

Aalborg Universitet

The Danish National Energy Data Lake

Requirements, Technical Architecture, and Tool Selection

Ben Hamadou, Hamdi; Pedersen, Torben Bach; Thomsen, Christian

Published in:
2020 IEEE International Conference on Big Data (IEEE BigData 2020)

DOI (link to publication from Publisher):
10.1109/BigData50022.2020.9378368

Publication date:
2020

Document Version
Accepted author manuscript, peer reviewed version

Link to publication from Aalborg University

Citation for published version (APA):
Ben Hamadou, H., Pedersen, T. B., & Thomsen, C. (2020). The Danish National Energy Data Lake:
Requirements, Technical Architecture, and Tool Selection. In 2020 IEEE International Conference on Big Data
(IEEE BigData 2020) Article 9378368 IEEE. https://doi.org/10.1109/BigData50022.2020.9378368

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners
and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

 - Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
 - You may not further distribute the material or use it for any profit-making activity or commercial gain
 - You may freely distribute the URL identifying the publication in the public portal -
Take down policy
If you believe that this document breaches copyright please contact us at vbn@aub.aau.dk providing details, and we will remove access to
the work immediately and investigate your claim.

Downloaded from vbn.aau.dk on: May 09, 2024

https://doi.org/10.1109/BigData50022.2020.9378368
https://vbn.aau.dk/en/publications/0fe9f084-4af4-40c1-a04f-1f7f871d3f1b
https://doi.org/10.1109/BigData50022.2020.9378368

The Danish National Energy Data Lake:
Requirements, Technical Architecture, and Tool

Selection
Hamdi Ben Hamadou

Department of Computer Science
Aalborg University
Aalborg, Denmark
hamdibh@cs.aau.dk

Torben Bach Pedersen
Department of Computer Science

Aalborg University
Aalborg, Denmark

tbp@cs.aau.dk

Christian Thomsen
Department of Computer Science

Aalborg University
Aalborg, Denmark

chr@cs.aau.dk

Abstract—Renewable Energy Sources such as wind and solar
do not emit CO2 but their production vary considerably de-
pending on time and weather. Thus, it is important to use the
flexibility in device loads to shift energy consumption to follow
the production. For example, an Electrical Vehicle (EV) can
be charged very flexibly between arriving home at 5PM and
leaving again at 7AM. Utilizing all available energy flexibility
requires applying machine learning and AI on massive amounts
of Big Data from many different actors and devices, ranging from
private consumers, over companies, to energy network operators,
and using this to create digital solutions to enable and exploit
flexibility. The project Flexible Energy Denmark (FED) is building
the foundation for this for the entire Danish society. Specifically,
FED collects data from a number of Living Labs (LLs) in
representative real-life physical environments. The data is stored
in the Danish National Energy Data, called FED Data Lake
(FEDDL) to enable efficient and advanced analysis. FEDDL is
built using only open source tools which can run both on-premise
and in cloud settings. In this paper, we describe the requirements
for FEDDL based on a representative LL case study, present its
technical architecture, and provide a comparison of relevant tools
along with the arguments for which ones we selected.

Index Terms—Data Lake, Energy Data, Living Labs, Data
Ingestion, Data Governance, Data Security, Open Source, GDPR

I. INTRODUCTION

To reduce the CO2 emissions, energy from Renewable
Energy Sources (RES) should be used as much as possible.
However, their production fluctuates as, e.g., wind turbines
only produce energy when there is wind and solar panels only
produce energy when there is daylight. To enable the Green
Transition to a low-carbon society based on intermittent RES,
the FED1 project brings together different Danish research
institutions, companies from the energy technology sector
(referred to as EnergyTech companies), and owners of real-
life physical environments where energy usage (and other
relevant measures, e.g., indoor climate) can be monitored and
experimented with. The latter are called Living Labs (LLs) and
represent different parts of the Danish society. For example,

This work was supported by Innovation Fund Denmark 1
https://www.flexibleenergydenmark.com
© © 2020 IEEE. Personal use of this material is permitted. Permission from
IEEE must be obtained for all other uses, in any current or future media,
including reprinting/republishing this material for advertising or promotional
purposes, creating new collective works, for resale or redistribution to servers
or lists, or reuse of any copyrighted component of this work in other works.

there is a LL representing a Distribution System Operator
(DSO) which operates the electricity grid transporting electric-
ity from the larger transmission system to end-users as well
as a LL representing housing associations. In every LL, the
owner works together with relevant research institutions and
EnergyTech companies to identify and exploit flexibility where
energy consumption can be shifted to follow the available RES
production. For example, charging of an Electrical Vehicle
can happen very flexibly between arriving home at 5PM and
leaving again at 7AM. Another example is to pre-heat an
apartment within given comfort limits to balance user comfort
with using available green energy.

To enable scalable and effective use of all flexibility, it
is important to capture flexibility in a uniform and powerful
format. In FED, we use the FlexOffer (FO) format developed
in a range of large EU and Danish projects [1]. Consider the
EV charging scenario from above. For this, the associated FO
will have its earliest start time (for charging) at 5PM and its
latest end time at 7AM. In this 14 hour time flexibility period,
we can in each 1 hour time slice adjust the energy between 0
and 4KWh, giving an energy flexibility of 4 KWh. Over the
whole period, the EV must be charged between 30 and 60
KWh. All these constraints and the grid location are encoded
in the FO, which can then, along with millions of other FOs, be
aggregated, traded, and scheduled to balance RES production
with consumption as well as respect grid capacity constraints.

FED is data-driven and collects large amounts of heteroge-
neous data including consumption data from meters, produc-
tion data, sensor data, weather observations, etc. Utilization
and identification of all available energy flexibility requires
applying machine learning and AI on these massive amounts
of Big Data. To facilitate this, FED establishes the Danish
National Energy Data Lake, called FED Data Lake (FEDDL).
For this Data Lake, the typical challenges with Big Data such
as Variety, Velocity, and Volume of the data have to be dealt
with. Due to the nature of the project and its data, there are,
however, also novel non-typical challenges, e.g, with respect to
compliance with EU’s data protection laws (GDPR) to ensure
privcay. Further, it is a requirement that only open source

software is used for the implementation and that deployment
can happen both on-premise or in cloud settings. In this
paper, we describe the requirements for FEDDL based on a
representative LL case study, present its technical architecture,
and provide a comparison of relevant tools along with the
arguments for which ones we selected.

