
Multi-step LRU: SIMD-based Cache Replacement 
for Lower Overhead and Higher Precision 

Hiroshi Inoue  
IBM Research - Tokyo 

Tokyo, Japan  
inouehrs@jp.ibm.com

 
Abstract—A key-value cache is a key component of many 

services to provide low-latency and high-throughput data accesses 
to a huge amount of data. To improve the end-to-end performance 
of such services, a key-value cache must achieve a high cache hit 
ratio with high throughput. In this paper, we propose a new cache 
replacement algorithm, multi-step LRU, which achieves high 
throughput by efficiently exploiting SIMD instructions without 
using per-item additional memory (LRU metadata) to record 
information such as the last access timestamp. For a small set of 
items that can fit within a vector register, SIMD-based LRU 
management without LRU metadata is known (in-vector LRU). It 
remembers the access history by reordering items in one vector 
using vector shuffle instruction. In-vector LRU alone cannot be 
used for a caching system since it can manage only few items. Set-
associative cache is a straightforward way to build a large cache 
using in-vector LRU as a building block. However, a naive set-
associative cache based on in-vector LRU has a poorer cache hit 
ratio than the original LRU although it can achieve a high 
throughput. Our multi-step LRU enhances naive set-associative 
cache based on in-vector LRU for improving cache accuracy by 
taking both access frequency and access recency of items into 
account while keeping the efficiency by SIMD instructions. Our 
results indicate that multi-step LRU outperforms the original 
LRU and GCLOCK algorithms in terms of both execution speed 
and cache hit ratio. Multi-step LRU improves the cache hit ratios 
over the original LRU by implicitly taking access frequency of 
items as well as access recency into account. The cache hit ratios 
of multi-step LRU are similar to those of ARC, which achieves a 
higher a cache hit ratio in a tradeoff for using more LRU metadata. 

Keywords—Cache replacement, LRU, SIMD 

I. INTRODUCTION 
To provide low-latency and high-throughput accesses for a 

huge amount of data, key-value caches, such as Memcached [1] 
and Redis [2], play a critically important role in many of today’s 
services. Such key-value caches typically use least recently used 
(LRU) or its approximation (pseudo-LRU) as a replacement 
algorithm. For example, Memcached maintains a doubly linked 
list for key-value items in each size class to remember the access 
history. Redis uses a pseudo-LRU; it records the last access 
timestamp for each item and evicts the LRU item among three 
randomly selected items. Fan et al. [3] showed that using a 
CLOCK-based pseudo-LRU, which uses only one bit per item 
as LRU metadata to show the item is recently used, in 
combination with other improvements, can significantly 
enhance the overall performance of Memcached. LRU based on 

 
1 This is an extended version of the same-titled paper published in 
2021 IEEE International Conference on Big Data. 

a doubly link list uses two pointers (16 bytes for 64-bit systems) 
for each item to maintain the information necessary for 
replacement. This memory overhead due to LRU metadata is not 
negligible, especially when the average size of cached items is 
small and the number of items becomes huge, as is often 
observed in real-world services. If we can reduce the memory 
overhead for LRU metadata, we can cache more items and 
improve the cache hit ratio. Hence pseudo-LRU policies often 
aim to reduce memory overhead due to per-item LRU metadata. 
For example, CLOCK uses only one bit per item for LRU 
metadata. Also, the overhead in CPU time for maintaining the 
linked list is not negligible for achieving high throughput. 
Pseudo-LRU algorithms also tend to reduce the CPU time for 
cache replacement compared with the exact LRU. 

If the size of each item to cache is large, e.g., as in an 
operating system’s memory subsystems that manage memory 
pages, it is reasonable to use more LRU metadata for achieving 
higher cache hit ratios compared with the LRU by considering 
access frequency as well as access recency [4, 5]. These 
algorithms typically use additional LRU metadata to remember 
the recently evicted items. For example, Adaptive Replacement 
Cache (ARC) [5] keeps two separated linked lists: one for items 
used only once and the other for items accessed twice or more. 
ARC keeps keys (page IDs) in two linked lists twice as many as 
the memory pages the system can cache. Such an approach can 
be rationalized for caching an object that is much larger than the 
key. However, such overheads may be excessive for caching a 
huge number of small objects, although the improved accuracy 
is attractive for any caching system. 

In this paper1, we propose a cache replacement algorithm 
called multi-step LRU that can achieve lower runtime overheads 
in both memory and CPU while achieving higher precision. 
Multi-step LRU 1) does not use per-item LRU metadata for 
maintaining access history, 2) can efficiently exploit SIMD 
(vector) instructions, and 3) improves the cache hit ratio 
compared to LRU by prioritizing frequently accessed items as 
well as recently accessed items. In this paper, we assume that 
the key-value cache is used to maintain key-value pairs, each of 
which consists of a key and a pointer to the cached object 
assigned to the key. Hence, we assume the size of both key and 
value are fixed to 64 bits regardless of the actual size of the 
objects to cache. Figure 1 shows an example of expected use 



cases with a query that hits in the cache (blue arrows) and 
another query that does not (orange arrows). 

First, we briefly explain SIMD-based LRU management by 
Wang et al. [6], which we refer as in-vector LRU in this paper. 
It is an efficient implementation to do the exact LRU 
replacement for a small number of items that can fit in one vector 
register without using per-item LRU metadata. This is a building 
block of our multi-step LRU algorithm. In-vector LRU 
remembers the access history information by ordering items in 
one vector from the most recently used (MRU) item to the LRU 
item. Keeping items in order of recent accesses is generally too 
costly to do with a large number of items. However, for a small 
number of items that can fit within one vector register, we can 
efficiently reorder items by using permute (shuffle) instructions, 
which can rearrange items in one vector.  

