Result: y = Ax, where y ∈ Rs is the product of matrix A and vector x

1 Initialization: Divide A into T = t/b row-blocks, each of dimension b× s
2 Encoding: Generate coded A, say Ac, in parallel using a 2D product code by

arranging the row blocks of A in a 2D structure of dimension
√
T ×
√
T and adding

blocks across rows and columns to generate parities; see Fig. 2 in [34] for an
illustration

3 for i = 1 to T + 2
√
T + 1 do

4 1. Worker Wi receives the i-th row-block of Ac, say Ac(i, :), and x from cloud
storage

5 2. Wi computes y(i) = A(i, :)x
6 3. Master receives y(i) from worker Wi

7 end
8 Decoding: Master checks if it has received results from enough workers to reconstruct

y. Once it does, it decodes y from available results using the peeling decoder

OverSketch uses a sparse sketching matrix based on Count-Sketch [29]. It has similar
computational efficiency and accuracy guarantees as that of the Count-Sketch, with two
additional properties: it is amenable to distributed implementation; and it is resilient to
stragglers. More specifically, the OverSketch matrix is constructed as follows [32].

Recall that the Hessian ∇2f(·) ∈ Rd×d. First choose the desired sketch dimension m
(which depends on d), block-size b (which depends on the memory of the workers), and
straggler tolerance ζ > 0 (which depends on the distributed system). Then, define N = m/b
and e = ζN , for some constant ζ > 0. Here ζ is the fraction of stragglers that we want our
algorithm to tolerate. Thus, e is the maximum number of stragglers per N + e workers that
can be tolerated. The sketch S is then given by

S =
1√
N

(S1,S2, · · · ,SN+e), (4)

where Si ∈ Rn×b, for all i ∈ [1, N+e], are i.i.d. Count-Sketch matrices3 with sketch dimension
b. Note that S ∈ Rn×(m+eb), where m = Nb is the required sketch dimension and e is the
over-provisioning parameter to provide resiliency against e stragglers per N + e workers. We
leverage the straggler resiliency of OverSketch to obtain the sketched Hessian in a distributed
straggler-resilient manner. An illustration of OverSketch is provided in Fig. 3; see Algorithm
2 for details.

Model update: Let Ĥt = AT
t StS

T
t At, where At is the square root of the Hessian

3Each of the Count-Sketch matrices Si is constructed (independently of others) as follows. First, for
every row j, j ∈ [n], of Si, independently choose a column h(j) ∈ [b]. Then, select a uniformly random
element from {−1,+1}, denoted as σ(i). Finally, set Si(j, h(j)) = σ(i) and set Si(j, l) = 0 for all l 6= h(j).
(See [29,32] for details.)

7

S3

S3

W1

W2

W3

!

"1

"2

"1 + "2

M

Decode

"!

"1!

"2!

("1 + "2)!

"1!, ("1 + "2)!

" = "1
"2

Figure 2: Coded matrix-vector multiplica-
tion: Matrix A is divided into 2 row chunks
A1 and A2. During encoding, redundant chunk
A1 + A2 is created. Three workers obtain A1,A2

and A1 + A2 from the cloud storage S3, respec-
tively, and then multiply by x and write back the
result to the cloud. The masterM can decode Ax
from the results of any two workers, thus being
resilient to one straggler (W2 in this case).

x =

!"# $%

b

m +	b
m+b

b d

d

m

#"!

Figure 3: OverSketch-based approximate
Hessian computation: First, the matrix A—
satisfying ATA = ∇2f(wt)—is sketched in parallel
using the sketch in (4). Then, each worker receives
a block of each of the sketched matrices ATS and
STA, multiplies them, and communicates back its
results for reduction. During reduction, stragglers
can be ignored by the virtue of “over” sketching.
For example, here the desired sketch dimension m
is increased by block-size b for obtaining resiliency
against one straggler for each block of Ĥ.

∇2f(wt), and St is an independent realization of (4) at the t-th iteration. For strongly-
convex functions, the update direction is pt = −Ĥ−1t ∇f(wt). We use line-search to choose
the step-size, that is, find

αt = max
α≤1

α such that f(wt + αpt) ≤ f(wt) + αβpTt ∇f(wt), (5)

for some constant β ∈ (0, 1/2]. For weakly-convex functions, the update direction (inspired
by Newton-MR [22]) is pt = −Ĥ†t∇f(wt), where Ĥ†t is the Moore-Penrose inverse of Ĥt. To
find the update wt+1, we find the right step-size αt using line-search in (5), but with f(·)
replaced by ||∇f(·)||2 and ∇f(wt) replaced by 2Ĥt∇f(wt), according to the objective in
||∇f(·)||2. More specifically, for some constant β ∈ (0, 1/2],

αt = max
α≤1

α such that ||∇f(wt + αpt)||2 ≤ ||∇f(wt)||2 + 2αβpTt Ĥt∇f(wt). (6)

Note that for OverSketched Newton, we use Ĥt in the line-search since the exact Hessian is
not available. The update in the t-th iteration in both cases is given by

wt+1 = wt + αtpt.

Note that (5) line-search can be solved approximately in single machine systems using
Armijo backtracking line search [16, 51]. OverSketched Newton is concisely described in
Algorithm 3. In Section 3.2, we describe how to implement distributed line-search in serverless
systems when the data is stored in the cloud. Next, we prove convergence guarantees for
OverSketched Newton that uses the sketch matrix in (4) and full gradient for approximate
Hessian computation.

8

Algorithm 2: Approximate Hessian calculation on serverless systems using OverSketch
Input :Matrices A ∈ Rn×d, required sketch dimension m, straggler tolerance e,

block-size b. Define N = m/b
Result: Ĥ ≈ AT ×A

1 Sketching: Use sketch in Eq. (4) to obtain Ã = STA distributedly (see Algorithm 5
in [32] for details)

2 Block partitioning: Divide Ã into (N + e)× d/b matrix of b× b blocks
3 Computation phase: Each worker takes a block of Ã and ÃT each and multiplies

them. This step invokes (N + e)d2/b2 workers, where N + e workers compute one
block of Ĥ

4 Termination: Stop computation when any N out of N + e workers return their
results for each block of Ĥ

5 Reduction phase: Invoke d2/b2 workers to aggregate results during the computation
phase, where each worker will calculate one block of Ĥ

3.1 Convergence Guarantees

First, we focus our attention to strongly convex functions. We consider the following
assumptions. We note that these assumptions are standard for analyzing approximate
Newton methods, (e.g., see [19, 20,23].

Assumptions:
1. f is twice-differentiable;

2. f is k-strongly convex (k > 0), that is,

∇2f(w) � kI;

3. f is M -smooth (k ≤M <∞), that is,

∇2f(w) �MI;

4. the Hessian is L-Lipschitz continuous, that is, for any ∆∆∆ ∈ Rd

||∇2f(w + ∆)−∇2f(w)||2 ≤ L||∆||2,

where || · ||2 is the spectral norm for matrices.

We first prove the following “global” convergence guarantee which shows that OverSketched
Newton would converge from any random initialization of w0 ∈ Rd with high probability.

Theorem 3.1 (Global convergence for strongly-convex f). Consider Assumptions 1,
2, and 3 and step-size αt given by Eq. (5). Let w∗ be the optimal solution of (1). Let ε and µ
be positive constants. Then, using the sketch in (4) with a sketch dimension Nb+eb = Ω(d

1+µ

ε2
)

9

Algorithm 3: OverSketched Newton in a nutshell
Input :Convex function f ; Initial iterate w0 ∈ Rd; Line search parameter 0 < β ≤ 1/2;

Number of iterations T
1 for t = 1 to T do
2 Compute full gradient gt in a distributed fashion using Algorithm 1
3 Compute sketched Hessian matrix Ĥt in a distributed fashion using Algorithm 2
4 if f is strongly-convex then
5 Compute the update direction at the master as: pt = −[Ĥt]

−1∇f(wt)
6 Compute step-size αt satisfying the line-search condition (5) in a distributed

fashion
7 else
8 Compute the update direction at the master as: pt = −[Ĥt]

†∇f(wt)
9 Find step-size αt satisfying the line-search condition (6) in a distributed fashion

10 end
11 Compute the model update wt+1 = wt + αtpt at the master
12 end

and the number of column-blocks N + e = Θµ(1/ε), the updates for OverSketched Newton,
for any wt ∈ Rd, satisfy

f(wt+1)− f(w∗) ≤ (1− ρ)(f(wt)− f(w∗)),

with probability at least 1− 1/dτ , where ρ = 2αtβk
M(1+ε) and τ > 0 is a constant depending on µ

and constants in Ω(·) and Θ(·). Moreover, αt satisfies αt ≥ 2(1−β)(1−ε)k
M .

Proof. See Section 6.1.

Theorem 3.1 guarantees the global convergence of OverSketched Newton starting with
any initial estimate w0 ∈ Rd to the optimal solution w∗ with at least a linear rate.

Next, we can also prove an additional “local” convergence guarantee for OverSketched
Newton, under the assumption that w0 is sufficiently close to w∗.

Theorem 3.2 (Local convergence for strongly-convex f). Consider Assumptions 1,
2, and 4 and step-size αt = 1. Let w∗ be the optimal solution of (1) and γ and β be the
minimum and maximum eigenvalues of ∇2f(w∗), respectively. Let ε ∈ (0, γ/(8β)] and µ > 0.
Then, using the sketch in (4) with a sketch dimension Nb+ eb = Ω(d

1+µ

ε2
) and the number of

column-blocks N + e = Θµ(1/ε), the updates for OverSketched Newton, with initialization w0

such that ||w0 −w∗||2 ≤ γ
8L , follow

||wt+1 −w∗||2 ≤
25L

8γ
||wt −w∗||22 +

5εβ

γ
||wt −w∗||2 for t = 1, 2, · · · , T,

with probability at least 1− T/dτ , where τ > 0 is a constant depending on µ and constants in
Ω(·) and Θ(·).

10

Proof. See Section 6.2.