The major contributions of the paper include:
• A real-life case study of a Living Lab, the data it provides,

and its challenges to be addressed
• The functional and non-functional requirements for

FEDDL
• The technical architecture for FEDDL showing its layers

and explaining how they work together.
• Arguments for our tool selection for the implementation

of FEDDL based on a structured comparison of state-of-
the-art open source tools.

• Deployment strategies meeting the requirements
The paper is organized as follows. We start by introducing

a case study describing a Living Lab in Section II. Then,
we specify the functional and non-functional requirements for
FEDDL in Section III. Section IV provides an overview of the
technical architecture for FEDDL. A structured comparison
and a discussion of state-of-the-art tools required to build a
Data Lake are presented in Section V. Implementation and
deployment strategies are presented in Section VI. Finally, we
conclude and discuss future work in Section VII.

II. CASE STUDY: A DANISH DISTRIBUTION SYSTEM
OPERATOR

/GoldZone/DSOlab/Aggregated_Data/.../…

/WorkZone/DSOlab/Energy_Data/.../...
/WorkZone/DSOlab/Customer_Data/.../…

/LandingZone/DSOlab/Energy_Data/…/…
/LandingZone/DSOlab/Customer_Data/……

EnergyTech
Companies

DSOlab

FEDDL

Research
Institutions

Secure
Server

Restricted access to the data Full access to the data

Tools: Flexibility Offers

Solutions

Center DenmarkData Sources Data Consumers

Fig. 1. Case study: (DSOlab)

In this section, we present one of FED’s Living Labs
referred to as “DSOlab”. First, we describe DSOlab and the
data that it delivers. Then, we describe the frequency and
the methods used by DSOlab to deliver data. Finally, we
present some of the applications using DSOlab data. Fig. 1
presents the interactions between the Data Sources in DSOlab,
Center Denmark2, and the Data Consumers. Center Denmark
is an independent and non-profit Danish research centre aim-
ing to unify and embed research results within the field of
digitalization of energy systems and put data intelligence for

2https://www.centerdenmark.com

potential commercial use. Center Denmark is responsible for
hosting FEDDL which is a centralized repository composed
of different zones, namely the Landing Zone where a copy of
the data shared by the LLs are stored, the Work Zone where
intermediate results are stored, and the Gold Zone where final
results are stored so the Data Consumers can explore these
new results.

The DSOlab provides data from a Danish DSO managing
a distribution system for electricity at the low, and medium
voltage levels (LV, MV). The electricity comes from both the
national transmission system and local RES such as solar
panels and wind turbines in the DSO’s grid. The DSO is
responsible for collecting and sharing electricity consumption
and production meter data with the Data Consumers involved
in DSOlab, and data describing the installations within the
DSO grid area. The installations include more than 140k
residential and industrial consumers, producers, and prosumers
(who are both producers and consumers). The meter data
contain sensitive information for the installations including
the installation identifier, measurement time, consumption and
production meter reading expressed in KWh on an hourly
or quarter-hourly basis. In addition, the installation data con-
tains personally identifiable information, namely the location
of the installation. In the following, we refer to electricity
consumption and production meter data as energy data, and
data describing the different installations as customer data.

The DSO involved in DSOlab collects energy data remotely
from all installations with different frequencies, i.e., on a
hourly or quarter-hourly basis, based on meter type. The
DSO sends the energy data of 1k installations to a dedicated
secure SFTP server on a daily basis at 8 AM with data
for the previous day (00 – 24). Also, DSOlab has historical
energy data of all 140k installations, for at least four years.
The DSOlab also provides customer data and grid data. The
DSO uses Parquet file format, a column-oriented data storage
format, for the historical energy consumption and customer
data. Furthermore, in DSOlab energy consumption data is
continuously sent on a quarter-hourly basis using Kafka real-
time data streaming and stored in FEDDL. FEDDL ingests
batch and streaming energy and customers data delivered
byDSOlab and loads them into dedicated directories in the
FEDDL landing zone. All data transfers between DSOlab,
FEDDL, EnergyTech companies and Research institutions, are
secured via secure channels using the HTTPS, and TLS over
TCP protocols because of the sensitive aspect of energy and
customers data shared by DSOlab.

DSOlab is facing challenges related to the optimization of
the load on the grid during peak demand and eliminating
overloads on the grid. A challenge identified by DSOlab
is how to reduce the load on the electricity grid from the
charging of electric vehicles by shifting electricity charging
from one time period to another. Therefore, the EnergyTech
companies and research institutions in FED explore DSOlab
data loaded into FEDDL and develop data load-reducing tools
or flexibility solutions. These novel tools and solutions using
machine learning and artificial intelligence enable DSOlab

to determine the ways to reduce the load on the electricity
grid during peak periods. Tools such as FlexOffers (FO) [1]
capture flexibility that can be used to respond to the flexibility
challenges. For instance, a FO schedules the charging cycle for
the vehicle based on the analysis of historical user behaviour
and prediction of future energy demand. The FO captures the
constraints related to the time slot for charging the vehicle,
e.g., overnight, the amount of energy needed for the charging
cycle, e.g., battery capacity, and based on prediction models
and demand prognoses, specific actions are proposed , e.g.,
shifting the time of charging the electric vehicle in order to
reduce the load on the electricity grid.

The access to DSOlab data is ensured through FEDDL
and it must be regulated with compliance to the GDPR for
protection of personal data and privacy of EU citizens. Thus,
only the data owner, e.g., the DSO involved in DSOlab, and
research institutions are granted full access to all data in
the different zones in FEDDL as illustrated in Fig. 1. Data
Consumers, such as the EnergyTech companies, will have only
restricted access where sensitive information is removed or
anonymized. Furthermore, in FED, different users have very
different backgrounds and skills. In addition to the possibility
of downloading subsets of the data, authorized users can run
SQL queries or even run custom programs directly on the data
in FEDDL.

III. FEDDL ARCHITECTURE REQUIREMENTS

In this section, we describe the functional and non-
functional requirements for the architecture of FEDDL. The
functional requirements help to define the main layers of the
architecture of FEDDL and their corresponding core function-
alities, e.g., inputs, outputs, data manipulation, or data flow.
In the other hand, the non-functional requirements refer to the
intrinsic qualities of the technical architecture of FEDDL, e.g.,
performance, or availability.