In-vector LRU alone cannot be used for a caching system 
since it can manage only few or several items. We can build a 
large caching system based on in-vector LRU for P items by 
using a P-way set-associative cache. Here, P is the number of 
items that one SIMD instruction can handle, e.g., P = 4 for 64-
bit keys and Intel’s AVX instruction set, which uses 256-bit 
vector registers. In a P-way set-associative cache, each item is 
assigned to a set on the basis of the hash value of the key. Each 
set consists of P items; hence, in-vector LRU can be used to find 
the item to evict when adding a new item to the set that is already 
full. Although this P-way set-associative cache is quite efficient 
in terms of processing performance, it suffers from more cache 
misses than LRU or pseudo-LRU algorithms.  

We propose multi-step LRU for improving the cache hit ratio 
while maintaining the efficiency of in-vector LRU, proposed 
multi-step LRU approximates LRU to manage replacement 
within each set consisting of more than P items. We assume each 
set consists of M × P items (or M vectors). The first vector 
contains MRU items, and the M-th vector contains LRU items. 
Within a vector, items are also ordered from the MRU to LRU 
ones. Hence, the last item of the M-th vector is the LRU item in 
the set and to be evicted next. With multi-step LRU, a newly 
added item is placed at the first (MRU) position of the M-th 
vector, instead of the MRU position of the first vector. Since we 
add the new item in the last vector and evict the LRU item from 
the same vector, we need to update only this M-th vector, 
whereas exact LRU requires updating all M vectors. For a get 
request, we scan all vectors to find the requested item. If an item 

is found in the i-th vector, for example, we move this item to the 
MRU position of the i-th vector instead of the MRU position of 
the first vector to avoid updating multiple vectors. If the found 
item is already at the MRU position on the i-th vector, we swap 
this item with the LRU item of the (i-1)-th vector. Hence, a 
newly added item needs to be frequently accessed to be placed 
in the first vector, whereas any item can go directly to the MRU 
position of the entire set with only one access in exact LRU. 
Multi-step LRU is efficient because we only need to modify one 
vector or swap items between two vectors for both put and get 
operations. Moreover, with this multi-step LRU only frequently 
accessed items are placed in vectors other than the last one; 
items in the non-last vectors are not evicted from a cache by an 
item that is accessed only once. This characteristic makes it 
possible to protect frequently accessed items from being evicted 
by items, each of which is accessed only once without explicitly 
counting the number of accesses for each item. Hence, this very 
simple and efficient algorithm inherently prioritizes frequently 
accessed items over items accessed only once without explicitly 
managing them separately, as with ARC. 

Figure 2 summarizes the tradeoffs between cache precision 
and execution speed for various replacement algorithms. 

II. RELATED WORK 

A. Cache Replacement Algorithms 
Because of its importance, cache replacement has been 

studied for various purposes such as database management 
systems, networking software, and storage systems. Therefore, 
many replacement algorithms have been proposed. Simple 
replacement algorithms include random, FIFO (first-in first-out), 
LFU (least frequently used), and LRU.  

To improve these simple algorithms in both runtime 
efficiency and cache precision, many enhanced variants have 
been developed and widely used. For example, CLOCK is one 
of the most well-known LRU variants. CLOCK is much more 
efficient at runtime than the LRU since it uses a global iterator 
(a hand) and a per-item one-bit flag to show the recent use as 
LRU metadata. To determine the item to evict, it iterates items 
and evicts the first item without the flag. There are many 
algorithms that further enhance CLOCK, such as CAR [7], 
CLOCK-Pro [8] and generalized CLOCK (GCLOCK) [9]. 
GCLOCK is a widely used algorithm to improve the cache hit 
ratio by using a reference count instead of one-bit flag. The 

  

 
Figure 2. Execution speed and precision for various replacement 
algorithms. Our multi-step LRU achieves both high speed and 
high precision.  

 

exact LRU

2Q [4], ARC [5]

GCLOCK [9]

in-vector LRU [6]
multi-step LRU

(section III.B)

cache precision better

ex
ec

ut
io

n 
sp

ee
d

fa
st

er
siz

e 
of

 L
RU

 m
et

ad
at

a
sm

al
le

r

 
Figure 1. Expected use cases of multi-step LRU for key-value cache that manages pointer 
to cached objects. Blue arrows show query that hits in cache and orange arrows show 
query that does not hit cache.  

 

key-
value 
cache1) lookup object

for key (get request)

backing 
storage
(e.g. DB 
server)

2) lookup backing storage for key
if it is not found in cache

cached objects
in memory

2) return pointer to
cached object from
key-value cache

3) cache object loaded from DB
and put {key, pointer to the cached
object} in key-value cache

1) lookup object 
for key (get request)

4) return pointer to
cached object



reference count is incremented for each get request to the item. 
For eviction, GCLOCK iterates items and decrements the 
reference count until it finds an item whose reference count is 
zero. By using a multi-bit counter instead of a one-bit flag, 
GCLOCK can avoid evicting frequently used items as a tradeoff 
for additional memory consumption for LRU metadata. Our 
multi-step LRU are more memory efficient than CLOCK-based 
algorithms since we do not need any per-item LRU metadata. In 
this study, we use GCLOCK as a baseline for performance 
comparisons since it is one of the most representative of the 
CLOCK variants. 

LRU-2 [10] is a well-known LRU variant, which can 
improve the cache hit ratio. LRU-2 (or LRU-k in general) 
determines the item to evict based on the second (k-th) most 
recent access instead of the most recent access, which the 
original LRU uses. The algorithms 2Q [4], MQ [11], and ARC 
[5] improve upon LRU-2 in both implementation complexity 
and cache precision. Our multi-step LRU can achieve similar 
gains in the improved cache hit ratio compared with the original 
LRU, as with ARC, while the computation overheads in 
memory and CPU are much smaller with ours. In experiments, 
we evaluate ARC as a replacement algorithm that yields the 
highest precision and compared it with our multi-step LRU. 