Theorem 3.2 implies that the convergence is linear-quadratic in error ∆t = wt − w∗.
Initially, when ||∆t||2 is large, the first term of the RHS will dominate and the convergence
will be quadratic, that is, ||∆t+1||2 . 25L

8γ ||∆t||22. In later stages, when ||wt −w∗||2 becomes
sufficiently small, the second term of RHS will start to dominate and the convergence will be
linear, that is, ||∆t+1||2 . 5εβ

γ ||∆t||2. At this stage, the sketch dimension can be increased to
reduce ε to diminish the effect of the linear term and improve the convergence rate in practice.
Note that, for second order methods, the number of iterations T is in the order of tens in
general while the number of features d is typically in thousands. Hence, the probability of
failure is generally small (and can be made negligible by choosing τ appropriately).

Though the works [19,20,23,47,52] also prove convergence guarantees for approximate
Hessian-based optimization, no convergence results exist for the OverSketch matrix in Eq.
(4) to the best of our knowledge. OverSketch has many nice properties like sparsity, input
obliviousness, and amenability to distributed implementation, and our convergence guarantees
take into account the block-size b (that captures the amount of communication at each
worker) and the number of stragglers e, both of which are a property of the distributed
system. On the other hand, algorithms in [19,20,23,47,52] are tailored to run on a single
machine.

Next, we consider the case of weakly-convex functions. For this case, we consider two
more assumptions on the Hessian matrix, similar to [22]. These assumptions are a relaxation
of the strongly-convex case.

Assumptions:
5. There exists some η > 0 such that, ∀ w ∈ Rd,

||(∇2f(w))†||2 ≤ 1/η.

This assumption establishes regularity on the pseudo-inverse of ∇2f(x). It also implies
that ||∇2f(w)p|| ≥ η||p|| ∀ p ∈ Range(∇2f(w)), that is, the minimum ‘non-zero’
eigenvalue of ∇2f(w) is lower bounded by η; just as in the k-strongly convex case, the
smallest eigenvalue is greater than k.

6. Let U ∈ Rd×d be any arbitrary orthogonal basis for Range(∇2f(w)), there exists
0 < ν ≤ 1, such that,

||UT∇f(w)||2 ≥ ν||∇f(w)||2 ∀ w ∈ Rd.

This assumption ensures that there is always a non-zero component of the gradient
in the subspace spanned by the Hessian, and, thus, ensures that the model update
−Ĥ†t∇f(wt) will not be zero.

Note that the above assumptions are always satisfied by strongly-convex functions. Next, we
prove global convergence of OverSketched Newton when the objective is weakly-convex.

11

Theorem 3.3 (Global convergence for weakly-convex f). Consider Assumptions
1,3,4,5 and 6 and step-size αt given by Eq. (6). Let ε ∈

(
0, (1−β)νη2M

]
and µ > 0. Then,

using an OverSketch matrix with a sketch dimension Nb + eb = Ω(d
1+µ

ε2
) and the number

of column-blocks N + e = Θµ(1/ε), the updates for OverSketched Newton, for any wt ∈ Rd,
satisfy

||∇f(wt+1)||2 ≤
(

1− 2βαν
(1− ε)η
M(1 + ε)

)
||∇f(wt)||2,

with probability at least 1− 1/dτ , where α = η
2Q

[
(1−β)νη− 2εM

]
, Q = (L||∇f(w0)||+M2),

w0 is the initial iterate of the algorithm and τ > 0 is a constant depending on µ and constants
in Ω(·) and Θ(·).

Proof. See Section 6.3.

Even though we present the above guarantees for the sketch matrix in Eq. (4), our analysis
is valid for any sketch that satisfies the subspace embedding property (Lemma 6.1; see [29] for
details on subspace embedding property of sketches). To the best of our knowledge, this is the
first work to prove the convergence guarantees for weakly-convex functions when the Hessian
is calculated approximately using sketching techniques. Later, authors in [53] extended the
analysis to the case of general Hessian perturbations with additional assumptions on the
type of perturbation.

3.2 Distributed Line Search

Here, we describe a line-search procedure for distributed serverless optimization, which is
inspired by the line-search method from [24] for serverful systems. To solve for the step-size
αt as described in the optimization problem in (5), we set β = 0.1 and choose a candidate
set S = {40, 41, · · · , 4−5}. After the master calculates the descent direction pt in the t-th
iteration, the i-th worker calculates fi(wt + αpt) for all values of α in the candidate set S,
where fi(·) depends on the local data available at the i-th worker and f(·) =

∑
i fi(·)4.

The master then sums the results from workers to obtain f(wt + αpt) for all values of
α in S and finds the largest α that satisfies the Armijo condition in (5)5. Note that line
search requires an additional round of communication where the master communicates pt to
the workers through cloud and the workers send back the function values fi(·). Finally, the
master finds the best step-size from set S and finds the model estimate wt+1.

4For the weakly-convex case, the workers calculate ∇fi(·) instead of fi(·), and the master calculates
||∇f(·)||2 instead of f(·).

5Note that codes can be used to mitigate stragglers during distributed line-search in a manner similar to
the gradient computation phase.

12

4 OverSketched Newton on Serverless Systems: Examples

Here, we describe several examples where our general approach can be applied.

4.1 Logistic Regression using OverSketched Newton

The optimization problem for supervised learning using Logistic Regression takes the form

min
w∈Rd

{
f(w) =

1

n

n∑
i=1

log(1 + e−yiw
Txi) +

λ

2
‖w‖22

}
. (7)

Here, x1, · · · ,xn ∈ Rd×1 and y1, · · · , yn ∈ R are training sample vectors and labels, respec-
tively. The goal is to learn the feature vector w∗ ∈ Rd×1. Let X = [x1,x2, · · · ,xn] ∈ Rd×n
and y = [y1, · · · , yn] ∈ Rn×1 be the example and label matrices, respectively. The gradient
for the problem in (7) is given by

∇f(w) =
1

n

n∑
i=1

−yixi
1 + eyiw

T
i xi

+ λw.

Calculation of ∇f(w) involves two matrix-vector products, ααα = XTw and ∇f(w) =
1
nXβββ + λw, where βi = −yi

1+eyiαi ∀ i ∈ [1, · · · , n]. When the example matrix is large,
these matrix-vector products are performed distributedly using codes. Faster convergence
is obtained by second-order methods which will additionally compute the Hessian H =
1
nXΛΛΛXT + λId, where ΛΛΛ is a diagonal matrix with entries given by Λ(i, i) = eyiαi

(1+eyiαi)2
. The

product XΛΛΛXT is computed approximately in a distributed straggler-resilient manner using
the sketch matrix in (4). Using the result of distributed multiplication, the Hessian matrix
H is calculated at the master and the model is updated as wt+1 = wt −H−1∇f(wt). In
practice, efficient algorithm like conjugate gradient, that provide a good estimate in a small
number of iterations, can be used locally at the master to solve for wt+1 [54].6

We provide a detailed description of OverSketched Newton for large-scale logistic regression
for serverless systems in Algorithm 4. Steps 4, 8, and 14 of the algorithm are computed
in parallel on AWS Lambda. All other steps are simple vector operations that can be
performed locally at the master, for instance, the user’s laptop. Steps 4 and 8 are executed
in a straggler-resilient fashion using the coding scheme in [34], as illustrated in Fig. 1 and
described in detail in Algorithm 1.

We use the coding scheme in [34] since the encoding can be implemented in parallel
and requires less communication per worker compared to the other schemes, for example
schemes in [33, 40], that use Maximum Distance Separable (MDS) codes. Moreover, the

6Note that here we have assumed that the number of features is small enough to perform the model
update locally at the master. This is not necessary, and straggler resilient schemes, such as in [35], can be
used to perform distributed conjugate gradient in serverless systems.

13

Algorithm 4: OverSketched Newton: Logistic Regression for Serverless Computing
1 Input Data (stored in cloud storage): Example Matrix X ∈ Rd×n and vector

y ∈ Rn×1 (stored in cloud storage), regularization parameter λ, number of iterations
T , Sketch S as defined in Eq. (4)

2 Initialization: Define w1 = 0d×1,βββ = 0n×1, γγγ = 0n×1, Encode X and XT as
described in Algorithm 1

3 for t = 1 to T do
4 ααα = Xwt ; // Compute in parallel using Algorithm 1
5 for i = 1 to n do
6 βi = −yi

1+eyiαi ;

7 end
8 g = XTβββ ; // Compute in parallel using Algorithm 1
9 ∇f(wt) = g + λwt;

10 for i = 1 to n do
11 γ(i) = eyiαi

(1+eyiαi)2
;

12 end
13 A =

√
diag(γγγ)XT

14 Ĥ = ATSSTA ; // Compute in parallel using Algorithm 2
15 H = 1

nĤ + λId;
16 wt+1 = wt −H−1∇f(wt);
17 end

Result: w∗ = wT+1

decoding scheme takes linear time and is applicable on real-valued matrices. Note that since
the example matrix X is constant in this example, the encoding of X is done only once
before starting the optimization algorithm. Thus, the encoding cost can be amortized over
iterations. Moreover, decoding over the resultant product vector requires negligible time and
space, even when n is scaling into the millions.

The same is, however, not true for the matrix multiplication for Hessian calculation
(step 14 of Algorithm 4), as the matrix A changes in each iteration, thus encoding costs will
be incurred in every iteration if error-correcting codes are used. Moreover, encoding and
decoding a huge matrix stored in the cloud incurs heavy communication cost and becomes
prohibitive. Motivated by this, we use OverSketch in step 14, as described in Algorithm
2, to calculate an approximate matrix multiplication, and hence the Hessian, efficiently in
serverless systems with inbuilt straggler resiliency.7

7We also evaluate the exact Hessian-based algorithm with speculative execution, i.e., recomputing the
straggling jobs, and compare it with OverSketched Newton in Sec. 5.