A. FEDDL Functional Architecture Requirements

FEDDL functional requirements involve storage of different
file formats generated from the different sources, e.g., stream-
ing data of DSOlab can be stored using CSV formats, or
historical data are available as columnar files like Parquet.
Furthermore, the requirements involve ensuring integrated ac-
cess to the different zones of data into FEDDL. The integrated
access should provide various access options regardless of the
level of expertise of the different FED partners. For instance,
DSOlab, EnergyTech companies and research institutions can
be provided with full access to the raw data by directly
downloading files from FEDDL, or providing them with struc-
tured access and thus they can run SQL [2] queries directly
on FEDDL data without the need to load data locally into
their systems. For advanced users, e.g., researchers, FEDDL
should provide computing facilities to perform advanced ma-
chine learning, e.g., running flexibility solutions developed
using machine learning on top of DSOlab energy data. Other
important functional requirement of the technical architecture
of FEDDL is to track and identify meta data within all data

loaded into the different directories and zones of FEDDL. In
FED, DSOlab sends energy data that contain sensitive busi-
ness information, i.e., energy and customer data that contain
personally identifiable information, i.e., installation address.
Such sensitive data are useful to drill down the flexibility
offers to the street level and/or individuals, or to investigate
energy consumption at both street level and the individual
households. However, with regards to GDPR compliance [3],
only authorized users can access to such sensitive information,
i.e., researchers and data owner, the DSO involved in DSOlab.
Other users, e.g., EnergyTech, will have restricted access to the
data, and sensitive needs to be anonymized or aggregated such
that no personal information is revealed. Thus, FEDDL should
provide fine-grained access management to FEDDL and the
different component in FEDDL technical architecture.

B. FEDDL Non-functional Architecture Requirements

The non-functional requirements of FEDDL involve inges-
tion of a large volume of batch data, e.g., DSOlab historical
energy and customers data for at least four years of more than
140K consumers, or the real-time data, e.g., DSOlab energy
data streamed on a quarter-hourly basis for 1k installations.
Also, FEDDL requirements involve that the deployment of
the architecture can be done using on-premises or cloud
infrastructures. Furthermore, FEDDL’s technical architecture
should be composed of open source tools deployed on cluster
environment while ensuring security, scalablity to add more
nodes, high availability, and the architecture should be exten-
sible to easily integrate additional tools as the needs in FED
can evolve.

IV. FEDDL ARCHITECTURE

FEDDL offers an integrated repository of a large volume
of data stored in its natural format. In addition to the storage
requirement, the FEDDL architecture should provide mecha-
nisms to collect data from the different data sources and to
offer onsite data processing capabilities for the targeted users.
From the literature, it is a common practice to define several
layers during the design phase of the Data Lake. For instance,
in [4], the authors introduced a Data Lake composed of three
layers, i.e., ingestion, maintenance, and querying. However,
we notice from this architecture a lack of consideration for
controlling the access management which is important while
dealing with heterogeneous data sources and especially with
data having sensitive information.

A. FEDDL Overall Architecture

In this section we distinguish between FEDDL and its
technical architecture. FEDDL is defined as a centralized
repository where data are organized into directories divided
to three zones as illustrated in Fig. 1, i.e., i) The Landing
Zone which is the first stage where raw data are loaded
into FEDDL. Thus, data are collected from the LLs, and
stored without applying any data cleaning or processing. ii)
The Gold Zone contains clean and well-structured data which
are quality ensured, e.g., all authorized FEDDL users may

Data
Sources

Data
Collection/Ingestion

Data
Storage

Data
Exploration

Data
Consumers

Pull Data Push Raw/Cleaned
Data

Push/Pull
Data/ Results

Privacy and Anonymization (GDPR)

Resources Management

Distributed File
System

Batch,
Streaming

Collection /
Ingestion

Landing zone

Work Zone

SQL Queries

User Defined Programs

Notebooks

File Downloads

Living Labs

Meta Data Governance

Access Management

Gold Zone

Living Lab 1

SourceLL1.1

SourceLL1.n

Living Lab j

SourceLL2.1

SourceLLj.m

Research
Institutions

EnergyTech
Companies

Push/Pull
Data

Living Labs

Fig. 2. FEDDL architecture

store aggregated results after applying advanced processing
to the DSOlab energy data, and iii) The Work Zone is where
FEDDL users can store intermediate data sets which are being
processed, cleansed, or enriched, e.g., FO needs weather data,
or energy prices in addition to the energy data to determine
flexibility. Once FO determines flexibility and results are ready
for use by DSOlab for instance, the results move from the
Work Zone to the Gold Zone and other authorized FEDDL
users can access and explore to the new materialized results.
Furthermore, we notice from the literature that is a common
practice to define different zones for storing data into a Data
Lake [5]. Fig. 2 gives an abstract overview of the technical
architecture of FEDDL composed of five separated layers,
i.e., Data Sources, Data Collection/Ingestion, Data Storage,
Data Exploration, and Data Consumers, and four cross-cutting
layers, i.e., Access Management, Meta Data Governance, Pri-
vacy and Anonymization (GDPR) and Resources Management.
We notice that the layers Data Sources and Data Consumers
represent systems which are external to FEDDL. In other
words, these two layers run outside Center Denmark. In the
following, we describe the different layers and the possible
interaction between them:

Data Sources: In FED, the data sources layer refers to
the different participant LLs, e.g., DSOlab, sharing energy
data collected from different sources, e.g., Distribution System
Operators (DSOs).

Data Collection/Ingestion: This layer focuses on pulling
batch or streaming data, e.g., energy and customer data, shared
by the Data Sources layer, e.g., DSOlab. This layer also
ensures loading the data into a dedicated landing repository
corresponding to FEDDL. The data transfer process must be
via secure channels since the data contain sensitive information
and come from external systems.

Data Storage: This layer represents the central repository,
i.e., FEDDL, where large volume of energy data are loaded.
Thus, this layer must provide a distributed file system where
data can be stored into directories to efficiently load the data

while guaranteeing high availability and fault tolerance, e.g.,
disk failure.

Data Exploration: This layer allows LLs, e.g., DSOlab,
researchers and EnergyTech companies to explore energy data
loaded into FEDDL and to run their flexibility tools and
solutions directly on FEDDL data using different solutions,
e.g., SQL queries, running custom programs, or downloading
subsets of the data.