B. Set-associative Cache 
For implementing cache replacement in hardware for a 

processor’s cache memory, a set-associative cache is often used 
to reduce the hardware implementation cost [12]. In a hardware 
cache memory, each key-value item to be cached consists of the 
memory address as the key and a small chunk (e.g. 64 byte) of 
data stored in the memory as the value. 

In a set-associative cache whose size is N items in total, these 
items are divided into equal-sized sets, and each item is assigned 
to one of the sets on the basis of the hash value of the key. When 
the size of a set is P items, the cache is called a P-way set-
associative cache. Cache replacement is done within each set; 
when inserting a new item into a P-way set-associative cache, 
one of the existing P items is evicted to make room for the new 
item. Hence, if we have a cache replacement algorithm for P-
items, we can build a large set-associative cache using the 
replacement algorithm by assigning each key onto a set based 
on the hash value of the key. Since only P items in the same set 
are the candidates for eviction, the cost for implementing cache 

replacement is drastically reduced by using small P in a tradeoff 
for increased cache misses. If one set becomes full and a new 
item comes into this set, one of the existing items must be 
evicted, even if there are unused spaces in other sets. Using 
smaller P increases the risk of such cache misses (called conflict 
miss). When multiple hot items are assigned to the same set, they 
make each other frequently evicted, which may increase the 
overall number of cache misses. When P = N, i.e., the entire 
cache consists of only one huge set, the cache is called a fully 
associative cache. When P = 1, the cache is called a direct-
mapped cache. Hardware designers need to decide the 
associativity between the fully associative cache and direct-
mapped cache based on the tradeoff of hardware cost and hit 
ratio. On today’s high-performance processors, the cache 
memory implementation typically uses a 2-way to 16-way set-
associative cache to balance implementation cost and 
performance. Within each set, a hardware-friendly pseudo-LRU 
algorithm similar to CLOCK is often used. In this paper, we used 
a set-associative cache implemented in software to efficiently 
exploit the vector registers, the size of which is limited by 
hardware. 

III. OUR REPLACEMENT ALGORITHM 
In this section, we present our cache replacement algorithms. 

First, we briefly explain in-vector LRU [6], an algorithm to 
implement exact (i.e. not approximate) LRU for a small number 
(P) of key-value items without per-item LRU metadata. Then 
we explain a set-associative cache with our proposed multi-step 
LRU for constructing a large cache using in-vector LRU. 

A. In-vector LRU for Small Set 
We explain in-vector LRU [6] for four items (P = 4), e.g., 

items with a 64-bit key using 256-bit vector registers, although 
the algorithm is not limited to this specific configuration. We 
tested multi-step LRU with P = 8 as well as P = 4 in the 
evaluations. 

Figure 3 illustrates an overview of the put and get operations.  
We also show a pseudo-code for these operations using Intel’s 
intrinsics [13] in supplemental material. We consider a case 
having P key-value items in memory; P keys are stored in a 
contiguous memory region to efficiently exploit SIMD 
instructions. P values are also stored in another contiguous 
region. These P keys (and associated P values) are sorted; the 

 
Figure 3. Overview of in-vector LRU with four items (P = 4) for the put and get operations. Four keys are stored in a contiguous memory region and 
reordered in order of recent uses. Associated values are also rearranged in the same order.  

keyA keyB keyC keyD

valA valB valC valD

least recently
used item

most recently
used item

pattern table
pattern[0] = …
pattern[1] = …
…
pattern[p-1] = …

put keyX

1) evict least recently used item {keyD, valD}
2) add new item {keyX, valX} and reorder using permutation

keyB keyA keyC keyD

valB valA valC valD

1) look up pattern 
table by using the current 
position of the found item

2) reorder keys and values 
using vector permutation 
with the loaded pattern

get keyB

keyX keyA keyB keyC

valX valA valB valC



first key in a vector is the MRU one and the last (P-th) key is the 
LRU one, as shown in Figure 3.  

When a get query arrives, a get operation checks all P keys 
by using SIMD compare instructions. If it hits any of the keys, 
the get operation returns the associated value then rearranges 
keys and values to move this key-value item to the first (MRU) 
position. For this, we use a vector permute instruction for 
rearranging elements within a vector. A get operation consists 
of the following steps: 

1) Load P keys from memory into a vector register. 
2) Check P keys against the query using SIMD compare. 
3) If no key hits, the operation ends as a cache miss.  
4) When the i-th key hits, look up the in-memory constant table 
of permutation patterns using i as the index. 
5) Move the i-th key into the MRU position by a permutation 
instruction with the pattern loaded in step 4 and store the 
rearranged keys in the vector register into the original memory 
location. 
6) Load P values into a vector register, rearrange them using 
the same pattern, and store the values back into memory. 
7) Return the result (a cache hit). 

To use in step 4, we create a small constant table 
(patternTable in pseudo code) in memory to determine the 
permutation pattern efficiently. 

A put operation simply evicts the LRU item if the cache is 
full and inserts the new item. Since the last (P-th) item is always 
the LRU item, we do not need to do anything for finding the item 

to evict. The put operation can be simply implemented as 
follows (assuming the cache is full and cache miss is already 
confirmed). 

1) Load P keys into a vector register.  
2) Move the LRU key into the MRU position using permutation. 
3) Replace the LRU key with the new key then store them back 
into memory. 
4) Do steps 1 to 3 for values. 

Before these steps, we check for an empty slot for all vectors. 
If there is an empty slot, we just put the new item there. 

