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Abstract—Distance metric learning has attracted much atten-
tion in recent years, where the goal is to learn a distance metric
based on user feedback. Conventional approaches to metric
learning mainly focus on learning the Mahalanobis distance
metric on data attributes. Recent research on metric learning has
been extended to sequential data, where we only have structural
information in the sequences, but no attribute is available.
However, real-world applications often involve attributed sequence
data (e.g., clickstreams), where each instance consists of not
only a set of attributes (e.g., user session context) but also a
sequence of categorical items (e.g., user actions). In this paper,
we study the problem of metric learning on attributed sequences.
Unlike previous work on metric learning, we now need to go
beyond the Mahalanobis distance metric in the attribute feature
space while also incorporating the structural information in
sequences. We propose a deep learning framework, called MLAS
(Metric Learning on Attributed Sequences), to learn a distance
metric that effectively measures dissimilarities between attributed
sequences. Empirical results on real-world datasets demonstrate
that the proposed MLAS framework significantly improves the
performance of metric learning compared to state-of-the-art
methods on attributed sequences.

Index Terms—Distance metric learning, Attributed sequence,
Web log analysis

I. INTRODUCTION

Distance metric learning, where the goal is to learn a
distance metric based on a set of similar/dissimilar pairs of
instances, has attracted significant attention in recent years [1]–
[6]. Many real-world applications from web log analysis to
user profiling could significantly benefit from distance metric
learning.

Conventional approaches to distance metric learning [4],
[7]–[9] focus on learning a Mahalanobis distance metric,
which is equivalent to learning a linear transformation on
data attributes. Recent research has extended distance metric
learning to nonlinear settings using deep neural networks [5],
[10], where a nonlinear mapping function is first learned to
project the instances into a new space, and then the final
metric becomes the Euclidean distance metric in that space.
With the flexibility and powerfulness demonstrated in various
applications, distance metric learning using neural networks
has been the method of choice for learning such nonlinear
mappings [5], [6], [10]–[12].

While some recent research on metric learning has begun
to explore more complex data, such as sequences [6], web
applications often involve the even more complex attributed
sequence, where each instance consists of not only a sequence
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Fig. 1: Metric learning on attributed sequences.

of categorical items but also a set of attributes of numerical or
categorical values. For example, each user browsing session in
a bot detection system can be viewed as an attributed sequence,
with the series of click activities as the sequence and static
context (e.g., browser name, operating system version) as the
attributes. Furthermore, the attributes and the sequences from
the many applications are not independent of each other. For
example, in a web search, each user session is composed of
a session profile modeled by a set of attributes (e.g., type
of device, operating system, etc) as well as a sequence of
search keywords. One keyword may depend on previous search
terms (e.g., “temperature” following “snow storm”) and the
keywords searched may also depend on the attribute device
type (e.g., “nearest restaurant” on “cellphone”).

In this paper, we study this new problem of distance metric
learning on attributed sequences, where the distance between
similar attributed sequences is minimized, while dissimilar
ones become well-separated with a margin. This problem
is core to many applications from fraud detection to user
behavior analysis for targeted advertising. This problem is
challenging since explicit class labels for attributed sequences
are often not available. Instead, only a few pairs of attributed
sequences may be known to be similar or dissimilar. This
problem differs from previous works on metric learning [2],
[3], [7] because we need to go beyond linear transformations
in the attribute feature space while incorporating not only the
structural information in sequences but also the dependencies
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between attributes and sequences. In this work, we propose a
deep learning framework, called MLAS (Metric Learning on
Attributed Sequences), targeting at learning a distance metric
that can effectively exploit the similarity and dissimilarity
between each pair of attributed sequences. Our paper offers
the following contributions:
• We formulate and study the problem of distance metric

learning on attributed sequences.
• We design three main sub-networks to learn the informa-

tion from the attributes, the sequences, and the attribute-
sequence dependencies.

• We design three distinct integrated deep learning archi-
tectures with three main sub-networks.