Data Consumers: This layer represents the authorized ex-
ternal Data Consumers, i.e., LLs, researchers and EnergyTech,
to access data stored into FEDDL, or to use Data Exploration
facilities offered by the architecture of FEDDL.

In addition to the five above-described layers, FEDDL
introduces four cross-cutting layers, i.e., Access Management,
Meta Data Governance, Privacy and Anonymization (GDPR)
and Resources Management, to respond to FEDDL function
and non-functional requirements, e.g., quality, security, privacy
and availability of the data. For instance, the Meta Data
Governance layer traces the provenance of the data ingested
by the Data Collection/Ingestion layer form Data sources,
e.g., DSOlab. Thus, information regarding what data sets exist
into FEDDL, the properties of those data sets since we are
dealing with sensitive data in FED, e.g., DSOlab shares data
having personal information, i.e., installations addresses. The
ingestion history of the data set is necessary to keep track of
all data into the different directories and zones of FEDDL.
The meta data provide information related to the data quality,
the value ranges, schemas, or descriptions as it was collected
from the Data Sources layer. The Access Management layer
is responsible of ensures a policy-based mechanism to access
the different directories and zones in FEDDL, and to use
the different layers composing the technical architecture of
FEDDL. For instance, using access control lists help to ensure
that the data are protected appropriately and only authorized
users are granted access to the data with the adequate rights.
For instance, EnergyTech companies can have restricted access
to energy and costumer data shared by DSOlab where parts

of the data containing sensitive information are removed.
Furthermore, FEDDL will run on shared infrastructures of-
fered by Center Denmark. Thus, we introduce the Resources
Management layer to guarantee that the different resources
required to run FEDDL are up-and-running at all times and
efficiently manage the usage of the offered resources while
isolating FEDDL from other applications co-located at Centre
Denmark. Eventually, we will integrate a custom Privacy
and Anonymization (GDPR) layer to ensure the protection
of sensitive data proper to FED. This layer is, however, not
included in the first version of FEDDL (FEDDLv1) where the
Access Management layer will be used to ensure that only
data owners and authorized researchers can access data with
personal information. In FEDDL, all layers run on top of the
Resources Management layer which ensures also isolation of
FEDDL services from the other services running on Centre
Denmark.

B. Data Flow in FEDDL

Fig. 2 shows the data flow between the different layers
of the technical architecture of FEDDL. The Data Collec-
tion/Integration layer is responsible for pulling data shared
by different sources involved in the Data Sources layer,
e.g., DSOlab. The communication between FEDDL and data
sources layer is ensured using one of the common commu-
nication protocols for ingesting batch files using SFTP for
instance, or streaming data using Kafka clusters. Furthermore,
communication has to be end-to-end encrypted which is very
important in the FED context since data contain sensitive
information, i.e., installations addresses. The Data Exploration
layer pulls data from the Data Storage layer. However, only
authorized FED partners involved in the Data Consumers
layer can get access to the different services offered by
the different layers of the technical architecture of FEDDL.
Therefore, FEDDL ensures through the Access Management
layer which is responsible to validate access for the Data
Storage layer through the Data Exploration layer. Further-
more, the communication from the Data consumers layer is
secured through SSH or HTTPS protocols. Thus, the Data
exploration layer is responsible for pulling data from the
different FEDDL zones, e.g., materialized results from the
Gold Zone, and pushing them back to the Data consumers
layer. FEDDL offers the possibility for the authorized users,
e.g., EnergyTech companies, to send additional data to the
Wokr Zone of FEDDL need for their processing. Therefore,
the Data Exploration layer ensures pushing data to the Storage
Layer. Another cross-layer communication is ensured between
the Access Management layer and the Meta Data Governance
layer where the Access management layer pulls data, e.g., tags,
to limit access for a particular part of the data for instance.

V. STRUCTURED COMPARISON OF STATE-OF-THE-ART
TOOLS FOR DATA LAKE

In this section, we survey open source state-of-the-art tools,
that can be run using on-premises or cloud environment,
required to implement the different layers defined in the

architecture of FEDDL. In the survey, we thus study tools
which enable us to meet the FED requirements. Furthermore,
we select only open source tools that have been actively
studied in academia with significant research papers and/or
widely adopted in the industrial field. All tools are under the
Apache License and run in common cluster environments.

A. Data Ingestion/Collection

The process of data collection/ingestion collects batch and
streaming data shared by the LLs, e.g., DSOlab. The data
are available in various file formats, e.g., Parquet, JSON, or
CSV, and have be loaded into the landing zone of FEDDL
using a given file format, e.g., Parquet. Furthermore, this
process should be ensured via secure channels since data
contain sensitive information, e.g., DSOlab shares data with
sensitive information regarding the installation addresses. For
this group, we consider three tools: Apache Nifi, Apache
Flume, and Apache Sqoop.

Apache Nifi [6] is a distributed system, that migrates,
monitors and manages data flows between disparate systems
while supporting data routing and transformation through a
graphical user interface (GUI) and command line interface.
Apache Nifi was initially developed by the National Security
Agency NSA, in Java.

Apache Flume [7, 8] Apache Flume is a distributed system,
that migrates and aggregates large amounts of data like log
files, events, etc., from a number of different sources to
a centralized data store, e.g., HDFS. Apache Flume was
developed by Cloudera in Java.

Apache Sqoop [9, 10] Apache Sqoop is a command line
tool designed for transferring batch data between Apache
Hadoop and relational databases. Apache Sqoop was devel-
oped by Cloudera in Java.

For this class of tools, we study the Supported Communica-
tion since data are gathered from heterogeneous sources, and
partners may deliver data using different technologies, e.g.,
SFTP, MQTT, or Kafka. Furthermore, we consider the sup-
port of ingesting Near-Real-time/Streaming data, e.g., DSOlab
continuously generates energy data on a quarter-hourly basis.
Futhermore we study the supported Data Formats since dif-
ferent LLs can share data using different formats. Also, we
compare the tools based on their Interface offered for the
users to manage the configure and manage the tools. Other
criteria that we define targets the security by studying the Data
Transfer Encryption. Also, we compare the tools based on
their ability in terms of Horizontal Scalability, Distribution,
Architecture and Fault Tolerance. Finally, we compare the
tools based on their Maturity with regards to their latest
stable releases and the number of active contributors in the
community till August 2020.