14

4.2 Softmax Regression using OverSketched Newton

We take unregulairzed softmax regression as an illustrative example for the weakly convex
case. The goal is to find the weight matrix W = [w1, · · · ,wK] that fit the training data
X ∈ Rd×N and y ∈ RK×N . Here wi ∈ Rd represesents the weight vector for the k-th class
for all i ∈ [1,K] and K is the total number of classes. Hence, the resultant feature dimension
for softmax regression is dK. The optimization problem is of the form

f(W) =

N∑
n=1

[
K∑
k=1

yknw
T
k xn − log

K∑
l=1

exp
(
wT
l xn

)]
. (8)

The gradient vector for the i-th class is given by

∇fi(W) =

N∑
n=1

[
exp

(
wT
i xn

)∑K
l=1 exp

(
wT
l xn

) − yin]xn ∀ i ∈ [1, k], (9)

which can be written as matrix products αiαiαi = XTwi and ∇fi(W) = Xβββi, where the entries
of βββi ∈ RN are given by βin =

(
exp(αin)∑K
l=1 exp(αln)

− yin
)
. Thus, the full gradient matrix is given

by ∇f(W) = Xβββ where the entries of βββ ∈ RN×K are dependent on ααα ∈ RN×K as above and
the matrix ααα is given by ααα = XTW. We assume that the number of classes K is small enough
such that tall matrices ααα and βββ are small enough for the master to do local calculations on
them.

Since the effective number of features is d × K, the Hessian matrix is of dimension
dK × dK. The (i, j)-th component of the Hessian, say Hij , is

Hij(W) =
d

dwj
∇fi(W) =

d

dwj
Xβiβiβi = X

d

dwj
βββi = XZijX

T (10)

where Zij ∈ RN×N is a diagonal matrix whose n-th diagonal entry is

Zij(n) =
exp(αin)∑K
l=1 exp(αln)

(
I(i = j)− exp(αjn)∑K

l=1 exp(αln)

)
∀ n ∈ [1, N], (11)

where I(·) is the indicator function and ααα = XW was defined above. The full Hessian matrix
is obtained by putting together all such Hij ’s in a dK × dK matrix and can be expressed in
a matrix-matrix multiplication form as

∇2f(W) =

 H11 · · · H1K
...

. . .
...

HK1 · · · HKK

 =

 XZ11X
T · · · XZ1KXT

...
. . .

...
XZK1X

T · · · XZKKXT

 = X̄Z̄X̄T , (12)

where X̄ ∈ RdK×NK is a block diagonal matrix that contains X in the diagonal blocks
and Z̄ ∈ RNK×NK is formed by stacking all the Zij ’s for i, j ∈ [1,K]. In OverSketched
Newton, we compute this multiplication using sketching in serverless systems for efficiency
and resiliency to stragglers. Assuming d×K is small enough, the master can then calculate
the update pt using efficient algorithms such the minimum-residual method [22,55].

15

4.3 Other Example Problems

In this section, we describe several other commonly encountered optimization problems that
can be solved using OverSketched Newton.

Ridge Regularized Linear Regression: The optimization problem is

min
w∈Rd

1

2n
||XTw − y||22 +

λ

2
‖w‖22. (13)

The gradient in this case can be written as 1
nX(βββ − y) + λw, where βββ = XTw, where the

training matrix X and label vector y were defined previously. The Hessian is given by
∇2f(w) = XXT + λI. For n � d, this can be computed approximately using the sketch
matrix in (4).

Linear programming via interior point methods: The following linear program
can be solved using OverSketched Newton

minimize
Ax≤b

cTx, (14)

where x ∈ Rm×1, c ∈ Rm×1,b ∈ Rn×1 and A ∈ Rn×m is the constraint matrix with n > m.
In algorithms based on interior point methods, the following sequence of problems using
Newton’s method

min
x∈Rm

f(x) = min
x∈Rm

(
τcTx−

n∑
i=1

log(bi − aix)

)
, (15)

where ai is the i-th row of A, τ is increased geometrically such that when τ is very large,
the logarithmic term does not affect the objective value and serves its purpose of keeping
all intermediates solution inside the constraint region. The update in the t-th iteration is
given by xt+1 = xt− (∇2f(xt))

−1∇f(xt), where xt is the estimate of the solution in the t-th
iteration. The gradient can be written as ∇f(x) = τc + ATβββ where βi = 1/(bi − αi) and
ααα = Ax.

The Hessian for the objective in (15) is given by

∇2f(x) = ATdiag
1

(bi − αi)2
A. (16)

The square root of the Hessian is given by ∇2f(x)1/2 = diag 1
|bi−αi|A. The computation

of Hessian requires O(nm2) time and is the bottleneck in each iteration. Thus, we can
use sketching to mitigate stragglers while evaluating the Hessian efficiently, i.e. ∇2f(x) ≈
(S∇2f(x)1/2)T × (S∇2f(x)1/2), where S is the OverSketch matrix defined in (4).

Lasso Regularized Linear Regression: The optimization problem takes the following
form

min
w∈Rd

1

2
||Xw − y||22 + λ||w||1, (17)

16

where X ∈ Rn×d is the measurement matrix, the vector y ∈ Rn contains the measurements,
λ ≥ 0 and d� n. To solve (17), we consider its dual variation

min
||XT z||∞≤λ,z∈Rn

1

2
||y − z||22,

which is amenable to interior point methods and can be solved by optimizing the following
sequence of problems where τ is increased geometrically

min
z
f(z) = min

z

(τ
2
||y − z||22 −

d∑
j=1

log(λ− xTj z)−
d∑
j=1

(λ+ xTj z)
)
,

where xj is the j-th column of X. The gradient can be expressed in few matrix-vector
multiplications as ∇f(z) = τ(z − y) + X(βββ − γγγ), where βi = 1/(λ − αi), γi = 1/(λ + αi),
and ααα = XT z. Similarly, the Hessian can be written as ∇2f(z) = τI + XΛΛΛXT , where ΛΛΛ is a
diagonal matrix whose entries are given by Λii = 1/(λ− αi)2 + 1/(λ+ αi)

2 ∀ i ∈ [1, n].

Other common problems where OverSketched Newton is applicable include Linear Re-
gression, Support Vector Machines (SVMs), Semidefinite programs, etc.

5 Experimental Results

In this section, we evaluate OverSketched Newton on AWS Lambda using real-world and syn-
thetic datasets, and we compare it with state-of-the-art distributed optimization algorithms8.
We use the serverless computing framework, Pywren [3]. Our experiments are focused on
logistic and softmax regression, which are popular supervised learning problems, but they
can be reproduced for other problems described in Section 4. We present experiments on the
following datasets:

Dataset Training Samples Features Testing samples
Synthetic 300, 000 3000 100, 000
EPSILON 400, 000 2000 100, 000
WEBPAGE 48, 000 300 15, 000

a9a 32, 000 123 16, 000
EMNIST 240, 000 7840 40, 000

For comparison of OverSketched Newton with existing distributed optimization schemes,
we choose recently-proposed Globally Improved Approximate Newton Direction (GIANT) [24].
The reason is that GIANT boasts a better convergence rate than many existing distributed
second-order methods for linear and logistic regression, when n � d. In GIANT, and
other similar distributed second-order algorithms, the training data is evenly divided among

8A working implementation of OverSketched Newton is available at
https://github.com/vvipgupta/OverSketchedNewton

17

W1 W2 W3 W4

M

!"
!" !"

!"

Stage	1

Stage	2

#1 #2 #3 #4

()*
(+* (,*

(-*

W1 W2 W3 W4

(* (* (* (*

M

.1 .2 .3 .4

/)*
/+* /,*

/-*
M

(* = 	 123(4*
5

46)

/* = 	 123/4*
5

46)

!*7) = !* − 9*/*

Figure 4: GIANT: The two stage second order distributed optimization scheme with four
workers. First, master calculates the full gradient by aggregating local gradients from workers.
Second, the master calculates approximate Hessian using local second-order updates from
workers.

(a) Simple Gradient Descent
where each worker stores one-
fourth fraction of the whole
data and sends back a partial
gradient corresponding to its
own data to the master

(b) Gradient Coding described
in [37] with W3 straggling. To
get the global gradient, master
would compute g1 + g2 + g3 +
g4 = 3

(
g1 + g2

2

)
−
(
g2
2 − g3

)
+

(g4 − 2g1)

(1 +	(2+	(4

(c) Mini-batch gradient de-
scent, where the stragglers are
ignored during gradient aggre-
gation and the gradient is later
scaled according to the size of
mini-batch

Figure 5: Different gradient descent schemes in serverful systems in presence of stragglers

workers, and the algorithms proceed in two stages. First, the workers compute partial
gradients using local training data, which is then aggregated by the master to compute
the exact gradient. Second, the workers receive the full gradient to calculate their local
second-order estimate, which is then averaged by the master. An illustration is shown in Fig.
4.

For straggler mitigation in such serverful systems based algorithms, [37] proposes a
scheme for coding gradient updates called gradient coding, where the data at each worker

18

0 200 400 600 800 1000
Time (seconds)

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

Tr
ai

ni
ng

 E
rro

r

Logistic regression on synthetic data

Uncoded GIANT with full gradient
GIANT with gradient coding
GIANT with ignoring stragglers
Exact Newton's method
OverSketched Newton

Figure 6: Convergence comparison of GIANT (employed with different straggler mitigation
methods), exact Newton’s method and OverSketched Newton for Logistic regression on AWS
Lambda. The synthetic dataset considered has 300,000 examples and 3000 features.

is repeated multiple times to compute redundant copies of the gradient. See Figure 5b
for illustration. Figure 5a illustrates the scheme that waits for all workers and Figure 5c
illustrates the ignoring stragglers approach. We use the three schemes for dealing with
stragglers illustrated in Figure 5 during the two stages of GIANT, and we compare their
convergence with OverSketched Newton. We further evaluate and compare the convergence
exact Newton’s method (employed with speculative execution, that is, reassigning and
recomputing the work for straggling workers).