• We design an experimental strategy to evaluate and com-
pare the distance metric learned by our proposed MLAS
network with various baseline methods.

We organize the paper as follows. We first define our
problem in Section II. We detail the MLAS network design
and the metric learning process in Section III. Next, we present
the experimental methodology and results in Section IV. We
summarize the related work in Section V. We conclude our
findings and discuss future research directions in Section VI.

II. PROBLEM FORMULATION

A. Preliminaries

Definition 1 (Sequence): Given a set of categorical items
I = {e1, · · · , er}, a sequence Sk =

(
α

(1)
k , · · · , α(Tk)

k

)
is an

ordered list of Tk items, where the item at t-th time step α(t)
k ∈

I,∀t = 1, · · · , Tk.
In prior work [13], one common preprocessing step is to
zero-pad each sequence to the longest sequence in the dataset
and then to one-hot encode it. Without loss of generality, we
denote the length of the longest sequence as T . For each k-
th sequence Sk in the dataset, we denote its equivalent one-
hot encoded sequence as: Sk =

(
α

(1)
k , · · · ,α(T )

k

)
, where

α
(t)
k ∈ Rr corresponds to a vector represents the item α

(t)
k

with the l-th entry in α
(t)
k is “1” and all other entries are

zeros if α(t)
k = el, el ∈ I.

Definition 2 (Attributed Sequence): Given an attribute vector
xk ∈ Ru with u attributes, and a sequence Sk ∈ RT×r, an
attributed sequence pk = (xk,Sk) ∈

(
Ru,RT×r

)
is a pair

composed of the attribute vector xk and the corresponding
sequence Sk.
For example, in a flight booking system, one attributed se-
quence represents a booking session by the end user. In this
case, the attribute vector represents the booking session’s pro-
file (e.g., IP address, session duration, etc) while
the sequence consists of the end user’s activities on the
booking webpage. Given a set of n attributed sequences J =
{J1, · · · , Jn}, Sk ∈ RT×r, where T = max{T1, · · · , Tn}.
Each attribute vector is composed of a number of attributes,
where the value of each attribute is in R. The dimension
of attribute value vectors depends on the number of distinct
attribute value combinations.

We further define the feedback as a collection of similar (or
dissimilar) attributed sequence pairs.

Definition 3 (Feedback): Let P = {p1, · · · , pn} be a set
of n attributed sequences. A feedback is a triplet (pi, pj , `ij)
consisting of two attributed sequences pi, pj ∈ P and a label
`ij ∈ {0, 1} indicating whether pi and pj are similar (`ij =
0) or dissimilar (`ij = 1). We define a similar feedback set
S = {(pi, pj , `ij)|`ij = 0} and a dissimilar feedback set D =
{(pi, pj , `ij)|`ij = 1}.
The feedback could be given by domain experts in real-world
applications based on their domain experiences.
An Example of Feedback. In a user behavior analysis appli-
cation, each user visit is depicted as an attributed sequence.
Given two user sessions p1 and p2, domain experts may imply
they are similar by giving the feedback (p1, p2, 0); or imply
they are dissimilar by the feedback (p1, p2, 1).

B. Problem definition

Given a nonlinear transformation function Θ and two at-
tributed sequences pi and pj as inputs, deep metric learning
approaches [5] often apply the Mahalanobis distance function
to the d-dimensional outputs of function Θ as:

DΘ(pi, pj) =
√

(Θ(pi)−Θ(pj))>ΛΛΛ(Θ(pi)−Θ(pj)) (1)

where ΛΛΛ ∈ Rd×d is a symmetric, semi-definite, and positive
matrix. When ΛΛΛ = I, Equation 1 is equivalent to Euclidean
distance [7] as:

DΘ(pi, pj) = ‖Θ(pi)−Θ(pj)‖2. (2)