Table I shows that Apache Sqoop is limited to ingest only
structured data, e.g., data from relational databases, into HDFS
systems. Furthermore, Apache Sqoop ensures communication
between Data Collection/Ingestion layer and Data sources
layer using JDBC connectors. However, this lacks ensuring

TABLE I
DATA COLLECTION/INGESTION TOOLS CHARACTERISTICS

Tool Apache Nifi Apache Flume Apache Sqoop

Supported
Communication

S/FTP, TCP, DBCP, REST API,
HTTP, Kafka, JMS,

RPC, JDBC

S/FTP, TCP, DBCP,
Exec, HTTP,
JMS, Kafka,

MultiportSyslogTCP,
Scribe, RPC

JDBC

Near-Real-time/Streaming
Data Support Stream + batch Stream + batch Batch only

Data Formats JDBC, TXT, JSON, CSV, Parquet JDBC, TXT, JSON, CSV JDBC

Data Sources File systems, Spooling,
Kafka, HDFS, JDBC

File systems, Spooling,
Kafka, JDBC HDFS, JDBC

Transformations Aggregation, filtering rows,
removing columns Aggregation No transformation

Interface Web GUI, command line,
REST API Command line Command line

Data Destinations HDFS, HTTP, Solr, local files,
Hive, JDBC, Kafka HDFS HDFS, JDBC, Hive, Hbase,

Hcatalog, Accumulo
Horizontal
Scalability

Scaling out linearly
to at least 1,000 nodes Supported Limited scalability

Distribution Supported Supported Not supported
Architecture Master-less Master-less Centralised

Fault Tolerance No single point of failure No single point of failure Single point of failure
Data Transfer

Encryption
End-to-end encryption:
TLS/SSL, SSH, HTTPS

End-to-end encryption:
TLS/SSL, SSH Using passwords

Data Flow Bi-directional Uni-directional to HDFS Bi-directional

Intended Use Cases Migrating data between
various systems

Migrating logs,
streaming event data

into HDFS

Importing data from
RDBMS

Lineage Support Supported Not supported Not supported

Maturity

Initial release 2006
Last Stable release 1.11.4

March 2020,
267 contributors

Initial release 2012
Last Stable release 1.9.0 /

January, 2019,
43 contributors

Initial release 2010
Last Stable release1.4.7 /

December, 2017,
21 contributors

security while transferring data that contain sensitive informa-
tion since the security is a requirement in FEDDL. Also, for
unstructured data, Apache Sqoop is not suitable since it sup-
ports only relational databases whereas FEDDL needs to ingest
data available in different file formats. Instead, solutions like
Apache Nifi and Apache Flume are supporting the ingestion
of several file formats. Furthermore, they both offer a large
choice of secure communication protocols, e.g., SFTP, which
is a required while ingesting energy and customer historical
data from DSOlab into FEDDL for instance. However, LLs
plan to deliver historical data to FEDDL using Parquet file
format which is not supported by Apache Flume. In terms of
end-to-end encryption, Apache Nifi and Apache Flume offer
this feature, which is very important to secure transfer of data
that contain sensitive information. The above comparison helps
us to opt for employing Apache Nifi to implement the Data
Collection/Ingestion layer. We notice that Apache Nifi has the
highest number of contributors. This choice is motivated also
by the fact that Apache Nifi offers end-to-end encryption,
which is crucial when loading sensitive data in FEDDL.
Furthermore, Apache Nifi comes with many interesting built-in
functionalities responding to FEDDL requirements, especially
the security, i.e., end-to-end encryption, and offers support for
ingesting batch and streaming data.

B. Data Storage
The different file formats ingested by the Data inges-

tion/collection tools need to be stored in efficient ways. In the

following we compare state-of-the-art distributed files systems.
We exclude from this comparison Network Attached Storage
systems (NAS) which are systems storing files on single
machine. This can overload the network if a large number of
users must be handled. Also we exclude object storage since
they requires to read and write entire object to append a single
line to the end of a log file for instance. In the following, we
compare Network File System (NFS), Hadoop Distributed File
System (HDFS), and CephFS.

NFS Network File System [11] is a protocol allowing many
users to have remote access to a remote file system through
the network same way as accessing a local storage on their
machines. NFS was designed by Sun Microsystems.

Apache Hadoop HDFS [12, 13] Apache Hadoop is a
distributed file system to handle large volume of data. HDFS
was developed by Apache and it is written in Java.

CephFS [14, 15] is a distributed file system developed by
Inktank Storage and it is written in C++ and Python.

For this class of tools, we consider an additional criterion,
i.e., State Handling, to show if the tools maintain the current
state and session information or not, in addition to a set of
criteria already defined earlier in the paper, i.e., Data Formats,
Interface, Fault Tolerance, Architecture, Horizontal Scalability
and Maturity.

Table II shows that HDFS offers a large option to load and
access different file formats into distributed repositories when
compared to CephFS for instance where data are only acces-

TABLE II
DATA STORAGE TOOLS CHARACTERISTICS

Tool NFS HDFS CephFs
Data

Formats
Any type of

file
Any type of

file
Any type of

file

Interface
Command line,
mount as local

file system

HDFS commands,
web HDFS,
REST API,

mount as local
file system

REST API
mount as local

file system

Horizontal
Scalability

Low
capabilities

Linear
scalability

Linear
scalability

Intended
Use Cases

Virtualization
file sharing

File sharing,
Data Lake,

big data

File sharing,
cloud servers

Fault
Tolerance

Low, data
is centralized

High, data
is replicated

High, data
is replicated

State
Handling Stateless Stateful Stateful

Maturity

Initial release 1984
Last Stable release
NFSv4.1/ January,

2010

Initial release 2006
Last Stable release

2.10.0/ October,
2019,

243 contributors

Initial release 2012
Last Stable release

15.2.3
May 2020,

828 contributors

sible through REST API, or can be mounted using additional
tools. The main advantage of HDFS is a mature open source
solution running on commodity hardware handling a large
volume of data and offering fault tolerance capabilities which
respond to most of the data storage requirement of FEDDL.
The competitors in the market are mainly paid solutions, e.g.,
storage services offered by Microsoft Azure, or MapR which
is against the requirements of FEDDL since it is required
that FEDDL must be built using only open source solutions.
Furthermore, HDFS offers the possibility to use NFS getaway
and thus users can access HDFS files the same way they
access their local files, and also web interface using Hadoop
WebHDFS. This flexibility helps to support uses with different
skills.