5.1 Comparisons with Existing Second-Order Methods on AWS Lambda

In Figure 6, we present our results on a synthetic dataset with n = 300, 000 and d = 3000
for logistic regression on AWS Lambda. Each column xi ∈ Rd, for all i ∈ [1, n], is sampled
uniformly randomly from the cube [−1, 1]d. The labels yi are sampled from the logistic
model, that is, P[yi = 1] = 1/(1 + exp(xiw + b)), where the weight vector w and bias b are
generated randomly from the normal distribution. ht vector w and bias b are generated
randomly from the normal distribution.

The orange, blue and red curves demonstrate the convergence for GIANT with the full
gradient (that waits for all the workers), gradient coding and mini-batch gradient (that ignores
the stragglers while calculating gradient and second-order updates) schemes, respectively.
The purple and green curves depict the convergence for the exact Newton’s method and
OverSketched Newton, respectively. The gradient coding scheme is applied for one straggler,
that is the data is repeated twice at each worker. We use 60 Lambda workers for executing
GIANT in parallel. Similarly, for Newton’s method, we use 60 workers for matrix-vector
multiplication in steps 4 and 8 of Algorithm 4, 3600 workers for exact Hessian computation
and 600 workers for sketched Hessian computation with a sketch dimension of 10d = 30, 000

19

0 100 200 300 400 500 600 700 800 900
Time (seconds)

0.3

0.35

0.4

0.45

0.5

0.55

0.6
0.65

Tr
ai

ni
ng

 e
rro

r
Training error on EPSILON dataset

Uncoded GIANT with full gradient
GIANT with gradient coding
GIANT with ignoring stragglers
Exact Newton's method
OverSketched Newton

(a) Training error for logistic regression on EP-
SILON dataset

0 100 200 300 400 500 600 700 800 900
Time (seconds)

0.3

0.35

0.4

0.45

0.5

0.55

0.6
0.65

Te
st

in
g

er
ro

r

Testing error on EPSILON dataset

Uncoded GIANT with full gradient
GIANT with gradient coding
GIANT with ignoring stragglers
Exact Newton's method
OverSketched Newton

(b) Testing error for logistic regression on EP-
SILON dataset

Figure 7: Comparison of training and testing errors for logistic regression on EPSILON dataset
with several Newton based schemes on AWS Lambda. OverSketched Newton outperforms
others by at least 46%. Testing error closely follows training error.

in step 14 of Algorithm 4. In all cases, unit step-size was used to update the model9

Remark 1. In our experiments, we choose the number of workers in such a way that each
worker receives approximately the same amount of data to work with, regardless of the
algorithm. This is motivated by the fact that the memory at each worker is the bottleneck in
serverless systems (e.g., in AWS Lambda, the memory at each worker can be as low as 128
MB). Note that this is unlike serverful/HPC systems, where the number of workers is the
bottleneck.

An important point to note from Fig. 6 is that the uncoded scheme (that is, the one
that waits for all stragglers) has the worst performance. The implication is that good
straggler/fault mitigation algorithms are essential for computing in the serverless setting.
Secondly, the mini-batch scheme outperforms the gradient coding scheme by 25%. This is
because gradient coding requires additional communication of data to serverless workers
(twice when coding for one straggler, see [37] for details) at each invocation to AWS Lambda.
On the other hand, the exact Newton’s method converges much faster than GIANT, even
though it requires more time per iteration.

The number of iterations needed for convergence for OverSketched Newton and exact
Newton (that exactly computes the Hessian) is similar, but OverSketched Newton converges
in almost half the time due to an efficient computation of (approximate) Hessian (which is
the computational bottleneck and thus reduces time per iteration).

9Line-search in Section 3 was mainly introduced to prove theoretical guarantees. In our experiments, we
observe that constant step-size works well for OverSketched Newton.

20

0 100 200 300 400 500
Time (seconds)

0.2

0.3

0.4

0.5

0.6

Tr
ai

ni
ng

 E
rro

r
Training error on WEBPAGE dataset

Uncoded GIANT with full gradient
GIANT with gradient coding
GIANT with ignoring stragglers
Exact Newton's method
OverSketched Newton

(a) Logistic regression on WEBPAGE dataset

0 50 100 150 200
Time (seconds)

0.35

0.4

0.45

0.5

0.55
0.6

0.65

Tr
ai

ni
ng

 E
rro

r

Training error on a9a dataset

Uncoded GIANT with full gradient
GIANT with gradient coding
GIANT with ignoring stragglers
Exact Newton's method
OverSketched Newton

(b) Logistic regression on a9a dataset

Figure 8: Logistic regression on WEBPAGE and a9a datasets with several Newton based
schemes on AWS Lambda. OverSketched Newton outperforms others by at least 25%.

5.1.1 Logistic Regression on EPSILON, WEBPAGE and a9a Datasets

In Figure 7, we repeat the above experiment with EPSILON classification dataset obtained
from [36], with n = 0.4 million and d = 2000. We plot training and testing errors for
logistic regression for the schemes described in the previous section. Here, we use 100 workers
for GIANT, and 100 workers for matrix-vector multiplications for gradient calculation in
OverSketched Newton. We use gradient coding designed for three stragglers in GIANT. This
scheme performs worse than uncoded GIANT that waits for all the stragglers due to the
repetition of training data at workers. Hence, one can conclude that the communication
costs dominate the straggling costs. In fact, it can be observed that the mini-batch gradient
scheme that ignores the stragglers outperforms the gradient coding and uncoded schemes for
GIANT.

During exact Hessian computation, we use 10, 000 serverless workers with speculative exe-
cution to mitigate stragglers (i.e., recomputing the straggling jobs) compared to OverSketched
Newton that uses 1500 workers with a sketch dimension of 15d = 30, 000. OverSketched
Newton requires a significantly smaller number of workers, as once the square root of Hessian
is sketched in a distributed fashion, it can be copied into local memory of the master due to
dimension reduction, and the Hessian can be calculated locally. Testing error follows training
error closely, and important conclusions remain the same as in Figure 6. OverSketched
Newton outperforms GIANT and exact Newton-based optimization by at least 46% in terms
of running time.

We repeated the above experiments for classification on the WEBPAGE (n = 49, 749 and
d = 300) and a9a (n = 32, 561 and d = 123) datasets [36]. For both datasets, we used 30
workers for each iteration in GIANT and any matrix-vector multiplications. Exact hessian
calculation invokes 900 workers as opposed to 300 workers for OverSketched Newton, where
the sketch dimension was 10d = 3000. The results for training loss on logistic regression are
shown in Figure 8. Testing error closely follows the training error in both cases. OverSketched

21

0 500 1000 1500 2000 2500
Time (seconds)

0.4

0.6

0.8

1
1.2
1.4
1.6
1.8

2
2.2

Tr
ai

ni
ng

 E
rro

r
Softmax Regression on EMNIST dataset

Gradient Descent
Exact Hessian based
OverSketched Newton

Figure 9: Convergence comparison of gra-
dient descent, exact Newton’s method and
OverSketched Newton for Softmax regression
on AWS Lambda.

0 50 100 150 200 250 300 350 400 450
Time (seconds)

0.3

0.35

0.4

0.45

0.5

0.55

0.6
0.65

Tr
ai

ni
ng

 E
rro

r

Newton-type methods on EPSILON dataset

Exact Hessian
(with recomputed gradient)
Exact Hessian
(with coded gradient)
OverSketched Newton
(with recomputed gradient)
OverSketched Newton
(with coded gradient)

Figure 10: Convergence comparison of spec-
ulative execution and coded computing for
gradient and Hessian computing with logistic
regression on AWS Lambda.

0 200 400 600 800 1000
Time (seconds)

0.3

0.35

0.4

0.45

0.5

0.55

0.6
0.65

Tr
ai

ni
ng

 E
rro

r

Comparison with First-order methods
Gradient descent
OverSketched Newton
NAG

Figure 11: Convergence comparison of gradi-
ent descent, NAG and OverSketched Newton
on AWS Lambda.

0 100 200 300 400 500
Time (seconds)

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

Tr
ai

ni
ng

 e
rro

r

Comparison with server-based systems

GIANT on Amazon EC2
OveSketched Newton
on AWS Lambda

Figure 12: Convergence comparison of GI-
ANT on AWS EC2 and OverSketched New-
ton on AWS Lambda.

Newton outperforms exact Newton and GIANT by at least ∼ 25% and ∼ 75%, respectively,
which is similar to the trends witnessed heretofore.

Remark 2. Note that conventional distributed second-order methods for serverful systems—
which distribute training examples evenly across workers (such as [24,42–46])—typically find
a “localized approximation” (localized to each machine) of second-order update at each worker
and then aggregate it. OverSketched Newton, on the other hand, uses the massive storage
and compute power in serverless systems to find a more “globalized approximation” (globalized
in the sense of across machine). Thus, it performs better in practice.

22

5.2 Softmax Regression on EMIST

In Fig. 9, we solve unregularized softmax regression, which is weakly convex (see Sec. 4.2 for
details). We use the Extended MNIST (EMNIST) dataset [56] with N = 240, 000 training
examples, d = 784 features and K = 10 classes. Note that GIANT cannot be applied
here as the objective function is not strongly convex. We compare the convergence rate of
OverSketched Newton, exact Hessian and gradient descent based schemes.

For gradient computation in all three schemes, we use 60 workers. However, exact Newton
scheme requires 3600 workers to calculate the dK×dK Hessian and recomputes the straggling
jobs, while OverSketched Newton requires only 360 workers to calculate the sketch in parallel
with sketch dimension 6dK = 47, 040. The approximate Hessian is then computed locally at
the master using its sketched square root, where the sketch dimension is 6dK = 47, 040. The
step-size is fixed and is determined by hyperparamter tuning before the start of the algorithm.
Even for the weakly-convex case, second-order methods tend to perform better. Moreover,
the runtime of OverSketched Newton outperforms both gradient descent and Exact Newton
based methods by ∼ 75% and ∼ 50%, respectively.