Given feedback sets S and D of attributed sequences as
per Def. 3 and a distance function DΘ as per Equation 2,
the goal of deep metric learning on attributed sequences is to
find the transformation function Θ : (Ru,RT×r) 7→ Rd with
a set of parameters θ that is capable of mapping the attributed
sequence inputs to a space that the distances between each
pair of attributed sequences in the similar feedback set S are
minimized while increasing the distances between attributed
sequence pairs in the dissimilar feedback set D. Inspired
by [7], we adopt the learning objective as:

minimize
θ

∑
(pi,pj ,`ij)∈S

DΘ (pi, pj)

s.t.
∑

(pi,pj ,`ij)∈D

DΘ (pi, pj) ≥ g
(3)

where g is a group-based margin parameter that stipulates
the distance between two attributed sequences from dissimilar
feedback set should be larger than g. This prevents the dataset
from being reduced to a single point [7].

III. THE MLAS NETWORK ARCHITECTURE

We first design two networks to handle attributed sequence
data. Namely, the AttNet using feedforward fully connected
neural networks for the attributes and the SeqNet using
long short-term memory (LSTM) for the sequences. Next, we
explore three design variations of the FusionNet concerning
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(b) AttNet-centric Design
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(c) SeqNet-centric Design
Fig. 2: Three different FusionNet designs.

the attribute-sequence dependencies. Lastly, the FusionNet
is augmented by MetricNet to exploit the user feedback.

A. AttNet and SeqNet Design

1) AttNet: AttNet is designed using a fully connected
neural network to learn the relationships within attribute data.
In particular, for an AttNet with M layers, we denote the
weight and bias parameters of the m-th layer as W

(m)
A and

b
(m)
A ,∀m = 1, · · · ,M . Given an attribute vector xk ∈ Ru as

the input, with dm hidden units in the m-th layer of AttNet,
the corresponding output is V(m) ∈ Rdm ,∀m = 1, · · · ,M .
Note that the choice of M is task-specific. Although neural
networks with more layers are better at learning hierarchical
structure in the data, it is also observed that such networks
are difficult to train due to the multiple nonlinear mappings
that prevent the information and gradient passing along the
computation graph [14]. The AttNet is designed as:

V(1) = δ
(
W

(1)
A xk + b

(1)
A

)
...

V(M) = δ
(
W

(M)
A V(M−1) + b

(M)
A

) (4)

where δ : Rdm 7→ Rdm is a hyperbolic tangent activation
function.

Given the attribute vector xk ∈ Ru as the input, the first
layer of AttNet uses the weight matrix W

(1)
A ∈ Rd1×u and

bias vector b
(1)
A ∈ Rd1 to map xk to the output V(1) ∈ Rd1

with d1 < u. The V(1) is subsequently used as the input to
the next layer. We denote the AttNet as ΘA : Ru 7→ RdM ,
where ΘA is parameterized by WA and bA, where WA =[
W

(1)
A , · · · ,W(M)

A

]
and bA =

[
b

(1)
A , · · · ,b(M)

A

]
.

2) SeqNet: The SeqNet is designed to learn the depen-
dencies between items in the input sequences by taking ad-
vantage of the long short-term memory (LSTM) [15] network
to learn the dependencies within the sequences.

Given a sequence input Sk ∈ RT×r, we have the parameters
within SeqNet at time step t as:

i(t) = σ
(
Wiα

(t)
k + Uih

(t−1) + bi

)
f (t) = σ

(
Wfα

(t)
k + Ufh

(t−1) + bf

)
o(t) = σ

(
Woα

(t)
k + Uoh

(t−1) + bo

)
g(t) = tanh

(
Wcα

(t)
k + Uch

(t−1) + bc

)
c(t) = f (t) � c(t−1) + i(t) � g(t)

h(t) = o(t) � tanh
(
c(t)
)

(5)

where σ(z) = 1
1+e−z is a logistic activation function, �

denotes the bitwise multiplication, i(t), f (t) and o(t) are the in-
ternal gates of the LSTM, c(t) and h(t) are the cell and hidden
states of the LSTM. For simplicity, we denote the SeqNet
with dS hidden units as ΘS : RT×r 7→ RdS , where ΘS is
parameterized by bias vector set bS = [bi,bf ,bo,bc] and
the weight matrices WS = [Wi,Wf ,Wo,Wc] ∈ R4×dS×r

and recurrent matrices US = [Ui,Uf ,Uo,Uc] ∈ R4×dS×dS .

