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ABSTRACT

The problem of optimizing social welfare objectives on multi-sided ride-hailing platforms such as
Uber, Lyft, etc., is challenging, due to misalignment of objectives between drivers, passengers, and the
platform itself. An ideal solution aims to minimize the response time for each hyperlocal passenger
ride request, while simultaneously maintaining high demand satisfaction and supply utilization across
the entire city. Economists tend to rely on dynamic pricing mechanisms that stifle price-sensitive
excess demand and resolve the supply-demand imbalances emerging in specific neighborhoods. In
contrast, computer scientists primarily view it as a demand prediction problem with the goal of
pre-emptively repositioning supply to such neighborhoods using black-box coordinated multi-agent
deep reinforcement learning-based approaches. Here, we introduce explainability in the existing
supply-repositioning approaches by establishing the need for coordination between the drivers at
specific locations and times. Explicit need-based coordination allows our framework to use a simpler
non-deep reinforcement learning-based approach, thereby enabling it to explain its recommendations
ex-post. Moreover, it provides envy-free recommendations i.e., drivers at the same location and time
do not envy one another’s future earnings. Our experimental evaluation demonstrates the effectiveness,
the robustness, and the generalizability of our framework. Finally, in contrast to previous works, we
make available a reinforcement learning environment for end-to-end reproducibility of our work and
to encourage future comparative studies.

1 Introduction

Popular ride-hailing platforms such as Uber, Lyft, Didi Chuxing, Ola, etc., have revolutionized the daily commute in
cities across the world. Globally valued at over $61 billion and expected to grow $218 billion by 2025 these platforms
operate as multi-sided marketplaces, seamlessly connecting drivers with riders through their smartphone applications [1]].
The explosive growth of these ride-hailing platforms has motivated a wide array of questions for academic research at
the intersection of computer science and economics, as we discuss in the related work section.

A large portion of this work aims to improve the performance of the platforms ensuring high-reliability service for the
passengers and high utilization and earnings for the drivers. The two main thrusts are dynamic pricing and capacity
repositioning. Dynamic pricing [2l 3} 14} |5, 6] aims to balance demand and supply by increasing prices in certain
neighborhoods. Intuitively, the increased prices curtail price-sensitive demand and assist the platform in ensuring a
high-reliability service. On the flip side, the potential for higher earnings also encourages more drivers to join the
platform during such “price surges". The dynamic pricing literature uses game-theoretic analyses of the ride-hailing
markets to shove its effectiveness as a platform control mechanism.

Capacity repositioning approach aims to improve the platforms’ performance by assisting drivers with recommendations
for relocations inside a city. Although the initial work in this domain has focused on modeling the driver-repositioning
problems as combinatorial optimization problems [[7, |8, 9, [10} [11], the need to deal with large driver fleets and the
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availability of high-dimensional historical data has recently led to the development of machine learning methods for the
same problem [12}|13}[14}|15/|16]. Such approaches predominantly use multi-agent coordination reinforcement learning
to solve a global capacity repositioning problem, using various forms of attention mechanisms in neural netowrks to
achieve coordination. By design, they make a key assumption that there is always a need for coordination in the market.
This assumption necessitates them to leverage recent breakthroughs in the scalability of deep learning models to exploit
the high-dimensional historical data. Deep-learning based methods have a large number of hyperparameters required in
their training, making their performance susceptible to external perturbations. Moreover, the black-box coordination
issue, as yet unresolved, is a potential liability when using deep-learning based systems in domains such as this, where
platform controllers would like to understand how the choices of recommendations to human drivers were made.

We aim to revise the capacity-repositioning approach by relaxing the assumption that coordination is always necessary.
Specifically, our approach leverages the observation that driver actions are independent at most times of the day, with
coordination required only during periodic times of peak demand, such as a rush hour. Furthermore, the instances
of supply-demand imbalances in a city are usually restricted to distinct neighborhoods. We exploit this loose spatio-
temporal coupling of supply and demand to learn when and where the drivers need to coordinate, and otherwise act
independently for the rest of the time. This observation allows us to combine vanilla reinforcement learning (i.e., not
deep learning) algorithms with simple combinatorial techniques for solving the repositioning problem. Moreover, our
framework is scalable because the sizes of the combinatorial problems we need to solve in order to achieve capacity
repositioning are constrained by the number of imbalanced neighborhoods. Broadly, our model is a combination of the
combinatorial and machine-learning approaches to capacity repositioning.

As our framework does not rely on deep learning, we are able to explain ex-post all the recommendations given to
the drivers, taking a step in direction of transparent A L. proposed in the recent General Data Protection Regulations
(GDPR) guidelines [17]. Moreover, our approach is envy-free in the sense that drivers at the same location and time do
not envy one another’s future earnings. The resulting model is relatively parameter-free and hence generalizes well
in presence of daily variations in supply and demand. Finally, our framework is amenable to integration with any
dynamic-pricing models by easily augmenting our data with the effects of such a model.

Contributions: To summarize, the contributions of our paper are the following:

e We consider the problem of capacity relocation on a ride-hailing platform in order to maximize welfare and
propose a robust, explainable and scalable framework that combines simple combinatorial techniques with vanilla
reinforcement learning algorithms.

e We perform a thorough experimental evaluation of the dynamics of the fleet-management system and the effective-
ness, robustness to imperfect hyperparameter tunings, and generalizability of our models in the presence of external
perturbations.

e We also make available an OpenAl gym environmen named nyc-yellow-taxi-vO at [19] so that any future
multiagent reinforcement learning algorithm can be easily applied to this problem. To the best of our knowledge,
this is the first environment based on real-world datasets.