Since rearranging items by vector load, permute, and store 
instructions is much more efficient than rearranging items by 
scalar load and stores, it does not incur significant overhead at 
each get and put operation. The put operation is much simpler 
than in other algorithms since the item to evict is always placed 
at the last position in the vector, and we do not need to scan items 
or access the linked list to find the LRU item.  

We use the vector permute instructions based on a constant 
value fetched from an in-memory constant table to rearrange 
items within a vector. The idea of using a constant table to feed 
the pattern for the permutation instruction is not new. Similar 
techniques using a constant table have been used for decoding 
compressed information such as UTF-8 characters [14] or 
compressed posting lists [15].  

Although in-vector LRU is quite efficient in execution 
performance, the number of items that can be managed by it is 
limited by the width of a vector register; hence, we cannot expect 

 
Figure 4. Overview of multi-step LRU with M = 2 and P = 4 for put and get operations. Only keys are depicted for simplicity; values associated with keys 
also move along with keys.  

 
Figure 5. Overview of multi-step LRU with M = 2 and P = 4 for put and get operations. Only keys are depicted for simplicity; values associated with keys 
also move along with keys.  

 
 

A B C D E F G H
vector1 vector2

set (associativity = 8)

least recently
used entry

most recently
used entry

put X A B C D X E F G

get G

A B C D G E F H

get G

A B C G D E F H get G G A B C D E F H

vector1 is
not modified

vector2 is not modified

vector1 is 
not modified

upgrade since G is already
at MRU position of a vector

get operation of
in-vector LRU for vector2

put operation of
in-vector LRU for vector2

memory layout for key-value items in cache (P = 4, M = 2)

keyA keyB keyC keyD valA valB valC valD

one vector register length

keyE keyF keyG keyH valE valF valG valHL

lock bit (1 byte on memory) for this set
only for parallel implementation

valH keyAL

i-th set (consists of P *M = 8 key-value items and additional lock bit for parallel implementation)(i -1)-th set (i +1)-th set

����



that in-vector LRU alone can be used for realistic caching 
systems even considering the increasing size of the vector 
register on the latest processors. 

B. Set-associative Cache with Multi-step LRU  
A set-associative cache, which is often used to implement 

cache memory of processor hardware, is a straight-forward 
choice to implement a caching system for a large number of 
items using in-vector LRU as a building block. We can use in-
vector LRU if we use P as the size of a set (called associativity). 
However, we observed that a P-way set-associative cache using 
in-vector LRU has a poorer cache hit ratio than exact LRU as a 
tradeoff for faster processing. A method of improving cache 
accuracy with a set-associative cache is to increase the 
associativity. However, increasing the associativity above the 
processors vector length may attenuate the benefit of faster 
processing by using in-vector LRU. Also, a set-associative 
cache based on LRU cannot surpass the precision of the exact 
LRU since the exact LRU is an extreme case of a set-associative 
cache with the associativity equal to the cache size. 

For achieving both low overhead and high precision, we use 
our proposed multi-step LRU algorithm in each set. To increase 
the associativity, each set contains M vectors (M > 1), i.e., M × 
P items. We can use any M, but M = 2 or 4 is a reasonable choice 
to balance the high accuracy and low overhead, as we 
empirically show later. The first vector contains MRU items and 
the last (M-th) vector contains LRU items. The items in each 
vector are sorted in the same order, as explained in the previous 
section. In this section, we use M = 2 and P = 4 for explanation 
(hence, the associativity is 2 × 4 = 8). Figure 4 illustrates an 
overview of multi-step LRU. The figure shows only the key of 
each key-value item to simplify explanation.  

When adding a new item X into a set that is already full, we 
evict the LRU item of the last vector and insert X into the MRU 
position of the last vector (here, vector2) instead of the MRU 
position of the first vector (vector1), i.e., the MRU position of 
the entire set. This can be easily done by merely applying the put 
operation of in-vector LRU for the last vector without modifying 
other vectors. If we apply the exact LRU, we need to place the 
new item in the MRU position of the first vector and modify all 
M vectors. 

To serve a get query on a key (in the figure, G is the key to 
search), we scan all vectors from the first to the last by 
performing the get operation of in-vector LRU. If the query hits 
in a vector, we return the result after rearranging the items within 
the vector. Hence, the found item is moved onto the MRU 
position of the vector but not the MRU position of the first vector. 
In Figure 4, the first get request moves G to the MRU position 
of vector2. As in the case of the put operation, we modify only 
one vector and do not need to update other vectors. If the item 
that matches the query is already at the MRU position of a vector, 
we swap this matched item with the LRU item of the previous 
vector. The second get query makes G be included in vector1 
since G is the MRU item in vector2 when it matches the query. 
We call this an upgrade. In summary, to manage LRU 
replacement, a get operation of multi-step LRU either 1) 
rearranges items within only one vector or 2) swaps two items 
between two neighboring vectors. The third get query finally 
makes G the MRU item of the entire set. In general, we need at 

least (2M-1) requests to the same key to place a new item at the 
MRU position of the entire set. 

To help SIMD instructions work efficiently, the current 
implementation packs all keys and values within a set in a 
contiguous memory region, as shown in Figure 5. 

If a query (e.g. get, put, or delete) for a key comes in, we first 
calculate a hash value for the key by using a (non-cryptographic) 
hash function to assign the key to one of the sets. Then we use 
the above get or put operation for looking up or inserting an item 
for the specified key. For delete, we conduct a vector 
comparison to find the key within the set and invalidate the item 
if found. 

As explained above, multi-step LRU is designed to have a 
low processing cost by limiting the amount of data movements 
per operation. Surprisingly, multi-step LRU yields a much better 
hit ratio than exact LRU in addition to its superior execution 
speed and memory efficiency. In multi-step LRU, only items 
accessed multiple times in a short period can be upgraded. 
Hence, if an item is upgraded, it will not be evicted by a long 
sequence of many items, each of which is accessed only once. 
Therefore, multi-step LRU achieves a gain similar to 
sophisticated replacement algorithms that use separated lists for 
items accessed only once and items accessed twice or more, e.g., 
2Q and ARC. 