B. FusionNet Design
One important design in MLAS is the FusionNet (de-

noted as Θ), where the AttNet and SeqNet are connected
together with the goal of producing feature representation out-
puts for the attributed sequences. Based on the possible ways
of connecting the AttNet and the SeqNet, we propose three
FusionNet design variations: (1) balanced, (2) AttNet-
centric and (3) SeqNet-centric. We evaluate the performance
of all three variations in Section IV.

1) Balanced Design (Figure 2a).: The AttNet and
SeqNet are concatenated together and augmented by an ad-
ditional layer fully connected neural network. This additional
layer of fully connected neural network is used to capture the
dependencies between the attributes and the sequences. For
each attributed sequence, we only use the output of SeqNet
after the last time step of the sequence has been processed to
capture the complete information of the sequence. We denote
the balanced design as:

y = V(M) ⊕ h(Tk)

z = δ (Wzy + bz)

where ⊕ represents the concatenation operation, Wz ∈
Rd×(dM+dS) and bz ∈ Rd denote the weight matrix and bias
vector in this fully connected layer, respectively.

2) AttNet-centric Design (Figure 2b).: Here, the se-
quence is first transformed by the sequence network, i.e.,
the function ΘS , and then used as an input of the AttNet.
Specifically, we modify Equation 4 to incorporate sequence
representation as input. Similar to the balanced design, only
the output of SeqNet after processing the last time step of
the sequence is used to capture the complete information. The
modified V

(1)
k is written as:

V(1) = δ
(
W

(1)
A

(
xk ⊕ h(Tk)

)
+ b

(1)
A

)
where the W

(1)
A ∈ Rd1×(u+dS) and b

(1)
A ∈ Rd1 .
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Fig. 3: MLAS network with balanced design. Parameters in the two FusionNet are shared. The feature representations are
used by MetricNet to compute the loss L. The gradient ∇L is used to update all layers.

3) SeqNet-centric Design (Figure 2c).: The output of
AttNet is used as an additional input for SeqNet . Specif-
ically, we modify Equation 5 to integrate attribute representa-
tions at the first time step. The modified h

(t)
k is defined as:

h(1) = o(1) � tanh
(
c(1)

)
+ V(M)

where � denotes the bitwise multiplication. The SeqNet is
conditioned using the information from AttNet.

C. The MetricNet

We present the MetricNet using the proposed balanced
design due to space limitations. In the balanced design (as
shown in Figure 2a), the explicit form of FusionNet can be
written as:

Θ(pk) = ΘA (ΘA(xk)⊕ΘS(Sk)) (6)

Given an attributed sequence feedback instance (pi, pj , `ij),
where pi = (xi,Si) and pj = (xj ,Sj), `ij ∈ {1, 0}. This
input is transformed to Θ(pi) ∈ Rd and Θ(pj) ∈ Rd by the
nonlinear transformation Θ of FusionNet at the first step.

Next, the two outputs of FusionNet are taken by the
MetricNet to calculate the differences between them. The
MetricNet is designed to utilize a contrastive loss func-
tion [16] so that attributed sequences in each similar pair in S
have a smaller distance compared to those in D after learning
the distance metric. The learning objective of MetricNet
can be written as:

L(pi, pj , `ij) =
1

2
(1− `ij)(DΘ)2 +

1

2
`ij{max(0, g −DΘ)}2

(7)
where g is the margin parameter, meaning that the pairs with
a dissimilar label (`ij = 1) contribute to the learning objective
if and only if when the Euclidean distance between them is
smaller than g [16].