2 Related Work

In this section, we discuss existing work in comparison to ours.

Driver recommender systems: The problem of spatiotemporal demand prediction to inform an idle taxi driver of
favorable locations for passenger pickups had been studied extensively even before the advent of ride-hailing services.
These works focus on the case of a self-interested individual acting in isolation. For instance, Li et al. [20] use
large-scale taxi GPS trace dataset to identify salient features associated with successful passenger pickup locations,
while in two separate studies, Yuan et al. [21, 22] develop a recommender system to guide both idle taxi drivers and
waiting passengers to convenient locations in order to optimize social welfare. More recently, Chaudhari et al. [23]]
devise driver-oriented strategies to recommend favorable driving schedules and pickup locations to optimize the earnings
of an individual on-demand ride-sharing driver. In contrast to our approach, the recommender systems in these works
are agnostic to driver interactions and may result in unfavorable supply excesses in certain locations when adopted by
many drivers simultaneously.

Capacity repositioning systems: Traditional works in driver dispatch systems [7, (8} 9] typically rely on queuing-
theoretical models to asymptotically optimize supply-demand matching while reducing congestion-related issues. Aided
by real-time data processing leading to precise estimates of supply and demand, recent approaches [10}[11]] draw upon

'OpenAI Gym is a toolkit for developing and comparing reinforcement learning algorithms [18].
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combinatorial optimization, leveraging demand volume and ride destination forecasting. These approaches do not scale
well to use cases on contemporary platforms, where fleets of as many as 10,000 drivers serve a single city.

More recent work [12} [13} [14} [15 [16] addresses the scalability issue by using deep reinforcement learning to learn
control policies in high-dimensional input space. While effective in this high-volume data domain, these methods rely
on external proprietary models to generate inputs for the driver dispatch systems. For example, the approach of Kaixiang
et al. [14] heavily relies on a proprietary simulator built by Didi Chuxing in order to generate inputs required during
model training, making it impossible to reproduce their results for comparison purposes. To the best of our knowledge,
building such a simulator is itself an active research problem. Moreover, deep-learning based techniques suffer from a
lack of explainability. Cognizant of these issues, our approach does not rely on any proprietary models but rather learns
high-quality solutions from scratch based solely upon historically observed data. Moreover, we achieve that without
sacrificing the explainability of the model. In the absence of the need of coordination, our model assumes homogeneity
of drivers in same location and provides envy-free recommendations while also making it scalable. Furthermore, we
have made publicly available our entire codebase and reinforcement learning environment required to reproduce every
result presented in this work while also enabling comparative future studies [[19].

From the learning point of view, our approach not only learns how to coordinate but also when it is required to do so.
This is achieved by augmenting vanilla reinforcement learning (in the form of tabular Q-learning) with combinatorial
techniques to aid the rebalancing of driver distribution.

Platform economics: Studies of ride-hailing services as multi-sided economic marketplaces have investigated the
impacts of the platform’s pricing policies on the platform profits, the consumer surplus, and the driver wages [3l 1524, 25].
Siihr et al. [26] investigate fairness in driver earnings distribution using driver-passenger matchings optimized to attain
income equality goals. Recently, Chen et al. [27] combines platform economics with capacity repositioning problem
using a contextual bandit framework. There is a growing body of literature studying the interplay between platform
pricing and strategic driver behaviors, for which we refer the readers to [2l]. Our work contributes to this domain
by developing a scalable framework that can be used to verify the results of asymptotic dynamic pricing models via
realistic simulations.

3 Problem Setup

In this section, we describe the basics of our problem setup and provide the necessary notation.

3.1 City attributes

Throughout the paper, we assume that the city is divided into a set of m non-overlapping hexagonal zones denoted
by H. We also assume that time ¢ advances in discrete time steps i.e., T = {1,--- ,T'}, a standard industry practice
described in [28]].

Finally, we assume a total of n homogeneous drivers traveling between hexagon zones picking up and dropping off the
passengers.

Our model uses the following city matrices and vectors that are time-varying; i.e., their entries change at every time
step. However, for notational convenience, we do not introduce the time step ¢ subscript with the entries unless required
for context.

Demand matrix (D): A matrix D € R"™*™ such that each entry d(h, h’) denotes the number of passengers requesting
aride from zone h to zone h’ at time ¢. With appropriately sized hexagonal city zones, we find that VA € H, d(h, h) = 0.

Travel time matrix (T): A matrix T € R™*™ such that each entry 7(h, ') denotes the number of discrete time steps
required for transiting from zone h to zone h'.

Reward matrix (R): A matrix R € R™*™ such that each entry r(h, h’) denotes the net reward for a taxi driver
carrying a passenger from zone h to zone h’. The net rewards include driver’s earnings for delivering the passenger at
the destination minus the sundries such as gas cost, vehicle depreciation, etc. Hence, each entry of the matrix is of form
r(h,h') = earnings(h, h') — cost(h, h').

Driver actions (A): At each time step ¢, a driver in zone h who is not currently on a trip can choose one of the two
actions.
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e Wait: A wait action a(h, h) involves waiting for a passenger in the current zone ¢ for the current time step. If
successful, it can lead to a trip to some other zone k' with the driver earning a reward of r(h, h’). When the number
of drivers choosing to wait in a zone exceeds the demand of the zone at the particular time, an unsuccessful wait
may occur, and the driver earns a net reward of zero while staying in the same zone h for the next time step.

e Relocate: A relocate action a(h, h') involves relocation without a passenger from zone h to zone h’. Undertaking
arelocate action costs a driver a value denoted by cost(h, h').