C. Parallelizing Multi-step LRU 
On today’s systems with multiple cores, allowing concurrent 

accesses from multiple threads is mandatory for fully utilizing 
system performance. Because our multi-step LRU is based on a 
set-associative cache, parallelizing it for multi-thread processing 
is trivial. In a set-associative cache, each query accesses only 
one set and does not affect other sets. Hence, we can easily 
implement fine-grained locking by first merely locking a set and 
releasing the lock at the last of the query. For locking, we need 
to add additional memory space for a lock within each set, as 
shown in Figure 5. With such fine-grained locking, multiple 
queries can be served concurrently if they work on different sets. 

IV. EVALUATION 
We implemented a caching system with our multi-step LRU 

using AVX2 instructions and evaluated it on an Intel Xeon E5-
2667 v3 processor, which has eight cores running at 3.2 GHz. 
We implemented the program in C++ using Intel’s intrinsics. 
The system ran under Ubuntu 16.04 Linux distribution. We 
compiled all the programs using clang++-10.0 with the –O3 
option. 

To create a query sequence for the evaluations, we used the 
client emulator of Yahoo Cloud Serving Benchmark (YCSB) 
[16] for three different distribution patterns called zipfian, latest, 
and scan. The zipfian (zipf) distribution [17] is suitable for 
analyzing the cache performance for various types of workloads. 
In this distribution, the keys are ranked by their frequency of 
appearing in the sequence, and the relative frequency of the i-th 
item is 1.0 𝑖!⁄ . Here, α is a parameter to determine how the 
distribution is skewed; larger α results in a more skewed 
distribution. The original zipfian distribution uses α=1, but for 
web caching, for example, slightly smaller numbers, e.g., around 
0.7, are observed in real traces [18]. The latest distribution is 



similar to zipfian but the distribution is time evolving; it uses the 
key inserted most recently as the most popular key. The scan 
distribution accesses a range of keys instead of one key. Based 
on the use case shown in Figure 1, for each key in the query 
sequence, we first perform a get operation. If the key is found in 
the cache, we count it as a cache hit. If the key is not found (i.e. 
counted as cache miss), we put a new key-value item for the key 
in the cache. If the cache is already full, we evict one item to 
insert the new item. To focus on cache replacement performance, 
we did not do anything with the object in both cache hit and miss 
cases for all but one experiment. 

In all experiments, we used the number of items in the cache 
to control the cache size regardless of the amount of LRU 
metadata each algorithm uses. If we use the size of memory 
space as the cache size, the benefits of multi-step LRU and in-
vector LRU in terms of cache hit ratio become larger since they 
do not use per-item LRU metadata, hence they can cache a larger 
number of items than other algorithms in the same size of 
memory space. 

A. Performance of In-vector LRU for small set 
We evaluated the execution time and cache hit ratio using a 

very small cache with a capacity of only four key-value items 
(both the key and value are 64 bits) to confirm that in-vector 
LRU can efficiently manage cache replacement for a small 
cache that can fit within one vector. We tested in-vector LRU 
implemented using AVX instructions as well as exact LRU 
based on a link list and GCLOCK. Exact LRU uses two pointers 
(16 bytes) as LRU metadata per cached item, and GCLOCK 
uses four bits per item for a reference counter. In contrast, in-
vector LRU does not require per-item LRU metadata. In the 
evaluated implementation, GCLOCK borrowed four bits from 
the value part of a key-value item, and exact LRU allocated 
additional memory space separately for the linked list. For cache 
lookup, both GCLOCK and exact LRU were implemented using 
SIMD compare instructions, the same as in-vector LRU for fair 
comparisons. 

Figure 6 shows execution times per query for the three 
replacement algorithms using sequences of one million requests 
in the zipfian distribution with 10, 20, or 40 distinct keys, i.e., 
operationcount=1000000 and recordcount=10, 20, or 40 as 
YCSB workload properties. The algorithms were also tested 
using two special cases with the cache hit ratios of 0% (shown 
as all miss) and 100% (shown as all hit). We observed that in-
vector LRU achieved shorter execution time than both 
GCLOCK and exact LRU for most data distributions. GCLOCK 
showed the fastest execution time for the all-hit case. This is 
because GCLOCK merely increments the reference counter for 
the item to manage replacement when a query hits in the cache 
as a tradeoff for higher overhead at cache misses. Exact LRU 
was the slowest among the three algorithms due to the costly 
bookkeeping of the linked list; GCLOCK is generally faster than 
exact LRU due to its simpler LRU management.  

B. Performance of Set-associative Cache with Multi-step 
LRU  
Next, we evaluated the performances of cache replacement 

algorithms with a larger capacity for more realistic cache 
configurations. We evaluated a 4-way set-associative cache with 
in-vector LRU (i.e., P = 4, M = 1) and an 8-way set-associative 

cache with multi-step LRU (i.e., P = 4, M = 2). We discussed 
the effects of the set size (associativity) in detail later. We used 
MurmurHash3 [19] as the hash function for set-associative 
caches. Although we use MurmurHash in our implementation, 
other hash functions, such as xxHash or CityHash, can be used. 
For comparison, we also tested GCLOCK [9], exact LRU, and 
ARC [5]. We implemented a cache for exact LRU by using a 
doubly linked list; the key-value item is added to a hash table for 
fast lookup and also added to the linked list for LRU 
management. For the hash table, we used our cuckoo hash table 
[20] implemented using the same SIMD key lookup component 
with multi-step LRU to be fair when comparing results. We 
believe this cuckoo hash table performs reasonably fast; when 
we use glibc’s std::unordered_map instead of our cuckoo hash 
table, the execution times increase by up to 2.5x.  