For each pair of FusionNet outputs, MetricNet first
computes the Euclidean distance (Equation 2) between them.
Then the contrastive loss is computed using both the Euclidean
distance and the label. We note that the MetricNet can
augment all three designs in the same way. Figure 3 illustrates
the MetricNet with the proposed balanced design.

Algorithm 1 Training the MLAS Network

INPUT: A set of attributed sequences P = {p1, · · · , pn},
a set of feedback as pairwise attributed sequences C =
{(pi, pj , `ij)|pi, pj ∈ P, }, the number of layers M ,
learning rate γ, number of iterations ϑ and convergence
error ε.

OUTPUT: Parameter sets {WA,bA,WS ,US ,bS}.
1: Initialize MLAS network Θ.
2: Pre-train the MLAS network.
3: for each ϑ′ = 1, · · · , ϑ do
4: for each (pi, pj , `ij) ∈ C do
5: //Forward propagation.
6: Calculate Θ(pi) and Θ(pj).
7: Calculate DΘ using Equation 2.
8: Calculate loss Lϑ′(pi, pj , `ij) (Equation 7).
9: if |Lϑ′(pi, pj , `ij)− Lϑ′−1(pi, pj , `ij)|< ε then

10: break
11: end if
12: //Back-propagation.
13: Calculate ∂L

∂Θ .
14: Calculate ∇L.
15: Update network parameters.
16: end for
17: end for

The parameters in both FusionNet and MetricNet are
adjusted using the metric learning presented in Algorithm 1.

IV. EXPERIMENTS

A. Datasets

We evaluate the proposed methods using four real-world
datasets. Two of them are derived from application log files1

at Amadeus [17] (denoted as AMS-A and AMS-B). The
other two datasets are derived from the Wikispeedia [18]
dataset (denoted as Wiki-A and Wiki-B). For each dataset,
we randomly sampled 80% as the training set and 20% as

1Personal identity information is not collected.



TABLE I: Summary of Compared Methods

Method Data Used Short Description Reference

ATT Attributes
Only attribute feedback
is used in the model. [5]

SEQ Sequences
Only sequence feedback
is used in the model. [6]

ASF
Attributes
Sequences

Feedback of attributes and
sequences are used to train
two models separatedly.

[5] + [6]

MLAS-B
Attributes
Sequences

Dependencies

Balanced design using attri-
-buted sequence feedback
to train one unified model.

This Work

MLAS-A
Attributes
Sequences

Dependencies

Attribute-centric design
using attributed sequence
feedback to train one
unified model.

This Work

MLAS-S
Attributes
Sequences

Dependencies

Sequence-centric design
using attributed sequence
feedback to train one
unified model.

This Work

the testing set. The training and testing sets remain the same
across all our experiments.
• AMS-A: We used 58k user sessions from log files of an

internal application from our Amadeus partner company.
Each record has a user profile containing information
ranging from system configurations to office name, and a
sequence of functions invoked by click activities on the
web interface. There are 288 distinct functions, 57,270
distinct user profiles in this dataset. The average length
of the sequences is 18. We use 100 attributed sequence
feedback pairs selected by the domain experts.

• AMS-B: There are 106k user sessions derived from
application log files with 575 distinct functions and
106,671 distinct user profile. The average length of the
sequences is 22. Domain experts select 84 attributed
sequence feedback pairs.

• Wiki-A: This dataset is sampled from Wikispeedia
dataset. Wikispeedia dataset originated from an online
computation game [18], in which each user is given two
pages (i.e., source, and destination) from a subset of
Wikipedia pages and asked to navigate from the source
to the destination page. We use a subset of ∼2k paths
from Wikispeedia with the average length of the path
as 6. We also extract 11 sequence context as attributes
(e.g., the category of the source page, average time spent
on each page, etc). There are 200 feedback instances
selected based on the criteria of frequent subsequences
and attribute value.