Thus, we consider a total of | A| = m? actions. In case of a relocate action or a successful passenger pickup to zone //,
the driver is busy traveling for next 7(h, k') time steps and is presented with the next action choice at time ¢ + 7(h, h'),
while in case of an unsuccessful wait, the driver chooses the next action at time ¢ + 1.

3.2 Model attributes

Using the city attributes from the previous section, we now define the attributes of our model:

Policy (7): A policy function 7 : H x T — A recommends the best action to drivers in every zone of the city at each
time step, to maximize the model’s objective function. We impose a constraint that all drivers in the same zone at
the same time be recommended the same action unless driver coordination is required to resolve a supply-demand
imbalance in the zone.

A driver i following a policy 7 performs location and time-dependent actions represented by a 3-tuple ¢7 (i) = (¢, h, a),
where h and a are the location of the driver and the action chosen at time ¢ respectively. We assume that if a driver is
busy at time ¢, the corresponding 3-tuple is (¢, &, ).

Driver earnings (£): Let function E(¢, h, a) denote the net earnings of a driver on taking action a at time ¢ while
located in zone h. If the action leads a driver to zone b/, E(t, h,a) = r(h, h'). In the case of relocate action, the net
earnings simply constitute the cost of relocation i.e., r(h, h') = —cost(h, h’). We can denote the gross earnings of n
drivers following a policy 7 by:
T n
E"(n,D,T,R) = > E(¢](i)),

t=1 i=1

where E(t, @, @) = 0.

Supply (S): A policy 7 induces the movement of drivers between different city zones through action choices. The
supply, i.e., the number of drivers at zone h at time ¢ induced by a policy 7 is denoted using the supply function

S7(t,h).

Demand fulfillment (F): A driver in zone h choosing the wait action a(h, h) at time ¢ is randomly matched with any
of the ), , di(h, h') passengers requesting a ride in zone h at the same time. Hence, a policy m, via its supply function,
induces a demand fulfillment function. Demand fulfilled in zone & at time ¢ when drivers follow a policy 7 is denoted
using the demand satisfaction function F™(t, h). Obviously, V e F7(t,h) < >,, d¢(h,h’). Hence, total demand
fulfilled over the course of time steps ¢t € T by n drivers following the policy 7 can be given by:

F™(n,D, T,R) = sz:F”(t,h).

t=1 h=1

3.3 Problem statement

Based on the above definitions, we now formulate the problem that we solve.

PROBLEM 1(MAXEARNINGS): Given time-varying matrices D, T, R and the number of homogeneous drivers n,
devise a policy 7* such that
7 =argmax ™ (n, D, T, R). (D
mell
Replacing the driver earnings (£) by demand fulfillment (F) in the Equation (I}) above results in a variant of MAX-
EARNINGS problem, in which the goal is to maximize fulfilled rides, referred to henceforth as the MAXFULFILLMENT
problem.
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3.4 Discussion

At a high level, our revenue maximization problem statement is similar to existing work in the area. However, our
modeling assumptions are significantly more realistic than previous work, making our methods more amenable to
operational deployment. For example, whereas our work assigns drivers to rides explicitly (and allocates rewards
accordingly), previous work performs reward allocations proportionally, in a fluid model. In our model, when two
drivers compete for a single ride from i to j, one of the two driver gets the ride, gets paid, and ends up in j after a
travel time ¢. In the representative fluid model of [14]], both drivers get half of the payment, and two halves of drivers
(conceptually) transit to j in a fixed time step, regardless of the distance traveled. Although a fluid model such as this
is tractable to solve for and optimize around, it has strong implications on the solution space, as it notably removes
time-dependent and driver-dependent features from the model. Issues such as studying variance of driver earnings are
not possible in these models, as all drivers starting at the same time and place will end up with identical (quantized)
trajectories and earnings.

We also note that in our framework, a wait action for an individual driver is only successful if the driver is present in the
same zone as the ride request. Hence, our framework cannot result into the Wild Goose Chase (WGC) phenomenon
described by [3]], in which high demand causes depletion of idle drivers on the streets, leading to suboptimal FCFS
matches where drivers spend a significantly higher duration of time en route to pick up passengers.

4 Learning Framework

In this section, we describe our approach for solving the MAXEARNINGS problem. Our method is a model based
reinforcement learning approach, and its description is provided in Algorithm|[T}

As with any reinforcement learning based approach, we train our model by allowing the drivers to repeatedly interact
with an environment in form of the city’s ride demand data from a representative day. Each interaction, which is T'
timesteps long, constitutes an episode of the training process. Each episode constitutes of 3 phases described below.

ALGORITHM 1: General learning approach

Initialization Q; (¢, h,a) « 0,Qc (¢, h,ya) + 0,£(¢, h) + 0;
for each episodee =1,--- | E
for each time stept =1,---,T
for each driveri=1,--- ,n
Generate two random numbers 79,71 € [0, 1];
if Mo <e
| Choose exploratory action;
else
if Uit < {(t, h’l)
\ a = Independent action a* from Q7;
else
\ a = Coordinated action a® from Q¢;
Receive reward E(t, h;, a);
Compute rebalance matrix Z;
for each zone h € H
Vt,a update Q(t, h,a) ;
V't update degree of coordination £(¢, h) ;
Vt, a update Q¢ (t, h,a) ;

Exploratory phase (lines 5-7): During this phase of the algorithm, drivers exhibit an exploratory behavior by
choosing a pseudo-random action with a probability e. These randomly chosen actions allow the model to explore a
larger portion of the policy space, preventing its policy from converging to a local minimum. This is similar to the
e-greedy behavior of Q-learning [29].