Figure 7 compares the cache hit ratios with various cache 
sizes, from 1k to 32M key-value items, for request sequences of 
2 billion (for zipfian and latest) or 5 billion (for scan) requests 
with the 100 million distinct keys. The cache size of 32M key-
value items corresponds to 512 MB, hence it cannot fit into the 
processor’s L3 cache memory, the size of which is 20 MB. The 
trends were almost same for all three data distributions. Among 
the tested replacement algorithms, ARC achieved the best cache 
hit ratios with almost all combinations of cache size and 
distribution. Our multi-step LRU was the second best. 
GCLOCK’s hit ratio was generally lower than those of multi-
step LRU and ARC. GCLOCK worked very well for the latest 
distribution and outperformed multi-step LRU and even ARC 
when the cache size was large. GCLOCK tends to evict old 
items first and this characteristic is quite suitable for latest 
distribution. For all data distributions, exact-LRU showed a 
poorer cache hit ratio than GCLOCK, multi-step LRU, and ARC. 
In-vector LRU had a slightly worse cache hit ratio than exact-
LRU, hence the worst among all tested replacement algorithms.  

Figure 8 illustrates the execution speed of the algorithms in 
terms of throughput (the number of queries processed divided 
by the total execution time) in the same experiments. In-vector 
LRU, which had the worst hit ratio, showed the highest 
throughput, i.e., fastest execution time. Our multi-step LRU was 
a close second best. On the other hand, ARC had a much longer 
execution time than the other algorithms. This is reasonable 

 
Figure 6. Execution time and number of executed instructions per query 
for three replacement algorithms for small cache consisting of four key-
value items   

0

2

4

6

8

10

12

14

16

zipfian
(10 records)

zipfian
(20 records)

zipfian
(40 records)

all miss all hit

ex
ec

ut
io

n 
tim

e 
pe

r q
ue

ry
 (n

se
c)

data distribution

in-vector LRU
GCLOCK
exact LRU

lo
w

er
 is

 fa
st

er

execution time per query



because ARC focuses on better precision rather than lower 
runtime overhead. 

The execution times became longer with increasing cache 
sizes for all algorithms. This is the effect of a processor’s cache 
memory. For small cache size, all cached key-value items and 
LRU metadata can fit in the L1 or L2 cache memory of the 
processor. However, a larger cache does not fit within L2 or 
even L3 cache memory of the processor. Hence, with a larger 
number of items in a cache, the execution time becomes longer 
and is more dependent on memory system performance. Since 
multi-step LRU and in-vector LRU do not use per-item LRU 
metadata, the performance advantages of these two algorithms 
are larger with increasing cache sizes; they have very low 
runtime overhead in both CPU time and memory consumption. 
ARC and exact LRU use large LRU metadata for doubly linked 
lists; hence, their performances significantly degrade with larger 
cache sizes. 

To confirm the effect of processor’s cache misses on these 
algorithms, Figure 9 compares the numbers of L3 cache misses 
and executed instructions (path length) per query as measured 

by the performance monitor of the processor using Linux’s perf 
command (perf stat -e instructions -e LLC-misses) with two 
cache sizes, 32M and 64k items. Multi-step LRU and in-vector 
LRU obviously caused smaller numbers of processor’s L3 cache 
misses than the other three algorithms regardless of the data 
distribution when the cache size was 32M. When the cache size 
was 64k, the differences in the L3 cache miss frequencies were 
not that significant and the absolute numbers of cache misses 
were small in terms of affecting the execution speed of the 
algorithms. 

The primary reason of the better throughput of multi-step 
LRU compared to GCLOCK and exact LRU with a small cache 
size (e.g. 64k cache size) is a shorter path length. Regardless of 
the cache size, multi-step LRU and in-vector LRU have shorter 
path lengths than GCLOCK, exact LRU, and ARC because of 
the simpler replacement algorithms that effectively exploits 
SIMD instructions. 

Since L3 cache misses are one of the bottlenecks that 
determines overall throughput, we evaluated throughputs while 
putting more pressure on the memory system by accessing an 

 
Figure 7. Comparisons of cache hit ratios for query sequences generated by YCSB’s client emulator for zipfian, latest, and scan data distributions. X-axis 
shows cache size in number of items; key range is 1 to 100M; hence, 32M means 32% of all items.  

 
Figure 8. Comparisons of execution times for query sequences that follows zipfian, latest, and scan data distributions. X-axis shows cache size in number 
of items; key range is 1 to 100M.  

0%

10%

20%

30%

40%

50%

60%

70%

1k 4k 16k 64k 256k 1M 4M 16M 32M

ca
ch

e 
hi

t r
at

io

cache capacity (number of items)

our multi-step LRU

GCLOCK

exact LRU

ARC

in-vector LRU

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

1k 4k 16k 64k 256k 1M 4M 16M 32M

ca
ch

e 
hi

t r
at

io
cache capacity (number of items)

our multi-step LRU

GCLOCK

exact LRU

ARC

in-vector LRU
0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

1k 4k 16k 64k 256k 1M 4M 16M 32M

ca
ch

e 
hi

t r
at

io

cache capacity (number of items)

our multi-step LRU

GCLOCK

exact LRU

ARC

in-vector LRU

hi
gh

er
 is

 b
et

te
r

zipfian latest scan

0

10

20

30

40

50

60

70

80

90

1k 4k 16k 64k 256k 1M 4M 16M 32M

th
ro

ug
hp

ut
 (m

illi
on

 q
ue

rie
s 

/ s
ec

)

cache capacity (number of items)