C. Data Exploration

Data stored into FEDDL has to be accessed, manipulated
and queried in efficient manners. In the following we consider
only data processing solutions, i.e., MapReduce initially in-
troduced by Google and employed as their primary big data
processing model, Apache Spark used for instance by Amazon,
and Apache Flink adopted by Alibaba.

Apache Hadoop MapReduce [16, 13] MapReduce is a
framework for processing large volume of data in a distributed
environment initially described by Google. Apache Hadoop
offers an open source rewrite of the MapReduce system and
is written in Java.

Apache Spark [17, 18] Apache Spark is an open source
framework for analyzing and processing large volume of
data. It is developed by Apache and it is written in
Java.textbfApache Flink [19, 20] Apache Flink is an open
source framework for processing large volume of data in real-
time. It is developed by Apache and written in Java and Scala.

In addition the criteria Data Formats, Interface, Scalability,
Distribution, and Maturity we consider additional criteria in
Table III, i.e., Ease of Use to study the complexity of using

each of the tools, SQL Querying Support to show if the
studied tools offers support to perform SQL queries, Execution
Level to specify where the processing is executed, e.g., data
are processed on disks or loaded into main memory, and
Workloads to study for each of the tools which kind of
workloads supported by each of the tools.

TABLE III
DATA EXPLORATION TOOLS CHARACTERISTICS

Tool Apache Hadoop
MapReduce Apache Spark Apache Flink

Data Formats All formats
supported by Hadoop

All formats
supported by Hadoop

All formats
supported by Hadoop

Interface Limited to
Java programs

Command line
(REPL) Java,
Scala, Python,

R

Command line
(REPL) Java,
Scala, Python

Horizontal
Scalability

Linear scalability,
up to 1k nodes

Linear scalability,
up to 1k nodes

Linear scalability,
up to 1k nodes

Distribution Distributed
processing

Distributed
processing

Distributed
processing

Ease of Use Low-level code
High-level

operators, Scala,
Python, or Java

High-level
operators, Scala,
Python, or Java

SQL Querying
Support Via Apache Hive Via Apache Spark SQL Via Apache Calcite

Execution
Level Disk In-memory In-memory

Workloads Batch Files
Batch files,
interactive,

micro-batches data

Stream,
bulk/batch
processing

Maturity

Initial release 2011
Last stable release

3.1.1/ August,
2018,

246 contributors

Initial release 2006
Last stable release

3.0.0
June 2020,

1456 contributors

Initial release 2011
Last stable release
1.10.0/ February

2020,
733 contributors

In FEDDL, we opt to employ Apache Spark as the main
framework for exploring and processing the data. Our choice
is motivated by the ease of use and the speed of executing
process using Apache Spark when compared to MapReduce,
e.g., Apache Spark is faster up to 10-100 times than MapRe-
duce because Apache Spark persists intermediary results in-
memory rather than disks [21]. All tools offer comparable
capabilities regarding scalability, fault tolerance, support of
various provenance of the data, and especially their ability to
process data from most types of databases and file formats
which is interesting to support the evolution of FED project
where new sources can be added to the project. Apache Spark
fulfils FEDDL requirements since it offers native support
for both batch and streaming data processing. Thus, Apache
Spark responds to the future iteration of FEDDL. Furthermore,
it offers a command-line interface to directly interact with
the data whereas MapReduce requires writing (rather low-
level) MapReduce jobs which requires expert users whereas
FEDDL must provide solutions for users having different
levels of expertise. Finally, Apache Spark supports both user-
defined programs (in different programming languages) and
SQL queries within the same framework. However, Apache
Flink offers interesting features to process mainly real-time
data. But, FEDDL needs to deal with both real-time and batch
data.

D. Meta Data Governance

In FEDDL, data contains personal information of customers
and it is a requirement to track the different stages of the data
lifecycle, e.g., ingestion, storage, or processing. Furthermore,

it is required to identify sensitive data loaded into FEDDL.
Thus, meta data governance tools offer the possibility to
annotate the data using custom or predefined tags during
ingestion stages. Thus, sensitive data can be identified to
enforce access rights while accessing data. Due to the lack of
tools responding to FEDDL requirements, we limit our study
to Apache Atlas as meta data governance tool.

Apache Atlas [22] Apache Atlas is a centralized meta data
governance tool on Hadoop clusters initially developed by
Hortonworks and it is written in Java.

For this class of tools we consider in Table IV the criteria,
Data Source, Interface, Horizontal Scalability, Architecture,
Fault Tolerance, and Maturity.

TABLE IV
META DATA GOVERNANCE TOOL CHARACTERISTICS

Requirement Apache Atlas

Data Source Hbase, Hive, Sqoop,
Storm, Kafka, HDFS

Interface
Command line,

REST API,
Web GUI

Horizontal Scalability Scalable
Architecture Centralized

Fault tolerance Automated failover

Maturity Initial release 2015 Last Stable release
2.0.0/ May,2019, 87 contributors

In FEDDL, we employ Apache Atlas since it is the
mainstream open source solution for governing meta data
in Hadoop environments. Apache Falcon [23] could also
have been considered, but it has been retired by Apache
and there is thus no active development going on anymore.
Another alternative is Cloudera Navigator [24], it is a closed
source tool, and it does not offer broader support for services
including Kafka, or Spark, and thus it will satisfy FEDDL
requirements in terms of open source solutions and support
for real-time data.

E. Access Management Tools

In FEDDL the data contains sensitive information. Thus,
it is important to consider tools providing fine-grained autho-
rization rules for the different component of FEDDL. Due
to the limited available open source tools, we opt to study
the commonly used Hadoop access management tool Apache
Ranger used by ING bank for instance, and Apache Sentry.

Apache Ranger [25] Apache Ranger is a centralized policy
management tool developed by Apache and it is written in
Java.

Apache Sentry [26] Apache Sentry is a centralized fine-
grained role-based authorization system. Developed initially
by Cloudera then by Apache and it is written in Java.

In addition, the criteria Data Sources, Architecture, Fault
Tolerance, and Maturity we consider additional criteria in
Table V, i.e., Permission Level to study level to which access
management tools restrict access, and Data Access Authoriza-
tion to show how each of the tools allows access to data within
a specific database.