5.3 Coded computing versus Speculative Execution

In Figure 10, we compare the effect of straggler mitigation schemes, namely speculative
execution, that is, restarting the jobs with straggling workers, and coded computing on
the convergence rate during training and testing. We regard OverSketch based matrix
multiplication as a coding scheme in which some redundancy is introduced during “over”
sketching for matrix multiplication. There are four different cases, corresponding to gradient
and hessian calculation using either speculative execution or coded computing. For speculative
execution, we wait for at least 90% of the workers to return (this works well as the number of
stragglers is generally less than 10%) and restart the jobs that did not return till this point.

For both exact Hessian and OverSketched Newton, using codes for distributed gradient
computation outperforms speculative execution based straggler mitigation. Moreover, com-
puting the Hessian using OverSketch is significantly better than exact computation in terms
of running time as calculating the Hessian is the computational bottleneck in each iteration.

5.4 Comparison with First-Order Methods on AWS Lambda

In Figure 11, we compare gradient descent and Nesterov Accelerated Gradient (NAG) (while
ignoring the stragglers) with OverSketched Newton for logistic regression on EPSILON
dataset. We observed that for first-order methods, there is only a slight difference in
convergence for a mini-batch gradient when the batch size is 95%. Hence, for gradient

23

descent and NAG, we use 100 workers in each iteration while ignoring the stragglers.10

These first-order methods were given the additional advantage of backtracking line-search,
which determined the optimal amount to move in given a descent direction.11 Overall,
OverSketched Newton with unit step-size significantly outperforms gradient descent and
NAG with backtracking line-search.

5.5 Comparison with Serverful Optimization

In Fig. 12, we compare OverSketched Newton on AWS Lambda with existing distributed
optimization algorithm GIANT in serverful systems (AWS EC2). The results are plotted
on synthetically generated data for logistic regression. For serverful programming, we use
Message Passing Interface (MPI) with one c3.8xlarge master and 60 t2.medium workers
in AWS EC2. In [4], the authors observed that many large-scale linear algebra operations
on serverless systems take at least 30% more time compared to MPI-based computation on
serverful systems. However, as shown in Fig. 12, we observe a slightly surprising trend that
OverSketched Newton outperforms MPI-based optimization (that uses existing state-of-the-
art optimization algorithm). This is because OverSketched Newton exploits the flexibility
and massive scale at disposal in serverless, and thus produces a better approximation of the
second-order update than GIANT.12

6 Proofs

To complete the proofs in this section, we will need the following lemma.

Lemma 6.1. Let Ĥt = AT
t StS

T
t At where St is the sparse sketch matrix in (4) with sketch

dimension m = Ω(d1+µ/ε2) and N = Θµ(1/ε). Then, the following holds

λmin(Ĥt) ≥ (1− ε)λmin(∇2f(wt)), (18)

λmax(Ĥt) ≤ (1 + ε)λmax(∇2f(wt)) (19)

with probability at least 1− 1
dτ , where τ > 0 is a constant depending on µ and the constants

in Θ(·) and Ω(·), and λmax(·) and λmin(·) denote the maximum and minimum eigenvalues,
respectively. In general,

λi(∇2f(wt))− ελmax(∇2f(wt)) ≤ λi(Ĥt) ≤ λi(∇2f(wt)) + ελmax(∇2f(wt)),

10We note that stochastic methods such as SGD perform worse that gradient descent since their update
quality is poor, requiring more iterations (hence, more communication) to converge while not using the
massive compute power of serverless. For example, 20% minibatch SGD in the setup of Fig. 11 requires 1.9×
more time than gradient descent with same number of workers.

11We remark that backtracking line-search required ∼ 13% of the total time for NAG. Hence, as can be
seen from Fig. 11, any well-tuned step-size method would still be significantly slower than OverSketched
Newton.

12We do not compare with exact Newton in serverful sytems since the data is large and stored in the cloud.
Computing the exact Hessian would require a large number of workers (e.g., we use 10,000 workers for exact
Newton in EPSILON dataset) which is infeasible in existing serverful systems.

24

where λi(·) is the i-th eigenvalue.

Proof. We note than N is the number of non-zero elements per row in the sketch St in (4)
after ignoring stragglers. We use Theorem 8 in [57] to bound the singular values for the
sparse sketch St in (4) with sketch dimension m = Ω(d1+µ/ε2) and N = Θ(1/ε). It says
that P(∀ x ∈ Rn, ||Stx||2 ∈ (1± ε/3)||x||2) > 1− 1/dτ , where τ > 0 depends on µ and the
constants in Θ(·) and Ω(·). Thus, ||Stx||2 ∈ (1± ε/3)||x||2, which implies that

||Stx||22 ∈ (1 + ε2/9± 2ε/3)||x||22,

with probability at least 1− 1/dτ . For ε ≤ 1/2, this leads to the following inequality

||Stx||22 ∈ (1± ε)||x||22 ⇒ |xT (StS
T
t − I)x| ≤ ε||x||22 ∀ x ∈ Rn (20)

with probability at least 1− 1/dτ . Also, since (1− ε)xTx ≤ xTStS
T
t x ≤ (1 + ε)xTx ∀ x ∈ Rn

by the inequality above, replacing x by Ay, we get

(1− ε)yTATAy ≤ yTATStS
T
t Ay ≤ (1 + ε)yTATAy (21)

with probability at least 1− 1/dτ . Let y1 be the unit norm eigenvector corresponding to the
minimum eigenvalue of Ĥt = AT

t StS
T
t At. Since the above inequality is true for all y, we

have

yT1 AT
t StS

T
t Aty1 ≥ (1− ε)yT1 AT

t Aty1 ≥ (1− ε)λmin(AT
t At) = (1− ε)λmin(∇2f(wt))

⇒ λmin(Ĥt) ≥ (1− ε)λmin(∇2f(wt))

with probability at least 1 − 1/dτ . Along similar lines, we can prove that λmax(Ĥt) ≤
(1− ε)λmax(∇2f(wt)) with probability at least 1− 1/dτ using the right hand inequality in
(21). Together, these prove the first result.

In general, Eq. (20) implies that the eigenvalues of (StS
T
t − I) are in the set [−ε, ε]. Thus,

all the eigenvalues of AT
t (StS

T
t − I)At are in the set [−ελmax(∇2f(wt)), ελmax(∇2f(wt))]

Also, we can write

Ĥt = AT
t StS

T
t At = AT

t At + AT
t (StS

T
t − I)At.

Now, applying Weyl’s inequality (see [58], Section 1.3) on symmetric matrices Ĥt =
AT
t StS

T
t At, ∇2f(wt) = AT

t At and AT
t (StS

T
t − I)At, we get

λi(∇2f(wt))− ελmax(∇2f(wt)) ≤ λi(Ĥt) ≤ λi(∇2f(wt)) + ελmax(∇2f(wt)),

which proves the second result.

25

6.1 Proof of Theorem 3.1

Let’s define wτ = wt + τpt, where the descent direction pt is given by pt = −Ĥ−1t ∇f(wt).
Also, from Lemma 6.1, we have

λmin(Ĥt) ≥ (1− ε)λmin(∇2f(wt)) and λmax(Ĥt) ≤ (1 + ε)λmax(∇2f(wt)),

with probability at least 1 − 1/dτ . Using the above inequalities and the fact that f(·) is
k-strongly convex and M -smooth, we get

(1− ε)kI � Ĥt � (1 + ε)MI, (22)

with probability at least 1− 1/dτ .

Next, we show that there exists an α > 0 such that the Armijo line search condition in
(5) is satisfied. From the smoothness of f(·), we get (see [59], Theorem 2.1.5)

f(wα)− f(wt) ≤ (wα −wt)
T∇f(wt) +

M

2
||wα −wt||2,

= αpTt ∇f(wt) + α2M

2
||pt||2.

Now, for wα to satisfy the Armijo rule, α should satisfy

αpTt ∇f(wt) + α2M

2
||pt||2 ≤ αβpTt ∇f(wt)

⇒ α
M

2
||pt||2 ≤ (β − 1)pTt ∇f(wt)

⇒ α
M

2
||pt||2 ≤ (1− β)pTt Ĥtpt,

where the last inequality follows from the definition of pt. Now, using the lower bound from
(22), wα satisfies Armijo rule for all

α ≤ 2(1− β)(1− ε)k
M

.

Hence, we can always find an αt ≥ 2(1−β)(1−ε)k
M using backtracking line search such that wt+1

satisfies the Armijo condition, that is,

f(wt+1)− f(wt) ≤ αtβpTt ∇f(wt)

= −αtβ∇f(wt)
T Ĥ−1t ∇f(wt)

≤ − αtβ

λmax(Ĥt)
||∇f(wt)||2

which in turn implies

f(wt)− f(wt+1) ≥
αtβ

M(1 + ε)
||∇f(wt)||2 (23)

26

with probability at least 1− 1/dτ . Here the last inequality follows from the bound in (22).
Moreover, k-strong convexity of f(·) implies (see [59], Theorem 2.1.10)

f(wt)− f(w∗) ≤ 1

2k
||∇f(wt)||2.

Using the inequality from (23) in the above inequality, we get

f(wt)− f(wt+1) ≥
2αtβk

M(1 + ε)
(f(wt)− f(w∗))

≥ ρ(f(wt)− f(w∗)),

where ρ = 2αtβk
M(1+ε) . Rearranging, we get

f(wt+1)− f(w∗) ≤ (1− ρ)(f(wt)− f(w∗))

with probability at least 1− 1/dτ , which proves the desired result.

6.2 Proof of Theorem 3.2

According to OverSketched Newton update, wt+1 is obtained by solving

wt+1 = arg min
w∈Rd

{
f(wt) +∇f(wt)

T (w −wt) +
1

2
(w −wt)

T Ĥt(w −wt)
}
.