Exploitative phase (lines 9-12): During this phase of the algorithm, the rest of the drivers exhibit an exploitative
behavior using the policy learned up until the previous episode of training. The policy recommends exploitative actions
to individual drivers based upon the time of the day and their locations, independently of each other, henceforth referred
to as independent actions. However, certain recommended actions may result in supply-demand imbalances when a
large number of drivers relocate to the same city zone with an insufficient demand, or too few of them relocate to a zone
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with excess demand. We postulate that explicit coordination is essential to prevent such supply-demand imbalances
from occurring. Hence, we introduce the degree of coordination (£) - a probabilistic value that signifies the extent to
which drivers located in the same city zone need to coordinate their actions. Whenever a zone has a positive degree of
coordination, the exploitative actions recommended to a & fraction of drivers in the zone are derived from solving a
reward-maximizing linear program, henceforth referred to as coordinated actions.

It should be noted that it is the explicit criterion for recommending a coordinated action that sets our approach apart
from recent works in the field of deep reinforcement learning across different applications and domains.

Learning phase (lines 15-18): Actions recommended in the exploratory and exploitative phases of the episode result
in drivers picking up passengers or relocating themselves to different city zones, thereby observing rewards of their
actions (line 13). The learning phase of the algorithm computes a rebalancing matrix (line 14) to use in conjunction
with the observed rewards to further improve upon the policy.

Having developed an intuition for the major building blocks of Algorithm|[I] we now explain these phases in greater
detail.

4.1 Exploratory phase

Over the course of training, when a driver located in zone h chooses to explore, we model the probability of driver’s

exploratory ride distance using a Gaussian function with a random variable K'>. Specifically, the probability that a
. . . _ k2

driver relocates to a zone at distance k& > 0 is given by: Pr[K = k] = be™ 22

After sampling an exploration distance k, the driver chooses the actual destination by sampling uniformly at random

from all the zones at the distance k. When k = 0, the driver chooses to wait in the current zone, while for £ > 0, the

driver chooses a relocate action. The experiments in this paper were all conducted using b = 0.7 and ¢ = 1 (chosen

via grid-search), allowing explorations upto 3 hexagonal zones away. In contrast, [[14] restricts drivers to single zone

distance relocations, reducing their ability to learn policies that mitigate supply-demand imbalances by relocating

supply from zones further away in a single timestep. Over the course of training, € is annealed exponentially from 1 to

0, thereby outputting an entirely exploitative model at the end of the training.

4.2 Exploitative phase

Exploitative behavior is manifested in the form of independent actions (line 10) and coordinated actions (line 12) when
the degree of coordination is positive. We detail these next.

4.2.1 Choice of independent action

For each independent action chosen by a driver we record the associated reward earned. The reward earned is then used
to update the value of the action for the next episode, based on the learning rate (o) and the discount factor (). These
values are stored in a Q-table denoted by Q; € RT*™mx Al For each zone h, at time ¢, the best independent action (a*)
in line 10 of Algorithm [I)is chosen by

a (tv h) = argmax QI (ta h7 a)a
acAy

where A, refers to the h-th row of A.

4.2.2 Independent learning

Based upon the observations of drivers undertaking independent actions (both exploratory and exploitative), we update
the independent learning matrix (Q) as described below.

Updating () for wait actions: Let W ;, 5,y denote the number of drivers choosing to wait in zone h at time ¢, and
ending up in zone h'. A successful wait generates net earnings F (t, h,a(h, h)) = r(h, h’) and consumes a travel time

7(h, k'), while an unsuccessful wait i.e., b’ = h, generates zero net earnings and consumes one timestep. The utility of
the wait action is therefore

u(t,h,h) = Z W(h,h/) |:E(t7 h7 a(h, h)) + ’VQI (tl7 hl7 a* (t/a h/)) ’
h/
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where t' = t + 7(h, h') and we discount the future rewards with a factor v. We use the utility of the wait action to
update the entry Q; (¢, h, h) as follows:

(0%

=—U, .
S Wy

Normalizing the update term by the number of drivers choosing the wait action captures the average utility of the wait
action. The term Q; (¢, h, h) on the right hand side of the equation denotes the values learned upto the previous episode
of the training, and « is the learning rate.

Qf(t7 h’a h) — (1 - Q)Ql(t7 ha h) + )

Updating Q; for relocate actions: Let R ;, ;1) denote the number of drivers relocating from zone h to zone h'. The
utility of such relocation is given by

u(t,h,h/) = R(h,h,’) E(tv h» a(hv hl)) + ’YQI(t/a h/a a* (t/a h/)) )

where t' =t + 7(h, h'). We use the utility of the relocate actions to update the entry Q; (¢, h, h’) of the independent
table as follows:

QI(ta ha h/) — (1 - Oé)Q[ (t7 h’ h/) + 7u(tvhahl)' (3)

R(h,h’)
Using Equations () and (3)), the ; matrix is updated in line 16 of Algorithm [T] using the evidence obtained via
simulations in form of utilities U{(; p, /) of both the wait and relocate actions.

4.2.3 Choice of coordinated action

The choice of coordinated action is more intricate and non-standard, and we next explain it in detail. To guide the
coordinated behavior of drivers in line 12 of Algorithm[I] we solve a reward-maximizing rebalancing operation between
city zones experiencing supply-demand imbalances. There are two principal components driving the coordinated
behavior: degree of coordination () which controls the need of coordination in a particular zone at a time, and
coordinated learning matrix () which determines the choice of action as a response to the need of coordination.
Thus, each coordinated action is associated with a probability for it to participate in the rebalancing operation that is
stored in the matrix Q. Note that () contains learned probabilities, as against the usual action-value nature of );.