our multi-step LRU
GCLOCK
exact LRU
ARC
in-vector LRU

0

10

20

30

40

50

60

70

1k 4k 16k 64k 256k 1M 4M 16M 32M

th
ro

ug
hp

ut
 (m

illi
on

 q
ue

rie
s 

 / 
se

c)

cache capacity (number of items)

our multi-step LRU
GCLOCK
exact LRU
ARC
in-vector LRU

0

10

20

30

40

50

60

70

80

1k 4k 16k 64k 256k 1M 4M 16M 32M

th
ro

ug
hp

ut
 (m

illi
on

 q
ue

rie
s 

 / 
se

c)

cache capacity (number of items)

our multi-step LRU
GCLOCK
exact LRU
ARC
in-vector LRU

hi
gh

er
 is

 fa
st

er

zipfian latest scan



object after key-value cache accesses. In 
the above experiments, we obtained the pointer to the object for 
the key from the cache but not actually touched the object. In 
this experiment, we actually touched the object, the size of 
which was 64 bytes. We loaded the entire 64 bytes of the object 
when a query hit in the cache and wrote the entire 64 bytes when 
putting the object into the cache after the query did not hit in the 
cache. Figure 10 shows the throughputs with additional 64-byte 
memory access per query. Although the throughputs were lower 
than those without additional memory accesses shown in Figure 
8, multi-step LRU yielded higher throughput than GCLOCK 
and exact LRU, e.g., multi-step LRU showed 37% better 
throughput than GCLOCK for the cache size of 32M. 

These results indicate that multi-step LRU balances the 
benefits of both high cache precision and high throughput, 
whereas ARC and in-vector LRU achieves one by sacrificing the 
other. 

C. Effects of Parameters with Multi-step LRU  
In the previous section, we discussed using multi-step LRU 

with M = 2, i.e., in an 8-way (2 vectors having 4 items each) set-
associative cache, as the configuration. We now show how this 
parameter affects the hit ratio and execution speed.  

Figure 11 compares the cache hit ratios and throughputs for 
the zipfian distribution for multi-step LRU with M = 2, 4, and 8. 
It also shows the results for in-vector LRU (M = 1). Note that 
multi-step LRU becomes identical to in-vector LRU for M = 1. 
Here, M = 1, 2, 4, and 8 correspond to 4-way, 8-way, 16-way, 
and 32-way set associative caches. For comparison, we show 
ARC’s cache hit ratio and GCLOCK’s throughput. We can see 
the cache hit ratio improved with a larger M parameter. When 
we used M = 8, the hit ratio was almost comparable to that of 
ARC. With increased M, the associativity also increased, and a 
larger associativity generally improves the cache hit ratio. Also, 
multi-step LRU configured with a larger M can hold more items 
in the non-last vectors, in which items are protected from being 
evicted by use-once items. This improvement in cache hit ratio 
comes at the cost of increased execution time. When we increase 
the associativity, the overhead for looking up the specified key 
or an empty space is also increased since we need to check all 
items in the set. However, even with M = 8, the execution time 
of multi-step LRU is shorter than that of GCLOCK. 

Based on these observations, we believe M = 2 or 4 is a 
reasonable choice for balancing speed and precision. Increasing 
M too much does not significantly improve the cache hit ratio 
enough to rationalize the degradation in speed. 

  
Figure 9. Number of instructions executed per query (path length) and L3 cache misses per query for two cache sizes   

 
 
 

0

100

200

300

400

500

600

700

800

zipfian latest scan zipfian latest scan

in
st

ru
ct

io
ns

 e
xe

cu
te

d 
pe

r q
ue

ry

our multi-step LRU GCLOCK
exact LRU ARC
in-vector LRU

0

1

2

3

4

5

6

7

8

zipfian latest scan zipfian latest scan

L3
 c

ac
he

 m
iss

es
 p

er
 q

ue
ry

our multi-step LRU
GCLOCK
exact LRU
ARC
in-vector LRU

lo
w

er
 is

 b
et

te
r

cache size = 32M items cache size = 64k items cache size = 32M items cache size = 64k items

L3 cache misses Path length (number of instructions)

 
Figure 11. Comparisons of cache hit ratios and execution times with various M parameters for multi-
step LRU    

0%

10%

20%

30%

40%

50%

60%

70%

80%

1k 4k 16k 64k 256k 1M 4M 16M 32M

ca
ch

e 
hi

t r
at

io

cache capacity (number of items)

in-vector LRU (M=1)

our multi-step LRU (M=2)

our multi-step LRU (M=4)

our multi-step LRU (M=8)

ARC

hi
gh

er
 is

 b
et

te
r

0

10

20

30

40

50

60

70

80

1k 4k 16k 64k 256k 1M 4M 16M 32M

th
ro

ug
hp

ut
 (m

illi
on

 q
ue

rie
s 

/ s
ec

)

cache capacity (number of items)

in-vector LRU (M=1)
our multi-step LRU (M=2)

our multi-step LRU (M=4)

our multi-step LRU (M=8)
GCLOCK

hi
gh

er
 is

 fa
st

er

cache hit ratio throughput

 
Figure 10. Comparisons of throughput with 
additional memory accesses    

 