Thus, we have, for any w ∈ Rd,

f(wt) +∇f(wt)
T (w −wt) +

1

2
(w −wt)

T Ĥt(w −wt),

≥ f(wt) +∇f(wt)
T (wt+1 −wt) +

1

2
(wt+1 −wt)

T Ĥ(wt+1 −wt),

⇒ ∇f(wt)
T (w −wt+1) +

1

2
(w −wt)

T Ĥt(w −wt)−
1

2
(wt+1 −wt)

T Ĥt(wt+1 −wt) ≥ 0,

⇒ ∇f(wt)
T (w −wt+1) +

1

2

[
(w −wt)

T Ĥt(w −wt+1) + (w −wt+1)
T Ĥt(wt+1 −wt)

]
≥ 0.

Substituting w by w∗ in the above expression and calling ∆t = w∗ −wt, we get

−∇f(wt)
T∆t+1 +

1

2

[
∆T
t+1Ĥt(2∆t −∆t+1)

]
≥ 0,

⇒ ∆T
t+1Ĥt∆t −∇f(wt)

T∆t+1 ≥
1

2
∆T
t+1Ĥt∆t+1.

Now, due to the optimality of w∗, we have ∇f(w∗)T∆t+1 ≥ 0. Hence, we can write

∆T
t+1Ĥt∆t − (∇f(wt)−∇f(w∗))T∆t+1 ≥

1

2
∆T
t+1Ĥt∆t+1.

27

Next, substituting ∇f(wt) − ∇f(w∗) =
(∫ 1

0 ∇
2f(w∗ + p(wt − w∗))dp

)
(wt − w∗) in the

above inequality, we get

∆T
t+1(Ĥt −∇2f(wt))∆t + ∆T

t+1

(
∇2f(wt)−

∫ 1

0
∇2f(w∗ + p(wt −w∗))dp

)
∆t ≥

1

2
∆T
t+1Ĥt∆t+1.

Using Cauchy-Schwartz inequality in the LHS above, we get

||∆t+1||2||∆t||2
(
||Ĥt −∇2f(wt)||2 +

∫ 1

0
||∇2f(wt)−∇2f(w∗ + p(wt −w∗))||2dp

)
≥ 1

2
∆T
t+1Ĥt∆t+1.

Now, using the L-Lipschitzness of ∇2f(·) in the inequality above, we get

1

2
∆T
t+1Ĥt∆t+1 ≤ ||∆t+1||2||∆t||2||Ĥt −∇2f(wt)||2 +

L

2
||∆t+1||2||∆t||22

∫ 1

0
(1− p)dp,

⇒ 1

2
∆T
t+1Ĥt∆t+1 ≤ ||∆t+1||2

(
||∆t||2||Ĥt −∇2f(wt)||2 +

L

2
||∆t||22

)
. (24)

Note that for the positive definite matrix∇2f(wt) = AT
t At, we have ||At||22 = ||∇2f(wt)||2.

Moreover,

||Ĥt −∇2f(wt)||2 = ||AT
t (StS

T
t − I)At||2 ≤ ||At||22||StSTt − I||2

Now, using Equation 20 from the proof of Lemma 6.1, we get ||StSTt −I||2 = λmax(StS
T
t −I) ≤

ε. Using this to bound the RHS of (24), we have, with probability at least 1− 1/dτ ,

1

2
∆T
t+1Ĥt∆t+1 ≤ ||∆t+1||2

(
ε||∇2f(wt)||2||∆t||2 +

L

2
||∆t||22

)
1

2
||StA∆t+1||22 ≤ ||∆t+1||2

(
ε||∇2f(wt)||2||∆t||2 +

L

2
||∆t||22

)
,

where the last inequality follows from Ĥt = AT
t STt StAt. Now, since the sketch dimension

m = Ω(d1+µ/ε2), using Eq. (20) from the proof of Lemma 1 in above inequality, we get, with
probability at least 1− 1/dτ ,

1

2
(1− ε)||A∆t+1||22 ≤ ||∆t+1||2

(
ε||∇2f(wt)||2||∆t||2 +

L

2
||∆t||22

)
,

⇒ 1

2
(1− ε)∆T

t+1∇2f(wt)∆t+1 ≤ ||∆t+1||2
(
ε||∇2f(wt)||2||∆t||2 +

L

2
||∆t||22

)
.

Now, since γ and β are the minimum and maximum eigenvalues of ∇2f(w∗), we get

1

2
(1− ε)||∆t+1||2(γ − L||∆t||2) ≤ ε(β + L||∆t||2)||∆t||2 +

L

2
||∆t||22

by the Lipschitzness of ∇2f(w), that is, |∆T
t+1(∇2f(wt)−∇2f(w∗))∆t+1| ≤ L||∆t||2||∆||2t+1.

Rearranging for ε ≤ γ/(8β) < 1/2, we get

||∆t+1||2 ≤
4εβ

γ − L||∆t||2
||∆t||2 +

5L

2(γ − L||∆t||2)
||∆t||22, (25)

28

with probability at least 1− 1/dτ .

Let ξT be the event that the above inequality (in (25)) is true for t = 0, 1, · · · , T . Thus,

P(ξT) ≥
(

1− 1

dτ

)T
≥ 1− T

dτ
,

where the second inequality follows from Bernoulli’s inequality. Next, assuming that the
event ξT holds, we prove that ||∆t||2 ≤ γ/5L using induction. We can verify the base case
using the initialization condition, i.e. ||∆0||2 ≤ γ/8L. Now, assuming that ||∆t−1||2 ≤ γ/5L
and using it in the inequality (25), we get

||∆t||2 ≤
4εβ

γ
× γ

5L
+

5L

2γ
× γ2

25L2

=
4εβ

5L
+

γ

10L

≤ γ

L

(
1

10
+

1

10

)
≤ γ

5L
,

where the last inequality uses the fact that ε ≤ γ/(8β). Thus, by induction,

||∆t||2 ≤ γ/(5L) ∀ t ≥ 0 with probability at least 1− T/dτ .

Using this in (25), we get the desired result, that is,

||∆t+1||2 ≤
5εβ

γ
||∆t||2 +

25L

8γ
||∆t||22,

with probability at least 1− T/dτ .

6.3 Proof of Theorem 3.3

Let us define a few short notations for convenience. Say gt = ∇f(wt) and Ht = ∇2f(wt) =
AT
t At, and we know that Ĥt = AT

t StS
T
t At. Moreover, all the results with approximate

Hessian Ĥt hold with probability 1 − 1/dτ . We skip its mention in most of the proof for
brevity. The following lemmas will assist us in the proof.

Lemma 6.2. M -smoothness of f(·) and L-Lipchitzness of ∇2f(·) imply∥∥∇2f(y)∇f(y)−∇2f(x)∇f(x)
∥∥ ≤ Q||y − x|| (26)

for all x ∈ Rd, Q = (Lδ +M2), where y ∈ Y, where Y = {y ∈ Rd| ||∇f(y)|| ≤ δ} and δ > 0
is some constant.

Proof. We have

LHS =
∥∥∇2f(y)∇f(y)−∇2f(x)∇f(x)

∥∥
=
∥∥∇2f(y)−∇2f(x))∇f(y) +∇2f(x)(∇f(y)−∇f(x))

∥∥
29

By applying triangle inequality and Cauchy-Schwarz to above equation, we get

LHS ≤ ||∇2f(y)−∇2f(x)||2||∇f(y)||+ ||∇2f(x)||2||∇f(y)−∇f(x)||

From the smoothness of f(·), that is, Lipshitzness of gradient, we get ||∇2f(x)||2 ≤M ∀ x ∈
Rd. Additionally, using Lipshitzness of Hessian, we get

LHS ≤ (L||∇f(y)||+M2)||y − x||
≤ (Lδ +M2)||y − x||

for y ∈ Y. This proves the desired result.

Lemma 6.3. Let AT = U
√

ΣVT and ATSt = Û
√

Σ̂V̂T be the truncated Singular Value
Decompositions (SVD) of AT and ATSt, respectively. Thus, Ht = UΣUT and Ĥt = ÛΣ̂ÛT .
Then, for all g ∈ Rd, we have

||ÛTg||2 ≥ (1− ε)η
M(1 + ε)

||UTg||2, (27)

where η is defined in Assumption (5).

Proof. For all g ∈ Rd, using the fact that A = V
√

ΣUT, we get

||Ag||2 = (UTg)TΣ(UTg)

≥ λmin(Σ)||UTg||2

≥ η||UTg||2, (28)

where the last inequality uses Assumption (5). In a similar fashion, we can obtain

||STt Ag||2 = (ÛTg)T Σ̂(ÛTg)

≤ λmax(Σ̂)||ÛTg||2

≤M(1 + ε)||ÛTg||2, (29)

where the last inequality uses M -smoothness of f(·) and Lemma 6.1. Also, from the subspace
embedding property of St (see Lemma 6.1), we have

||STAg||2 ≥ (1− ε)||Ag||2.

Now, using the above inequality and Eqs. (28) and (29), we get

||ÛTg||2 ≥ (1− ε)η
M(1 + ε)

||UTg||2, (30)

which is the desired result.

30

Now we are ready to prove Theorem 3.3. Let Ht = UΣUT and Ĥt = ÛΣ̂ÛT be the
truncated SVDs of Ht and Ĥt, respectively. Also, let αt be the step-size obtained using
line-search in (6) in the t-th iteration. Thus, Eq. (6) with the update direction pt = −Ĥ†tgt
implies

||gt+1||2 ≤ ||gt||2 − 2βαt〈Ĥtgt, Ĥ
†
tgt〉

= ||gt||2 − 2βαt||ÛT
Tgt||2, (31)

where the last equality uses the fact that Ĥ†t can be expressed as Ĥ†t = ÛΣ̂−1ÛT . Note
that Lemma 6.2 implies that the function ||∇f(y)||2/2 is smooth for all y ∈ Y, where
Y = {y ∈ Rd| ||∇f(y)|| ≤ δ}. Smoothness in turn implies the following property (see [59],
Theorem 2.1.10)

1

2
||∇f(y)||2 ≤ 1

2
||∇f(x)||2 + 〈∇2f(x),y − x〉+

1

2
Q||y − x||2 ∀ x,y ∈ (Y), (32)

where Q = Lδ +M2. We take δ = ||∇f(w0)|| where w0 is the initial point of our algorithm.
Due to line-search condition in (6), it holds that ||∇f(wt)|| ≤ ||∇f(w0)|| ∀ t > 0. Thus,
substituting x = wt and y = wt+1 = wt + αtpt, we get

1

2
||gt+1||2 ≤

1

2
||gt||2 + 〈Htgt, αtpt〉+

1

2
Qα2||pt||2

⇒ ||gt+1||2 ≤ ||gt||2 + 〈2Htgt, αtpt〉+Qα2||pt||2, (33)

where
Q = L||∇f(w0)||+M2.