Let the policy learned at the end of k-th episode during training be denoted by 7. Following this policy induces a
driver supply S™ during the (k + 1)-th episode of training. For each zone h, at time ¢, the coordinated action (a°) in
line 12 of Algorithm is obtained by uniformly sampling from the probability vector Q¢ (¢, h).

Imbalance matrix (A): A matrix A € RIT*™ such that each entry 6(¢, h) denotes the supply-demand imbalance
experienced at zone h at time ¢ during the (k + 1)-th episode. Specifically, each entry of the imbalance matrix can be
given by, 6(t, h) = S™(t,h) — 3", d¢(h, h"). We mask the imbalance matrix using an imbalance threshold parameter
A such that,
§(t,h) if |8(t,h)| = A
o(t,h) = ’ =
(£ ) {0 otherwise.

Using this parameter allows us to control the level of imbalances that the framework should attempt to mitigate.

Rebalancing graph (G): Based upon the supply-demand imbalance matrix induced at the end of an episode, we create
the rebalancing graph G = (V, E) consisting of imbalanced zones as nodes and edges as corresponding relocation
actions between them. This is a bipartitle graph with nodes set V' = {V U V_} where V. is the set of nodes with
excess supply i.e., (¢, h) > 0 and V_ is the set of nodes with supply deficit i.e., §(¢, h) < 0. Thus each node v; € V in
the rebalancing graph is associated with three attribues: imbalanced zone (v; ) time of imbalance (v!) and magnitude

of imbalance (5 (v, vl )) The edge set I consists of directed edges from the nodes in V; to nodes in V_ and they

17 7
model feasible relocations. Thus: E = e;; : v; € Vi, v; € Vo, vl + 7(vl, ]) < v . The travel-time constraint

filters out edges where a relocating driver from supply excess node cannot reach the deficit node in time. Each edge e;;
is associated with utility:

Ui jy = Qf(vj,vj ,vjh) —cost(vl ,vj) Ql(vl,vl ,vf‘).
—_——

. . : it aeti . h
wait action at 'U;L relocation cost walit action at v,

Thus, the utility of an edge measures the net value for a driver relocating along it during coordinated behavior.
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Rebalancing operation: Given a rebalancing graph G, we wish to relocate drivers from supply excess zones to supply
deficit zones. We aim to find a matching that maximizes the net reward of all relocations, in order to maximize the
driver earnings. Such a rebalancing operation can be achieved by solving a Minimum Cost Flow problem expressed in
form of the linear program below.

maximize Dei ek fis X Ui j)
s.t.,
Ve € E, fij =20

i)

Yu; € V+, Ev]‘GVf fij < 5(/0;%7’0?
5o

vvj € V—a Zq;,ieVJr fl] < ‘6(1]];

Here, we calculate the number of excess drivers who should relocate from an excess node to a deficit node and store it
in form of a flow vector f € RI¥! indexed along the edges set such that f;; denote the flow from v; to v;.

If the platform aims to maximize demand fulfillment metric, we can formulate it as a Maximum Flow problem. This can
be achieved by setting the utility associated with each edge U(; ;) = 1.

As the constraint matrices — in both problems — are unimodal, the solutions of the linear programs are integral flow
vectors and are thus optimal. Note that the size of the constraint matrix increases with a decrease in the A parameter.
However, we can greatly reduce the sizes of corresponding linear programs and hence the computation time by solving
a set of smaller linear programs; one for each connected component of the rebalancing graph.

4.2.4 Coordinated learning

Based upon the computed imbalance matrix (A) and the solution to the rebalancing operation above, we are now in
a position to update the coordinated learning matrix ()¢) and the degrees of coordination (§) as described below. It
should be noted that while the choice of coordinated action from the matrix Q)¢ is influenced by the reward-maximizing
rebalancing described above, the degree of coordination ¢ is merely influenced by the supply-demand imbalances
induced as a result of the policy learnt so far.

Updating ()¢ for rebalancing operation: We capture the rebalancing operation in form of a rebalance matrix
Z € RITI*m>m where each entry ((t, h, h’) denotes a probability of a rebalancing relocation from zone & to zone h’
being required at time ¢. For every edge e;; € I, we update Z as follows,

Sl = Y v S
t h h _ 19 Y v;eV_ J1]
C(Uivvi » Ui ) = 5”570?3
fij
g(yt Uh Uh) = _—
v d(vf, vf)

Using the rebalance matrix, we update Q¢ in line 18 of Algorithm[T]as follows,

Qc(t,h,h') + (1 —)Qc(t, h, ') + al(t, h, h'). 4)

Updating degree of coordination (£): At the end of each training episode (k + 1), we use the realized imbalance
matrix (A) to determine the degree of coordination required within each zone at every time step. We update the degree
of coordination as follows:

§k+1<t7 h) = (1 - a)§k<t7 h) + Oé/,L(t, h>7 &)

where the rebalancing raio yu is computed as:

o(t,h .
saths i a(t h) > 0.
p(t,h) = ‘6(t,h/)| )
S (R if 5(t, h) < 0 and gk (t7 h) > 0.

While the former condition encourages driver relocations in zones with supply excess, the latter condition discourages
it in zones with supply deficit. Thus, we use Equation (5) to update the degree of coordination for each zone in line 17
of Algorithm
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4.3 Discussion

We conclude this section by highlighting some of the features of our approach that make it appealing to use in practice.