TABLE V
ACCESS MANAGEMENT TOOLS CHARACTERISTICS

Requirements Apache Ranger Apache Sentry

Data Sources
Hadoop HDFS, Hive,
HBase, Storm, Solr,
Kafka, NiFi, YARN

Impala, Hive, HDFS,
Hive, Solr

Horizontal
Scalablilty Scalable Limited Scalability

Architecture Centralized
administration

Centralized
administration

Fault tolerance Automated failover Limited

Interface
Command line,

REST API,
Web GUI

Command line,
REST API,
Web GUI

Permission Level Group and User Group only
Data Access

Authorizations
Apache Atlas tags,

Ranger Authorization
Apache Sentry
Authorizations

Maturity

Initial release 2015
Last Stable release

2.0.0/May,
2019,

87 contributors

Initial release 2012
Last Stable release

2.1.0/ October,
2018,

27 contributors

The comparison in Table V helps us to opt for employing
Apache Ranger because it supports more applications than
Apache Sentry. Therefore, the centralized administration archi-
tecture helps to manage access for several applications rather
than implementing different access management policies for
each of the tools composing FEDDL. Furthermore, Apache
Ranger grants privileges at both group and user levels whereas
Apache Sentry is limited to grant permission to the only
group level. In FEDDL, users are divided into groups, e.g.,
LLs, and each source is represented as a user belonging to
the LL group. Also, Apache Ranger offers a data access
authorization system, based on tags possibly defined by meta
data governance tools, e.g., Apache Atlas, whereas Apache
Sentry authorization should be explicitly defined.

F. Resource Management

In FEDDL, it is important to ensure resources sharing be-
tween the different components since FEDDL will be deployed
on shared infrastructures offered by centre Denmark. Resource
managers are responsible for allocating the available cluster
resources to facilitate the distribution of running process in
the cluster. In the following, we compare the two resources
management tools Apache Hadoop YARN, which is widely
used in Hadoop clusters, and Apache Mesos, which is used
by Airbnb for instance.

Apache Hadoop YARN [27] Apache Hadoop YARN is one
of the main components of Hadoop open source systems to
ensure resources management mainly on Hadoop clusters. It
is developed by Apache and it is written in Java.

Apache Mesos [28] Apache Mesos is a cluster manager that
simplifies running applications on a scalable cluster of servers.
It is developed by Apache and it is written in C++.

For this class of tools we introduce in Table VI the cri-
terion Scheduler to study the level of scheduling workloads,
in addition to the criteria, Horizontal Scalability, Interface,
Architecture, Supported Systems, and Maturity.

TABLE VI
RESOURCE MANAGEMENT TOOLS CHARACTERISTICS

Requirements Apache Mesos Apache YARN
Horizontal
Scalability

Up to thousands
of nodes

Up to thousands
of nodes

Interface Web GUI,
Command line

Web GUI,
Command line

Architecture Master-slave Master-slave

Scheduler OS level
scheduler

Application level
scheduler

Supported Systems Spark, Cassandra,
MongoDB, Hadoop, etc. Hadoop, Spark

Maturity

Initial release 2009
Last Stable release 1.9.0 /

September,
2019,

297 contributors

Initial release 2006
Last Stable release

3.3.0 / July,
2020,

246 contributors

The architecture of FEDDL relies on running a Hadoop
cluster and thus it is natural to opt for using YARN as an
underlying resources management tool. This choice facilitates
the deployment task and reduces the complexity of running
and maintaining the different components of FEDDL which
are compatible with YARN. For instance, running Apache
Spark on YARN allows Spark queries to be executed without
the need for asking further permissions from the underlying
resources management tools since the data are stored in HDFS
and YARN is the native scheduler.

VI. IMPLEMENTATION AND DEPLOYMENT

Figure 3 shows the set of tools selected to implement
the layers in the FEDDL technical architecture. All selected
tools feature long deployments in production systems and
have stable releases and active communities providing support,
upgrades, and bug fixes. Furthermore, we have ensured that
tools from different layers can be easily integrated without
advanced customization or code changes. FEDDL collects
the source batch and streaming data delivered in different
file formats using Apache Nifi. This ensures that data are
end-to-end encrypted so sensitive data can be securely trans-
ferred and loaded into FEDDL. The large volume of data is
stored using Apache Hadoop Distributed File System (HDFS).
Furthermore, the wide variety of energy-related metadata is
captured and managed by the Apache Atlas metadata man-
agement and governance tools. To comply with GDPR, access
management is enforced in FEDDL using Apache Ranger.
Only authorized partners are granted full access to the data,
while Data Consumers such as EnergyTech companies, only
have access to anonymized and aggregated data. The FEDDL
technical architecture offers several options for partners to run
their flexibility tools and solutions depeding on their level
of expertise. For instance, FEDDL allows partners to execute
advanced analytical jobs using Apache Spark, download data
using Apache Hadoop WebHDFS, or run SQL or Python code
directly on FEDDL. The latter uses web-based notebooks in
Apache Zeppelin which is an open source web-based notebook
tool that enables interactive data analysis.

We deploy the tools in the FEDDL technical architecture
on the Center Denmark physical hardware infrastructure. We
use Virtual Machines (VMs) to completely isolate the FEDDL
data from the other co-located projects on Center Denmark,
another GDPR requirement. To enhance performance, we
dedicate physical disks to the FEDDL VMs. To enable pow-
erful and flexible configuration management and application
deployment, we use Apache Ansible [29], which is an open
source configuration management tool. We configure Ansible
playbooks which are Ansible’s configuration, deployment,
and orchestration language, to prepare each node with the
necessary packages, e.g., a certain Java version, and install
its services for configuration and monitoring. Apache Ansible
prepares the VMs and installs Apache Ambari [30]. The latter
automates the installation, configuration, and monitoring of
software stacks in the Hadoop ecosystem, such as the tools we
selected. For this purpose, we define Ambari blueprints which
are declarative definitions of cluster configurations helping us
to define our custom configuration for each of the selected
tools, e.g., passwords, ports, or data and log repositories.