Also, since the minimum non-zero eigenvalue of Ht ≥ η from Assumption (5), the minimum
non-zero eigenvalue of Ĥt is at least η − εM from Lemma 6.1. Thus,

|Ĥ†t ||2 ≤ 1/(η − εM). (34)

|Moreover,

||pt|| = || − Ĥ†tgt|| ≤ ||Ĥ
†
t ||2||gt|| ≤

||gt||
(η − εM)

. (35)

Using this in (33), we get

||gt+1||2 ≤ ||gt||2 − 2αt〈Htgt, Ĥ
†
tgt〉+Qα2 ||gt||2

(η − εM)2
. (36)

Now,

−〈Htgt, Ĥ
†
tgt〉 = −〈Ĥtgt, Ĥ

†
tgt〉+ 〈(Ĥt −Ht)gt, Ĥ

†
tgt〉

⇒ −〈Htgt, Ĥ
†
tgt〉 ≤ −||ÛT

t gt||2 + ||gt||2||Ĥt −Ht||2||Ĥ†t ||2,

31

where the last inequality is obtained by applying the triangle inequality and Cauchy-Schwartz
inequality. This can be further simplified using Lemma 6.1 and Eq. (34) as

−〈Htgt, Ĥ
†
tgt〉 ≤ −||ÛT

t gt||2 +
εM

(η −Mε)
||gt||2

Using the above in Eq. (36), we get

||gt+1||2 ≤ ||gt||2 + 2αt(−||ÛT
t gt||2 +

εM

(η −Mε)
||gt||2) +Qα2

t

||gt||2

(η − εM)2
(37)

Note that the upper bound in Eq. (37) always holds. Also, we want the inequality in (31) to
hold for some αt > 0. Therefore, we want αt to satisfy the following (and hope that it is
always satisfied for some αt > 0)

||gt||2 + 2αt(−||ÛT
t gt||2 +

εM

(η −Mε)
||gt||2) +Qα2

t

||gt||2

(η − εM)2
≤ ||gt||2 − 2βαt||ÛT

Tgt||2

⇒ Qα2
t

||gt||2

(η − εM)2
≤ 2αt

[
(1− β)||ÛT

t gt||2 −
εM

(η −Mε)
||gt||2

]
⇒ αt ≤

2(η − εM)2

Q

[
(1− β)

||ÛT
t gt||2

||gt||2
− εM

(η −Mε)

]
. (38)

Thus, any αt satisfying the above inequality would definitely satisfy the line-search termination
condition in

Now, using Lemma 6.3 and Assumption (6), we have

||ÛT
t gt||2 ≥

(1− ε)η
M(1 + ε)

||UT
t g||2 ≥ (1− ε)η

M(1 + ε)
ν||g||2. (39)

Using the above in Eq. (38) to find an iteration independent bound on αt, we get

αt ≤
2(η − εM)2

Q

[
(1− β)ν − εM

(η −Mε)

]
. (40)

Hence, line-search will always terminate for all αt that satisfy the above inequality. This
can be further simplified by assuming that ε is small enough such that ε < η/2M . Thus,
η −Mε > η/2, and the sufficient condition on αt in (40) becomes

αt ≤
η

2Q

[
(1− β)νη − 2εM

]
. (41)

For a positive αt to always exist, we require ε to further satisfy

ε ≤ (1− β)νη

2M
, (42)

which is tighter than the initial upper bound on ε. Now, Eqs. (31) and (39) proves the
desired result, that is

||gt+1||2 ≤ ||gt||2 − 2βαt||ÛT
Tgt||2 ≤

(
1− 2βαtν

(1− ε)η
M(1 + ε)

)
||gt||2.

Thus, OverSketched Newton for the weakly-convex case enjoys a uniform linear convergence
rate of decrease in ||∇f(w)||2.

32

7 Conclusions

We proposed OverSketched Newton, a straggler-resilient distributed optimization algorithm
for serverless systems. It uses the idea of matrix sketching from RandNLA to find an
approximate second-order update in each iteration. We proved that OverSketched Newton has
a local linear-quadratic convergence rate for the strongly-convex case, where the dependence
on the linear term can be made to diminish by increasing the sketch dimension. Moreover, it
has a linear global convergence rate for weakly-convex functions. By exploiting the massive
scalability of serverless systems, OverSketched Newton produces a global approximation of the
second-order update. Empirically, this translates into faster convergence than state-of-the-art
distributed optimization algorithms on AWS Lambda.

Acknowledgments

This work was partially supported by NSF grants CCF-1748585 and CNS-1748692 to SK,
and NSF grants CCF-1704967 and CCF- 0939370 (Center for Science of Information) to
TC, and ARO, DARPA, NSF, and ONR grants to MWM, and NSF Grant CCF-1703678
to KR. The authors would like to additionally thank Fred-Roosta and Yang Liu for helpful
discussions regarding our proof techniques and AWS for providing promotional cloud credits
for research.

References

[1] I. Baldini, P. C. Castro, K. S.-P. Chang, P. Cheng, S. J. Fink, V. Ishakian, N. Mitchell,
V. Muthusamy, R. M. Rabbah, A. Slominski, and P. Suter, “Serverless computing:
Current trends and open problems,” CoRR, vol. abs/1706.03178, 2017.

[2] J. Spillner, C. Mateos, and D. A. Monge, “Faaster, better, cheaper: The prospect
of serverless scientific computing and HPC,” in Latin American High Performance
Computing Conference, pp. 154–168, Springer, 2017.

[3] E. Jonas, Q. Pu, S. Venkataraman, I. Stoica, and B. Recht, “Occupy the cloud: distributed
computing for the 99%,” in Proceedings of the 2017 Symposium on Cloud Computing,
pp. 445–451, ACM, 2017.

[4] V. Shankar, K. Krauth, Q. Pu, E. Jonas, S. Venkataraman, I. Stoica, B. Recht, and
J. Ragan-Kelley, “numpywren: serverless linear algebra,” ArXiv e-prints, Oct. 2018.

[5] Technavio, “Serverless architecture market by end-users and geography - global forecast
2019-2023.” https://www.technavio.com/report/serverless-architecture-market-industry-
analysis.

33

[6] E. Jonas, J. Schleier-Smith, V. Sreekanti, C.-C. Tsai, A. Khandelwal, Q. Pu, V. Shankar,
J. Carreira, K. Krauth, N. Yadwadkar, et al., “Cloud programming simplified: A berkeley
view on serverless computing,” arXiv preprint arXiv:1902.03383, 2019.

[7] L. Feng, P. Kudva, D. D. Silva, and J. Hu, “Exploring serverless computing for neural
network training,” in 2018 IEEE 11th International Conference on Cloud Computing
(CLOUD), vol. 00, pp. 334–341, Jul 2018.

[8] V. Ishakian, V. Muthusamy, and A. Slominski, “Serving deep learning models in a
serverless platform,” arXiv e-prints, p. arXiv:1710.08460, Oct. 2017.

[9] A. Aytekin and M. Johansson, “Harnessing the Power of Serverless Runtimes for Large-
Scale Optimization,” arXiv e-prints, p. arXiv:1901.03161, Jan. 2019.

[10] H. Wang, D. Niu, and B. Li, “Distributed machine learning with a serverless architecture,”
in IEEE INFOCOM 2019-IEEE Conference on Computer Communications, pp. 1288–
1296, IEEE, 2019.

[11] L. Feng, P. Kudva, D. Da Silva, and J. Hu, “Exploring serverless computing for neural
network training,” in 2018 IEEE 11th International Conference on Cloud Computing
(CLOUD), pp. 334–341, IEEE, 2018.

[12] J. Carreira, P. Fonseca, A. Tumanov, A. Zhang, and R. Katz, “Cirrus: a serverless
framework for end-to-end ml workflows,” in Proceedings of the ACM Symposium on
Cloud Computing, pp. 13–24, 2019.

[13] J. Dean and L. A. Barroso, “The tail at scale,” Commun. ACM, vol. 56, pp. 74–80, Feb.
2013.

[14] T. Hoefler, T. Schneider, and A. Lumsdaine, “Characterizing the influence of system
noise on large-scale applications by simulation,” in Proc. of the ACM/IEEE Int. Conf.
for High Perf. Comp., Networking, Storage and Analysis, pp. 1–11, 2010.

[15] J. M. Hellerstein, J. Faleiro, J. E. Gonzalez, J. Schleier-Smith, V. Sreekanti, A. Tumanov,
and C. Wu, “Serverless computing: One step forward, two steps back,” arXiv preprint
arXiv:1812.03651, 2018.

[16] J. Nocedal and S. Wright, Numerical optimization. Springer Science & Business Media,
2006.

[17] L. Bottou, F. E. Curtis, and J. Nocedal, “Optimization methods for large-scale machine
learning,” Siam Review, vol. 60, no. 2, pp. 223–311, 2018.

[18] N. S. Wadia, D. Duckworth, S. S. Schoenholz, E. Dyer, and J. Sohl-Dickstein, “Whitening
and second order optimization both destroy information about the dataset, and can
make generalization impossible,” arXiv e-prints, p. arXiv:2008.07545, Aug. 2020.

[19] F. Roosta-Khorasani and M. W. Mahoney, “Sub-Sampled Newton Methods I: Globally
Convergent Algorithms,” arXiv e-prints, p. arXiv:1601.04737, Jan. 2016.