First of all, over the course of training, our approach learns by trialing driver actions over historically observed demand
data and recommends strategic relocations to drivers when there is enough evidence to do so. This is done proactively,
i.e., with the goal of preventing such an imbalance from actually occurring. One should contradict this with other
reinforcement learning based approaches [14,|30] that try to resolve the imbalance issues ex-post, or dynamic pricing
based approaches which assume full knowledge of future demand [25]].

On deployment, our model relies only on trends learned from the historical data. This design decision is motivated by
the empirically observed strong periodicity in demand. It makes our model relatively parameter-free, thereby providing
robustness to demand perturbations. This decision is validated by the model generalizability experiment in Section[5.2.7]
where we show that the recommendations made by our algorithm are robust to the presence of perturbations in the
demand. In contrast, deep reinforcement learning based approaches [[12, |13} 114, |15, |16] require as inputs full knowledge
of supply and demand distribution during deployment. The stochastic gradient-descent algorithm used during training
of networks uniformly samples experiences observed under previous training policies, making it impossible to reliably
trace back and explain the actions recommended to the drivers. Furthermore, this increases the sensitivity of model
performance to the tuning of numerous hyperparameters, making them difficult to deploy in the real world.

A key characteristic of our approach is the explicit coordination achieved by solving a minimum cost flow problem,
allowing all our recommendations to be easily traced back and explained.

5 Data and Experiments

In this section, we begin by describing the pre-processing we did in order to use the New York City Yellow taxi rides
public dataset and then we evaluate our framework.

5.1 Data pre-processing
To train our model, we need to construct the time-evolving city matrices - D, R, and T described in Section 3]

Hexagonal binning of New York City: We employ the popular methodology of hexagonal binning to discretize the
city into a set H of 250 non-overlapping uniform-sized hexagonal zones. The distance from the center of a zone to its
vertices is about 1 mile.

Forming time-evolving matrices: We begin with the NYC Taxi dataset (2015), which contains street-hail records of
over 200,000 taxi rides per day with information regarding pickup and dropoff locations and times, fare, trip distances,
etc., from before the significant confounding effects of ride-sharing platforms like Uber, Lyft, etc. For each ride in the
dataset, we evaluate its pickup and dropoff zones based on location coordinates. Assuming that passengers do not hail a
taxi for short distances, we ignore a small percentage of rides which begin and end within the same zone.

We discretize a 24-hour day into 288 time-slices of duration 5 minutes each, indexed by their start time. Thus, to
populate the entries of the matrices D, R and T at time ¢, we use the rides from the dataset in the 5 minutes time-slice
beginning at time ¢. Due to variations in the popularity of particular pickup and dropoff zones at specific times of the
day, the R and T matrices obtained using this method are sparse. However, to compute the best policies, our framework
requires the availability of complete information regarding rewards and travel times. Hence, we estimate the missing
values in these matrices using linear regression models including fixed-effects for the time of the day, the source and
destination zoneﬂ The performance of our model is not sensitive to the choice of a specific linear regression modeling
technique.

5.2 [Experimental results
5.2.1 Settings

For all experiments, we use a multiprocess implementation of our algorithm on a 24-core 2.9 GHz Intel Xeon ES
processor with 512 GB memory. The model training time for 100 episodes of training takes less than an hour. The model

To compute the travel time entry 7(i, j) at time ¢ on a Monday, we fit a linear regression model 7 (i, 4, ) = BoXi,j.t + By +
Baaj + Bzay + €5, where X ; ; are the time-variant independent variables, the o, o5, and o are time-invariant fixed-effects
variables for source, destination and time of the day respectively, while €; ; + ~ A(0, 1) is an error term. We fit this model to data
from all the rides in the corresponding month.
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testing time is less than 5 minutes. Our code has been made publicly available for reproducibility purposes [19]. All our
experiments use learning rate o = 0.01 and discount factor v = 0.99. During independent learning, the exploration
factor (e) used in e-greedy Q-learning decreases exponentially as the training progresses. Unless mentioned otherwise,
we train 5,000 drivers over 200 episodes and set the imbalance threshold (A) to 2. Experimental results presented in this
paper are obtained by training models over a representative day viz., first Monday of September 2015 with a demand of
over 232,000 rides. However, our results generalize to every day in the month.

5.2.2 Model performance

First, we address the question: how well does our reinforcement learning-based algorithm learn the driver dispatch
policy? In Figure[I] we observe the improvement in mean driver earnings and demand fulfillment as the training
progresses. We split the 200 training episodes into independent learning episodes (Er;, = 160) and coordinated
learning episodes (E¢y, = 60). This can be achieved by setting the degree of coordination (&) to 1 until episode
number ¥ — E¢r, on line 9 of Algorithm Consequently, episodes [140, 160] utilize both independent and coordinated
learning. In Figure[T] we observe a significant improvement in the objective in the interval denoted by a shaded region.
As expected, coordinated learning appropriately relaxes some of the constraints imposed by single-agent MDP and
leads to significantly better performance.

In Figure 2] we plot the total demand at various times in the day, along with its fulfilled and unfulfilled portions by
drivers following our policy. About 95% of the total demand during the day is satisfied with our framework. We
consider a ride request fulfilled if an idle driver is present in the same zone at the time of the request. We find that 10%
of the unfulfilled demand can be fulfilled by drivers nearby within 10 minutes of passenger wait while over 70% within
15 minutes. At the beginning of a day, for lack of better alternative, we initialize drivers uniformly across the city zones.
Hence, our model requires a “warm-up” time for the drivers to reposition themselves in order to fulfill the demands.
This warm-up interval contributes significantly to the unfulfilled demand at the beginning of the day from 12AM-1AM.
One may left-pad the training interval to alleviate this issue.