• Wiki-B: This dataset is also sampled from Wikispeedia
dataset. We use a subset of ∼1.5k paths from Wikispeedia
with the average length of the path as 8. We also extract
11 sequence context (e.g., the category of the source
page, average time spent on each page, etc) as attributes.
220 feedback instances have been selected based on the
criteria of frequent sub-sequences and attribute values.

B. Compared Methods

We validate the effectiveness of our proposed MLAS solu-
tion compared with state-of-the-art baseline methods. To well
understand the advancements of the proposed methods, we use
baselines that are working on only attributes (denoted as ATT)
or sequences (denoted as SEQ), as well as methods without
exploiting the dependencies between attributes and sequences
(denoted as ASF) .

1. Attribute-only Feedback (ATT) [5]: Only attribute feed-
back is used in this model. This model first transforms fixed-
size input data into feature vectors, then learns the similarities
between these two inputs.

2. Sequence-only Feedback (SEQ) [6]: Only sequence feed-
back is used in this model. This model utilizes a long short-
term memory (LSTM) to learn the similarities between two
sequences.

3. Attribute and Sequence Feedback (ASF) [5] + [6]: This
method is a combination of the ATT and SEQ methods as
above, where the two networks are trained separately using
attribute feedback and sequence feedback, respectively. The
feature vectors generated by the two models are then concate-
nated.

4. Balanced Network Design with Attributed Sequence
Feedback (MLAS-B): This is the balanced design model
(Section III-B1) using attributed sequence feedback to train
one unified model.

5. AttNet-centric Network Design with Attributed Se-
quence Feedback (MLAS-A): This is the AttNet-centric
design (Section III-B2) using attributed sequence feedback to
train one unified model.

6. SeqNet-centric Network Design with Attributed Se-
quence Feedback (MLAS-S): This is the SeqNet-centric
design (Section III-B3) using attributed sequence feedback to
train one unified model.

C. Experimental Settings

In this section, we present the settings for performance
evaluation and parameter studies.

1) Network Initialization and Training: Initializing the
network parameters is important for models using gradient
descent based approaches [19]. The weight matrices WA in
ΘA and the WS in ΘS are initialized using the uniform
distribution [20], the biases bA and bS are initialized with
zero vector 000 and the recurrent matrix US is initialized using
orthogonal matrix [21]. We use one hidden layer (M = 1)
for AttNet and ATT in the experiments to make the training
process easier.

After that, we pre-train each compared method. Pre-training
is an important step to initialize the neural network-based
models [19]. Our pre-training uses the attributed sequences
as the inputs for FusionNet, and use the generated feature
representations to reconstruct the attributed sequence inputs.
We also pre-train the ATT and SEQ networks in a similar
fashion that reconstruct the respective attributes or sequences.
We utilize `2-regularization and early stopping strategy to
avoid overfitting. Twenty percents of feedback pairs are used
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Fig. 4: The effectiveness of using feedback. Using feedback could boost performance of all methods. The three methods
we proposed (MLAS-B/A/S) are capable of exploiting the information of attributes, sequences, and more importantly, the
attribute-sequence dependencies to outperform other methods.
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Fig. 5: Performance with varying clustering parameters. Clustering results using the feature representations produced by MLAS
are the best among the compared methods.

in the validation set. We choose ReLU activation function [22]
in our AttNet to accelerate the stochastic gradient descent
convergence.

2) Performance Evaluation Setting.: We evaluate the per-
formance by using the feature representations generated by
each method for clustering tasks. The feature representations
are generated through a forward pass.

Clustering tasks have been widely used in distance met-
ric learning work [1], [7]. In this set of experiments, we
use HDBSCAN [23] clustering algorithm. HDBSCAN is a
deterministic algorithm, which gives identical output when
using the same input. We measure the normalized mutual
information (NMI) [24] score. The maximum NMI score is
1. Specifically, we conduct the below two experiments:

1. The effect of feedback. We compare the performance
of the clustering algorithm using the feature representations
generated by FusionNet before and after incorporating the
feedback.

2. The effect of varying parameters in the clustering al-
gorithm. After the metric learning process, we evaluate the
feature representations generated by all compared methods
under various parameters of the clustering algorithm.