VII. CONCLUSION AND FUTURE WORK

This paper presented the Danish National Energy Data Lake
developed in the Flexible Energy Denmark (FED) project.
This FEDDL will be the foundation for collecting and sharing
all types of energy-related data in Denmark to allow AI
and machine learning tools to combine, analyze, and predict
energy data for the purpose of optimizing the flexible use
of renewable energy. Specifically, the paper presented a case
study of one of the FED living labs, called DSOlab, including
the data in it, how and when they are collected, and what
they will be used for, followed by the requirements for
FEDDL. We then presented the layered technical architecture
of FEDDL, which is composed of the Data Sources, Data
Collection/Integration, Data Storage, Data Exploration, Data
Consumers, Meta Data Governance, Resources Management,
Access Management, and Privacy and Anonymization (GDPR)
layers. For each of the layers, the paper compared state-of-the-
art open source tools and identified the best ones based on a
set of given layer-specific criteria. The selected tools fulfill
both functional and non-functional requirements of FEDDL.
The layered architecture of FEDDL supports the varying use
of FEDDL by different groups of users such as Living Labs,
researchers, and EnergyTech companies. A main challenge
in FEDDL is how to deal with sensitive data about private
consumers, which means that some FEDDL users have full
access while other can only access anonymized and aggregated
data. Finally, we discussed the implementation and deployment
of FEDDL at the on-premise server infrastructure hosted by
FED partner Center Denmark.

Future work will provide better support for ingesting and
analyzing real-time data to enable rapid analysis and reaction
times, and better multidimensional data analytics support
with data cube functionality. Furthermore, we will develop
advanced anonymization tools for the Privacy and Anonymiza-
tion layer to balance data privacy with data utility.

Data
Sources

Data
Collection/Ingestion

Data
Storage

Data
Exploration

Data
Consumers

Pull Data Push Raw/Cleaned
Data

Push/Pull
Data/ Results

Privacy and Anonymization (GDPR)
(Custom Scripts)

Resources Management
(Apache Hadoop YARN)

Distributed File
System

(Apache
Hadoop HDFS)

Batch,
Streaming

Collection /
Ingestion
(Apache

Nifi)

Landing zone

Work Zone

SQL Queries
(Apache Spark SQL)

User Defined Programs
(Python)

Notebooks
(Apache Zeeplin)

File Downloads
(Apache Hadoop WebHDFS)

Living Labs

Meta Data Governance
(Apache Atlas)

Access Management
(Apache Ranger)

Gold Zone

Living Lab 1
(Files)

SourceLL1.1

SourceLL1.n

Living Lab j
(Files)

SourceLL2.1

SourceLLj.m

Push/Pull
Data

Research
Institutions
(Solutions)

EnergyTech
Companies
(Tools)

Living Labs
(Flexibility)

Fig. 3. FEDDL tools

REFERENCES

[1] T. B. Pedersen, L. Šikšnys, and B. Neupane, “Modeling
and managing energy flexibility using flexoffers,” in
SmartGridComm, 2018, pp. 1–7.

[2] C. J. Date and H. Darwen, A guide to SQL standard.
Addison-Wesley Reading, 1993, vol. 3.

[3] P. Voigt and A. Von dem Bussche, “The eu general data
protection regulation (gdpr),” 2017.

[4] R. Hai, S. Geisler, and C. Quix, “Constance: An intel-
ligent data lake system,” in SIGMOD, 2016, pp. 2097–
2100.

[5] A. Gorelik, The enterprise big data lake: Delivering the
promise of big data and data science. O’Reilly Media,
2019.

[6] “Apache Nifi,” https://nifi.apache.org/, 2020.
[7] S. Hoffman, Apache Flume: distributed log collection for

Hadoop. Packt Publishing Ltd, 2013.
[8] “Apache Flume,” https://flume.apache.org/, 2020.
[9] K. Ting and J. J. Cecho, Apache sqoop cookbook: Un-

locking hadoop for your relational database. ” O’Reilly
Media, Inc.”, 2013.

[10] “Apache Sqoop,” https://sqoop.apache.org/, 2020.
[11] S. Shepler, B. Callaghan, D. Robinson, R. Thurlow,

C. Beame, M. Eisler, and D. Noveck, “Rfc3530: Network
file system (nfs) version 4 protocol,” 2003.

[12] D. Borthakur et al., “Hdfs architecture guide,” Hadoop
Apache Project, vol. 53, no. 1-13, p. 2, 2008.

[13] “Apache hadoop,” https://hadoop.apache.org/, 2020.
[14] S. A. Weil and B. et al, “Ceph: A scalable, high-

performance distributed file system,” in OSDI, 2006, pp.
307–320.

[15] “CephFS,” https://docs.ceph.com/docs/master/cephfs/,
2020.

[16] J. Dean and S. Ghemawat, “Mapreduce: a flexible data
processing tool,” Communications of the ACM, vol. 53,
no. 1, pp. 72–77, 2010.

[17] M. e. a. Zaharia, “Apache spark: a unified engine for big

data processing,” Communications of the ACM, vol. 59,
no. 11, pp. 56–65, 2016.

[18] “Apache Spark,” https://spark.apache.org/, 2020.
[19] P. e. a. Carbone, “Apache flink: Stream and batch pro-

cessing in a single engine,” TCDE, vol. 36, no. 4, 2015.
[20] “Apache flink,” https://flink.apache.org/, 2020.
[21] J. Shi, Y. Qiu, U. F. Minhas, L. Jiao, C. Wang, B. Rein-

wald, and F. Özcan, “Clash of the titans: Mapreduce vs.
spark for large scale data analytics,” VLDB, vol. 8, no. 13,
pp. 2110–2121, 2015.

[22] “Apache Atlas,” http://atlas.apache.org/, 2020.
[23] “Apache Falcon,” https://falcon.apache.org, 2020.
[24] B. Quinto, “Big data governance and management,” in

Next-Generation Big Data. Springer, 2018, pp. 495–
506.

[25] “Apache Ranger,” http://ranger.apache.org/, 2020.
[26] “Apache Sentry,” http://sentry.apache.org/, 2020.
[27] V. K. Vavilapalli and Murthy, “Apache hadoop yarn: Yet

another resource negotiator,” in SoCC, 2013, pp. 1–16.
[28] “Apache Mesos,” https://mesos.apache.org/, 2020.
[29] “Ansible,” https://www.ansible.com, 2020.
[30] “Apache Ambari,” https://ambari.apache.org/, 2020.