The explicit coordination in our model allows us to visualize the market conditions in which it is utilized. For brevity,
in Figure 3] we plot snapshots of coordination in form of a heatmap with probabilities of coordinated wait actions i.e.
Qc(t, h,h) at 6 A.M. during the early morning commute and at 6 P.M. during the evening commute hoursﬂ Without
coordination, we would expect all the drivers in the city to relocate to Manhattan in order to satisfy the extremely high
volume of demand during the morning commute. However, as observed in Figure 3] our model recommends a certain
proportion of drivers to wait in the outer boroughs of New York City for the early morning commute to Manhattan.
Notably, the model is able to learn demand trends in time-dependent hotspots such as the J.E.K. airport to the south-east
of the city. In contrast, during the evening commute to outer boroughs, the model exceedingly recommends that the
drivers wait inside Manhattan.
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Figure 1: A representative illustration of improvement in mean driver earnings during training.

5.2.3 Impact of independent and coordinated learning

The overlap between the independent and the coordinated learning during training is a crucial aspect of our framework.
In this section, we address the question: how do we determine the appropriate number of independent learning and
coordinated learning episodes during training? Given a fixed number of training episodes F, we assume that our model
trains the initial E;;, episodes with independent learning and the final E-, episodes with coordinated learning. When
Err + Ecr > E, wehave Erp, + Ecor, — E episodes of overlap between independent and coordinated learning. In

3More detailed visualizations depicting evolution of coordinated actions and degree of coordination across the city and through
the time of the day are available at [19].
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Figure EI, we use 200 episodes of training, and we vary the values of Ery, and E¢y, in the range [20, 200] to achieve
various overlapsﬂ We then plot the mean driver earnings for each learned policy. We show that for a large interval of
values of Eyy, and F¢p, our framework provides stable and high performance with up to $535 mean earnings per day
when Er;, = 60 and Ecp, = 160, denoted by a green marker in the figure. This observation supports our claim that our
framework is robust to imperfections in hyperparameter tuning. Note that we have used different values of E;;, and
E¢ 1, in Figure[T]in order to clearly portray the incremental impact of coordinated learning on mean driver earnings per
day.

5.2.4 Impact of Driver Supply

We next answer the question: what is an appropriate number of drivers to fulfill the ride demand? To study this question,
we vary the driver supply in the range [1000, 6000], where the units are individual drivers. Given a fixed supply size,
we plot the ratio of the number of successful driver waits resulting into passenger rides to the number of unsuccessful
driver waits while taking into account the overall demand fulfillment. When the number of drivers is small compared to
the demand, the drivers should have an easier time finding a passenger. On the other hand, a city saturated with drivers
should result in a higher number of unsuccessful driver waits. In Figure 5] we observe that the framework validates
our expectations. The “warm-up” period described in Figure [2] causes underestimation of demand fulfillment while
simultaneously, it causes overestimation of the number of unsuccessful driver waits. This experiment provides evidence
that over 939%|demand of New York City can be fulfilled by about 5,000 drivers. Note that in September 2015, New

“Note that there is no overlap between the independent and the coordinated learning phases in the lower triangle of Figure E| when
Err +FEcr < E.

SExcluding the warm-up interval from the analysis improves the demand fulfillment to 96%.
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Figure 5: Impact of supply size on the ease of finding a passenger on a representative day.

York City had over 13,500 operational taxicab medallions [31]. It also justifies our decision to use 5,000 drivers in most
experiments described in this work.

5.2.5 Impact of platform objectives

So far, our experiments focused on the MAXEARNINGS problem. A natural question is: should a platform optimize
driver dispatches to maximize their earnings or to maximize demand fulfillment? Note that while maximizing the
demand fulfillment might help retain customers over a longer-term, it can be detrimental to drivers’ earnings. To solve
MAXFULFILLMENT (see Section [3)), the framework rewards (resp. penalizes) a successful passenger pickup (resp.
unsuccessful wait) by +1 (resp. -1) net reward. Figure [6] depicts that mean driver earnings per passenger ride can
be over a $1 lower in a policy optimized for maximizing demand fulfillment relative to one optimized for earnings.
The additional rides covered by the solution to MAXFULFILLMENT may direct drivers to sub-optimal locations and
compromise their future earnings for the day. As the supply increases over the minimum number of required drivers,
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Figure 6: Differential impact of platform objectives. Left Y-axis: Driver earnings per passenger ride with 90%
confidence interval. Right Y-axis: % Demand fulfillment for both objectives on a representative day.
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Figure 7: Earnings advantage of the strategic drivers over the naive drivers on a representative day.

the two objectives converge while a statistically-significant difference in the driver earnings per ride persists. Note that
higher rewards/penalties while solving MAXFULFILLMENT result in larger divergence between the two objectives.

5.2.6 Advantage of strategic behavior

Next, we address the question: does our model provide consistently higher earnings for all the drivers? To explore this,
we model the taxi driver population of the city as comprised of strategic drivers who follow the model recommendations
and naive drivers who act upon heuristics learned via experience. We expect the mean earnings of drivers to decrease as
the number of strategic drivers on the platform increases. While modeling a naive driver, we assume that taxi drivers,
over time, learn the popular spots in the city where they are more likely to find a passenger. If they are unable to locate
passengers reasonably quickly in other parts of the city, they head back to the popular spots. We designate 15 zones as
popular zones based on the historical demand data. Furthermore, we assume that an idle naive driver looking for a
passenger decides to head back to one of the popular zones with a fixed probability of 0.25. Upon choosing to relocate,
the naive driver picks the target popular zone with a probability inversely proportional to its distance from the current
location.