34

[20] F. Roosta-Khorasani and M. W. Mahoney, “Sub-Sampled Newton Methods II: Local
Convergence Rates,” arXiv e-prints, p. arXiv:1601.04738, Jan. 2016.

[21] P. Xu, F. Roosta, and M. W. Mahoney, “Newton-type methods for non-convex optimiza-
tion under inexact hessian information,” 2017.

[22] F. Roosta, Y. Liu, P. Xu, and M. W. Mahoney, “Newton-MR: Newton’s method without
smoothness or convexity,” arXiv preprint arXiv:1810.00303, 2018.

[23] M. Pilanci and M. J. Wainwright, “Newton sketch: A near linear-time optimization
algorithm with linear-quadratic convergence,” SIAM Jour. on Opt., vol. 27, pp. 205–245,
2017.

[24] S. Wang, F. Roosta-Khorasani, P. Xu, and M. W. Mahoney, “GIANT: Globally improved
approximate Newton method for distributed optimization,” in Advances in Neural
Information Processing Systems, pp. 2332–2342, 2018.

[25] C.-H. Fang, S. B. Kylasa, F. Roosta-Khorasani, M. W. Mahoney, and A. Grama,
“Distributed Second-order Convex Optimization,” ArXiv e-prints, July 2018.

[26] Z. Yao, A. Gholami, K. Keutzer, and M. Mahoney, “Pyhessian: Neural networks through
the lens of the hessian,” arXiv preprint arXiv:1912.07145, 2019.

[27] Z. Yao, A. Gholami, S. Shen, K. Keutzer, and M. W. Mahoney, “Adahessian: An
adaptive second order optimizer for machine learning,” arXiv preprint arXiv:2006.00719,
2020.

[28] R. Anil, V. Gupta, T. Koren, K. Regan, and Y. Singer, “Second order optimization
made practical,” arXiv preprint arXiv:2002.09018, 2020.

[29] D. P. Woodruff, “Sketching as a tool for numerical linear algebra,” Found. Trends Theor.
Comput. Sci., vol. 10, pp. 1–157, 2014.

[30] M. W. Mahoney, Randomized algorithms for matrices and data. Foundations and Trends
in Machine Learning, Boston: NOW Publishers, 2011.

[31] A. Gittens, A. Devarakonda, E. Racah, M. Ringenburg, L. Gerhardt, J. Kottalam,
J. Liu, K. Maschhoff, S. Canon, J. Chhugani, et al., “Matrix factorizations at scale: A
comparison of scientific data analytics in spark and c+ mpi using three case studies,” in
2016 IEEE International Conference on Big Data (Big Data), pp. 204–213, IEEE, 2016.

[32] V. Gupta, S. Wang, T. Courtade, and K. Ramchandran, “Oversketch: Approximate
matrix multiplication for the cloud,” IEEE International Conference on Big Data, Seattle,
WA, USA, 2018.

[33] K. Lee, M. Lam, R. Pedarsani, D. Papailiopoulos, and K. Ramchandran, “Speeding up
distributed machine learning using codes,” IEEE Transactions on Information Theory,
vol. 64, no. 3, pp. 1514–1529, 2018.

35

[34] T. Baharav, K. Lee, O. Ocal, and K. Ramchandran, “Straggler-proofing massive-scale
distributed matrix multiplication with d-dimensional product codes,” in IEEE Int. Sym.
on Information Theory (ISIT), IEEE, 2018.

[35] V. Gupta, D. Carrano, Y. Yang, V. Shankar, T. Courtade, and K. Ramchandran,
“Serverless straggler mitigation using local error-correcting codes,” IEEE International
Conference on Distributed Computing and Systems (ICDCS), Singapore, 2020.

[36] C.-C. Chang and C.-J. Lin, “Libsvm: a library for support vector machines,” ACM
transactions on intelligent systems and technology (TIST), vol. 2, no. 3, p. 27, 2011.

[37] R. Tandon, Q. Lei, A. G. Dimakis, and N. Karampatziakis, “Gradient coding: Avoiding
stragglers in distributed learning,” in Proceedings of the 34th International Conference
on Machine Learning, vol. 70, pp. 3368–3376, PMLR, 2017.

[38] J. Dean and S. Ghemawat, “Mapreduce: Simplified data processing on large clusters,”
Commun. ACM, vol. 51, pp. 107–113, Jan. 2008.

[39] M. Zaharia, M. Chowdhury, M. J. Franklin, S. Shenker, and I. Stoica, “Spark: Cluster
computing with working sets,” in Proceedings of the 2Nd USENIX Conference on Hot
Topics in Cloud Computing, pp. 10–10, 2010.

[40] Q. Yu, M. Maddah-Ali, and S. Avestimehr, “Polynomial codes: an optimal design for
high-dimensional coded matrix multiplication,” in Advances in Neural Inf. Processing
Systems 30, pp. 4403–4413, 2017.

[41] Y. Yang, P. Grover, and S. Kar, “Coded distributed computing for inverse problems,” in
Advances in Neural Information Processing Systems 30, pp. 709–719, Curran Associates,
Inc., 2017.

[42] O. Shamir, N. Srebro, and T. Zhang, “Communication-efficient distributed optimization
using an approximate Newton-type method,” in Proceedings of the 31st International
Conference on International Conference on Machine Learning - Volume 32, ICML’14,
pp. II–1000–II–1008, JMLR.org, 2014.

[43] Y. Zhang and X. Lin, “Disco: Distributed optimization for self-concordant empirical
loss,” in Proceedings of the 32nd International Conference on Machine Learning (F. Bach
and D. Blei, eds.), vol. 37 of Proceedings of Machine Learning Research, (Lille, France),
pp. 362–370, PMLR, 07–09 Jul 2015.

[44] S. J. Reddi, A. Hefny, S. Sra, B. Pöczos, and A. Smola, “On variance reduction in
stochastic gradient descent and its asynchronous variants,” in Proceedings of the 28th
International Conference on Neural Information Processing Systems - Volume 2, NIPS’15,
(Cambridge, MA, USA), pp. 2647–2655, MIT Press, 2015.

[45] C. Duenner, A. Lucchi, M. Gargiani, A. Bian, T. Hofmann, and M. Jaggi, “A dis-
tributed second-order algorithm you can trust,” in Proceedings of the 35th International
Conference on Machine Learning, vol. 80, pp. 1358–1366, PMLR, 10–15 Jul 2018.

36

[46] V. Smith, S. Forte, C. Ma, M. Takác, M. I. Jordan, and M. Jaggi, “Cocoa: A gen-
eral framework for communication-efficient distributed optimization,” arXiv preprint
arXiv:1611.02189, 2016.

[47] R. Bollapragada, R. Byrd, and J. Nocedal, “Exact and Inexact Subsampled Newton
Methods for Optimization,” arXiv e-prints, p. arXiv:1609.08502, Sep 2016.

[48] K. Lee, C. Suh, and K. Ramchandran, “High-dimensional coded matrix multiplication,”
in IEEE Int. Sym. on Information Theory (ISIT), 2017, pp. 2418–2422, IEEE, 2017.

[49] E. Solomonik and J. Demmel, “Communication-optimal parallel 2.5D matrix multi-
plication and LU factorization algorithms,” in Proceedings of the 17th International
Conference on Parallel Processing, pp. 90–109, 2011.

[50] R. A. van de Geijn and J. Watts, “Summa: Scalable universal matrix multiplication
algorithm,” tech. rep., 1995.

[51] S. Boyd and L. Vandenberghe, Convex Optimization. New York, NY, USA: Cambridge
University Press, 2004.

[52] A. S. Berahas, R. Bollapragada, and J. Nocedal, “An Investigation of Newton-Sketch
and Subsampled Newton Methods,” arXiv e-prints, p. arXiv:1705.06211, May 2017.

[53] Y. Liu and F. Roosta, “Stability analysis of Newton-MR under hessian perturbations,”
arXiv preprint arXiv:1909.06224, 2019.

[54] J. R. Shewchuk et al., “An introduction to the conjugate gradient method without the
agonizing pain,” 1994.

[55] J. Levin, “Note on convergence of minres,” Multivariate behavioral research, vol. 23,
no. 3, pp. 413–417, 1988.

[56] G. Cohen, S. Afshar, J. Tapson, and A. van Schaik, “Emnist: an extension of mnist to
handwritten letters,” arXiv preprint arXiv:1702.05373, 2017.

[57] J. Nelson and H. L. Nguyen, “Osnap: Faster numerical linear algebra algorithms via
sparser subspace embeddings,” in 2013 IEEE 54th Annual Symposium on Foundations
of Computer Science, pp. 117–126, Oct 2013.

[58] T. Tao, Topics in random matrix theory, vol. 132. American Mathematical Soc., 2012.

[59] Y. Nesterov, Introductory Lectures on Convex Optimization: A Basic Course. Springer
Publishing Company, Incorporated, 1 ed., 2014.

37

	1 Introduction
	1.1 Main Contributions
	1.2 Related Work

	2 Newton's Method: An Overview
	3 OverSketched Newton
	3.1 Convergence Guarantees
	3.2 Distributed Line Search

	4 OverSketched Newton on Serverless Systems: Examples
	4.1 Logistic Regression using OverSketched Newton
	4.2 Softmax Regression using OverSketched Newton
	4.3 Other Example Problems

	5 Experimental Results
	5.1 Comparisons with Existing Second-Order Methods on AWS Lambda
	5.1.1 Logistic Regression on EPSILON, WEBPAGE and a9a Datasets

	5.2 Softmax Regression on EMIST
	5.3 Coded computing versus Speculative Execution
	5.4 Comparison with First-Order Methods on AWS Lambda
	5.5 Comparison with Serverful Optimization

	6 Proofs
	6.1 Proof of Theorem 3.1
	6.2 Proof of Theorem 3.2
	6.3 Proof of Theorem 3.3

	7 Conclusions