3) Parameter Study Settings.: We evaluate the effect of out-
put dimension (i.e., the dimension of the hidden layer), which
affects the model size and the performance of downstream
mining algorithms.

The other parameter we evaluate is the relative importance
of attribute data (denoted as ωA) in the attributed sequences.
The pre-training phase is essential to gradient descent-based
methods [19]. The relative importance of attribute data and
sequence data are represented by the weights of ΘA and ΘS ,

denoted as ωA and ωS , where ωA + ωS = 1. The intuition is
that with one data type more important, the other one becomes
relatively less important.

D. Results and Analysis

1) Effect of Feedback.: We present the performance com-
parisons in clustering tasks using feature representations gen-
erated using the parameters of all methods in Figure 4. Two
sets of feature representations are generated, the first set is gen-
erated after the pre-training (denoted as without feedback), the
other set is generated after the metric learning step (denoted as
with feedback). We fix the output dimension to 10, minimum
cluster size to 100 and ωA = 0.5 (for MLAS-B/A/S). We
have observed that the feedback can boost the performance
of all methods, and the three methods (MLAS-B/A/S)
proposed in this work are capable of outperforming other
methods. Also, we also observe that the proposed three MLAS
variations have better performance compared to the ASF,
which also uses the information from attributes and sequences
but without using the attribute-sequence dependencies.

Based on the above observations, we can conclude that the
performance boost of our three architectures (MLAS-B/A/S)
is a result of taking advantages of attribute data, sequence data,
and more importantly, the attribute-sequence dependencies.

2) Performance in Clustering Tasks.: The primary param-
eter in HDBSCAN is the minimum cluster size [23], denoting
the smallest set of instances to be considered as a group.
Intuitively, while the minimum cluster size increases, each
cluster may include instances that do not belong to it and
the performance decreases. Figure 5 presents the results with
the output dimension is 10 and ωA = 0.5.
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Fig. 6: The effect of output dimensions (higher is better). Output dimension is an important factor for (1) the size of model;
and (2) the cost of computations in downstream data mining tasks. Using the feature representations produced by MLAS can
constantly achieve the best performance among the compared methods.
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Fig. 7: The effect of pre-training parameters in MLAS. The pre-training parameter ωA decides the relative importance of
attributes in the model. We observe that MLAS-A is capable of achieving the best performance on AMS-A and AMS-B
datasets while MLAS-S has the best performance on Wiki-A and Wiki-B datasets.

Compared to the best baseline method ASF, MLAS-A
achieves up to 18.3% and 25.4% increase of performance
on AMS-A and AMS-B datasets, respectively. On Wiki-A
and Wiki-B datasets, MLAS-S is capable of achieving up
to 26.3% and 24.8% performance improvement compared to
ASF, respectively. We further confirm that MLAS network
is capable of exploiting the attribute-sequence dependencies
to improve the performance of the clustering algorithm with
various parameter settings.

3) Output Dimensions.: We evaluate MLAS under a wide
range of output dimension choices. The number of output
dimensions relates to a variety of impacts, such as the usability
of feature representations in downstream data mining tasks. In
this set of experiments, we fix the minimum cluster size at 50,
ωA = 0.5 and vary output dimensions from 10 to 100. From
Figure 6 we conclude that our proposed approaches outper-
form the baseline methods with various output dimensions.

In particular, compared to the baseline method with the
best performance, namely ASF, MLAS-A achieves 20.7%
improvement on average on AMS-A dataset and 19.4% im-
provement on average on the AMS-B dataset. When evaluated
using Wiki-A and Wiki-B datasets, MLAS-S outperforms
ASF by 20.8% and 10.6% on average.

4) Pre-training Parameters: We evaluate MLAS under
different pre-training parameters in this set of experiments.