In Figure |7} we plot the earnings of the two categories of drivers while varying the percentage of strategic driversﬂ
As expected, an increase in the number of strategic drivers, causes their individual earnings to decline. Overall, the
strategic drivers not only earn more than the naive drivers, but also the variance in their earnings is significantly lower.
Thus, our framework is envy-free i.e., drivers at same location and time do not envy each other’s future earnings.

5.2.7 Model generalizability
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Figure 8: Model robustness: Baseline model (enclosed within a black box at origin) is deployed on other Tuesdays.

In this section, we explore the question of model generalizability: does our model perform well when deployed on days
with considerably different supply-demand conditions compared to the day it was trained on? We cross-validate our
model by evaluating the policy of a trained model on different days.

For illustrative purposes, we choose as baseline — my — a model trained to satisfy the demand of 288,000 rides observed
on the fourth Tuesday of September using 7,000 drivers. We test the policy 7(mg) recommended by our baseline model
by deploying it on other Tuesdays of the month. Note that the observed demand, as well as the number of active drivers

5The lower and upper edges of the boxes in Figureindicate quartiles Q1 and Q3 respectively, and the length of whisker is 1.5
times IQR.
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Figure 9: Performance of cDQN and cA2C deep-learning approaches from [14].

might vary on other Tuesdays compared to our baseline model. To capture this potential for change in supply, we vary
the number of simulated drivers during testing in the range [4000, 10000]. In Figure [8} enclosed within a red square box
is an illustration of the generalization error associated with deploying our baseline model’s recommended policy on the
second Tuesday of the month with just 6,000 drivers. Importantly, the policy 7 (mg) now attempts to fulfill an increased
demand of about 7,000 extra rides (Ademand) using 1,000 fewer drivers (Asupply) than it was trained for. To evaluate
its performance in this task, we compare it with a model m., which was explicitly trained to fulfill the demand of the
second Tuesday with exactly 6000 drivers. Thus, we compute the baseline policy’s generalization error as

FT(my) — F7 (mo)
F(my) ’

%generalization error =

where 77 (m) denotes the demand fulfillment (%) of the model m.

Figure 8] shows that our framework generalizes well to perturbations in both supply and demand. We also observe that
decreasing the number of drivers excessively impacts harms its generalization performance. As a result, we recommend
deploying models trained with a reasonably higher number of drivers than minimally required so that they generalize
better in cases of varying demand. For brevity, we have presented a single illustrative example here; the generalizability
result holds true across all the models.

5.2.8 Comparison with baselines

A major challenge in comparative studies in this domain is the lack of reproducibility due to proprietory datasets and
simulators. To the best of our knowledge, although [14]] uses coordinated deep reinforcement learning approach, it is
most similar to ours with respect to modeling assumptions. In the absence of the Didi Chuxing’s proprietary driver
simulator and datasets direct comparison of our works is impossible. We make an effort to compare our approaches by
re-implementing their deep reinforcement learning based algorithms (cDQN and cA2C) with minimal modifications to
fit our setting which computes future driver distributions based on simulating passenger pickups and dropoffs, instead
of predicting them using proprietary models.

Moreover, in [[14]], the authors do not train the neural network from its randomly initialized state. Instead, they initialize
the network based on pre-trained value networks based on historical means from the aforementioned simulator. As it is
a standard practice in reinforcement learning to train the networks from their random initialization state and due to the
unavailability of such pre-trained networks, our implementations attempt to learn from scratch.

Figure [0 shows mean driver earnings per day over the course of model training. As expected, even after extensive
hyperparameter tuning, the baselines failed to learn meaningful strategies, with driver earning net negative rewards
of -$20 over a day. A deeper evaluation of the baselines showed that the neural network always recommended a wait
action in every zone throughout the day. In the absence of a pre-trained value network, we suspect that the proposed
algorithms are unable to explore the policy space effectively to learn the policies from scratch. We postulate that reward
sharing assumption in these algorithms results in superficial coordination behavior within zones causing the network to
fail to learn in a more realistic scenario comprising actual passenger pickups and dropoffs.

Our implementations of contextual DQN (cDQN) and contextual actor-critic (cA2C) are publicly available at [19]. Our
experience with training the neural network models in these baselines provide a renewed appreciation of the complexity
of required hyperparameter tuning in order to achieve maximum performance, in comparison with a simple yet robust
approach proposed in our work.
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6 Conclusions

In this paper, we studied the problem of maximizing earnings of drivers employed by ride-sharing platforms like Uber,
Lyft, etc. Our work confirms the idea that even in a high-dimensional and big-data domain such as ride-sharing, the
inherent structure of the data can be leveraged to develop a simple, interpretable, fair and highly efficient framework
that aims to achieve this goal. Extensive simulations based on New York City taxi datasets showed that our framework
is easy to calibrate due to its robustness to imperfections in hyperparameter tuning. Our experiments provided evidence
for the differential impact of the platform’s objectives on driver earnings. Finally, we demonstrated that our model
generalizes well to fluctuations in supply and demand. We make available an OpenAl gym environment for comparative
studies.

In the future, we would like to study problems related to the impact of autonomous electric vehicles on ride-sharing
fleets. In that setting, the optimal strategies to match such vehicles to ride requests would have to take into account the
inherent slow battery charging processes. This will bring in a new charge-scheduling aspect to an already multi-faceted
problem.
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