ATT and SEQ are not included in this set of experiments since
they only utilize one data type. Output dimension is set to
5. Minimum cluster size is set at 50. Figure 7 presents the
results under different pre-training parameters. This confirms
that our proposed MLAS method is not sensitive to different
pre-training parameters.

We notice the performance differences among the three
MLAS architectures in the above experiments, where MLAS-
A has the best performance on AMS-A and AMS-B datasets,
and MLAS-S has the best performance on Wiki-A and Wiki-
B datasets. We conclude this difference may relate to the
datasets.

E. Case Studies

In Figure 8, we apply t-SNE [25] to the feature representa-
tions generated by all compared methods. The set of feature
representations without feedback is generated after the pre-
training phase and before the distance metric learning process.

Our goal is to demonstrate the differences in the feature
space of each method. We randomly select data points from
both training and testing sets with a ground truth of two
groups. We have the following findings:

1. The methods using either attribute data (ATT) or sequence
data (SEQ) only cannot use the attributed sequence feedback.
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Fig. 8: Plots of the feature representations. The MLAS is capable of exploiting the feedback and separating the instances from
two different groups while keeping the instances from the same group together.

2. The method using both attributes and sequences sepa-
rately (ASF) is capable of better separating the two groups
than the methods using single data type (ATT and SEQ).

3. Our methods using attributed sequence feedback as a
unity to train unified models (MLAS-B/A/S) are capable of
separating the two groups the furthest, and thus achieve the
best results.

These observations confirm that all three designs of MLAS
can effectively learn the distance metric and result in better
separation of two groups of data points.

V. RELATED WORK

A. Distance Metric Learning

Distance metric learning, with the goal of learning a dis-
tance metric from pairs of similar and dissimilar examples, has
been extensively studied [2]–[9], [26]. The common objective
of these tasks is to learn a distance metric so that the distance
between similar pairs is reduced while the distance between
dissimilar pairs is enlarged. Distance metric learning has
been used to improve the performance of mining tasks, such
as clustering [3], [7], [8]. Many application domain require
distance metric learning, including patient similarity in health
informatics [2], face verification in computer vision [4], [5],
[9], image recognition [27] and sentence semantic similarity
analysis [6], [26]. Recent works on distance metric learning
using deep learning techniques have been using using siamese
neural networks with two identical base networks in various
supervised tasks [5], [6], [27], [28]. However, each of these
works [5], [6], [27] focuses on a domain-specific problem with
a homogeneous data type. Thus, the dependency challenge
remain unexplored in these works.

B. Deep Learning

Deep learning has received significant interests in recent
years. Deep learning models are capable of feature learn-

ing with varying granularities. Various deep learning models
and optimization techniques have been proposed in a wide
range of applications from image recognition [29], [30] to
sequence learning [26], [31]–[34]. Many applications involve
the learning of a single data type [26], [31]–[33], while
some applications involve more than one data type [29], [30].
Several works [5], [6], [26] focus on deep metric learning
using deep learning techniques. However, none of these works
address the deep metric learning of more than one type of data
nor the dependencies between different types of data.

VI. CONCLUSION AND FUTURE WORK

In this work, we focus on the novel problem of distance
metric learning on attributed sequences. We first identify
and formally define this prevalent data type of attributed
sequences and the problem. We then propose one MLAS
with three solution variations to this problem using neural
network models. The proposed MLAS network effectively
learns the nonlinear distance metric from both attribute and
sequence data, as well as the attribute-sequence dependencies.
In our experiments on real-world datasets, we demonstrate the
effectiveness of our MLAS network over other state-of-the-art
methods in both performance evaluations and case studies.

The prevalence of attributed sequence data and the broad
spectrum of real-world applications using attributed sequences
motivate us to keep exploring this new direction of research.
Given the performance boost using attributed sequences and
different variations of neural network models, future research
could focus on exploring different design choices of the
MetricNet. It would also be interesting to explore the design
of alternative neural network models as the components within
MLAS, such as AttNet and SeqNet. Another research
topic would be the theoretical analysis of the performance
differences among the three MLAS network architectures.
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