0

2

4

6

8

10

12

14

16

18

20

1k 4k 16k 64k 256k 1M 4M 16M 32M

th
ro

ug
hp

ut
 (m

illi
on

 q
ue

rie
s 

/ s
ec

)

cache capacity (number of items)

our multi-step LRU
GCLOCK
exact LRU
ARC
in-vector LRU

hi
gh

er
 is

 fa
st

er

zipfian



For further insights into multi-step LRU with different M 
parameters, Figure 12 shows the breakdown of the cache hits 
into the location (i.e. vector) in which the queries hit. We also 
show the breakdown for ARC, which has two lists (list1) for 
items used only once and another (list2) for items used twice or 
more. With multi-step LRU, the queries hit in the first vector 
(vector1) most frequently, as expected. We upgrade only 
frequently used items by selecting items accessed multiple times 
in a short period. Hence, in the principle of the algorithm, the 
first vector should contain the most frequently used items. The 
results in Figure 12 indicate that our upgrade criteria work well 
to select frequently used items. With the increased number of 
vectors, the ratio of query hits in the first vector is reduced. 
However, even with M = 8, more than a half of the queries were 
hit in the first vector for zipfian and scan. Only for latest 
distribution, many queries were hit in non-first vectors. This is 
because hot items are time evolving in the latest distribution and 
hence one item may not be accessed long enough to be upgraded 
onto the first vector. For such case, using too large M may not 
be effective to increase the precision. The breakdown for ARC 
is consistent with ours; most queries were hit in the list for items 
used multiple times (list2). ARC adaptively tunes the size ratio 
between two lists, and the size of list1, for items used only once, 
is typically much smaller than that of list2, while the sizes of all 
vectors are uniform and fixed in multi-step LRU. Hence, the 
breakdown for ARC is significantly skewed toward list2. 

Thus far, we discussed testing multi-step LRU with four 
items per vector (P = 4) by assuming 64-bit keys and values 
(often pointers) on a 256-bit vector register. We now discuss 
testing multi-step LRU with P = 8 by reducing the size of a key 
and value to 32 bits. Figure 13 compares the cache hit ratios and 
throughputs. We use P = 8 and M = 2 for multi-step LRU; hence, 
the associativity was 16. For in-vector LRU, the associativity 
was 8 with P = 8 and M = 1. We compiled all programs as 32-
bit binaries to make a pointer fit in 32 bits. Due to the limitation 
of 32-bit memory space, we used a cache size of up to 4M items. 
We did not see huge differences in the trends of the cache hit 
ratios by increasing P from 4 to 8. Our multi-step LRU achieved 
better cache hit ratios than GCLOCK or exact LRU. Also, there 

were no significant changes in the relative execution times as 
well. The fastest was in-vector LRU, and multi-step LRU was a 
close second best. These results indicate that the high precision 
and low overhead of multi-step LRU do not depend on a specific 
data parallelism within one vector (P). Hence, multi-step LRU 
should work on future processors with increased vector length, 
such as AVX-512. 

D. Scalability with Multiple Cores  
We evaluated the performances of the multi-thread 

implementations of three cache replacement algorithms, multi-
step LRU, GCLOCK, and exact LRU. The parallel 
implementation of multi-step LRU uses fine-grained locking 
using one lock bit per set. As a memory space, the lock bit uses 
one byte as shown in Figure 5. If a thread fails to acquire the 
lock of a set, it waits for another thread to release the lock by 
spin loop. Since one thread holds a lock only for a short time, 
using spin loop is much more efficient than using OS-level 
mutex. For GCLOCK and exact LRU, we used a high-
performance concurrent hash map from 
https://github.com/preshing/junction instead of our cuckoo hash 
map, which is not thread safe. 

 
Figure 12. Breakdown of cache hits into locations. First vector contained most frequently used items, as expected.   

 
 

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
hit in vector1 hit in vector2 hit in vector3 hit in vector4 hit in vector5 hit in vector6 hit in vector7 hit in vector8 hit in List2 hit in List1

for multi-step LRU for ARC

m
ul

ti-
st

ep
 L

RU
 (M

= 
2)

m
ul

ti-
st

ep
 L

RU
 (M

= 
4)

m
ul

ti-
st

ep
 L

RU
 (M

= 
8)

AR
C

m
ul

ti-
st

ep
 L

RU
 (M

= 
2)

m
ul

ti-
st

ep
 L

RU
 (M

= 
4)

m
ul

ti-
st

ep
 L

RU
 (M

= 
8)

AR
C

m
ul

ti-
st

ep
 L

RU
 (M

= 
2)

m
ul

ti-
st

ep
 L

RU
 (M

= 
4)

m
ul

ti-
st

ep
 L

RU
 (M

= 
8)

AR
C

m
ul

ti-
st

ep
 L

RU
 (M

= 
2)

m
ul

ti-
st

ep
 L

RU
 (M

= 
4)

m
ul

ti-
st

ep
 L

RU
 (M

= 
8)

AR
C

m
ul

ti-
st

ep
 L

RU
 (M

= 
2)

m
ul

ti-
st

ep
 L

RU
 (M

= 
4)

m
ul

ti-
st

ep
 L

RU
 (M

= 
8)

AR
C

m
ul

ti-
st

ep
 L

RU
 (M

= 
2)

m
ul

ti-
st

ep
 L

RU
 (M

= 
4)

m
ul

ti-
st

ep
 L

RU
 (M

= 
8)

AR
C

cache size = 32M items
zipfian distribution

cache size = 32M items
latest distribution

cache size = 32M items
scan distribution

cache size = 64k items
zipfian distribution

cache size = 64k items
latest distribution

cache size = 64k items
scan distribution

 
Figure 13. Comparisons of cache hit ratios and throughput of algorithms 
using longer vector size of P = 8 for zipfian distribution.  

 

40%

45%

50%

55%

60%

65%

70%

75%

80%

1k 4k 16k 64k 256k 1M 4M

ca
ch

e 
hi

t r
at

io

cache capacity (number of items)

our multi-step LRU
exact LRU
GCLOCK
ARC
in-vector LRU

0

10

20

30

40

50

60

1k 4k 16k 64k 256k 1M 4M

th
ro

ug
hp

ut
 (

m
ill

io
n 

qu
er

y 
pe

r 
se

c)

cache capacity (number of items)

our multi-step LRU
exact LRU
GCLOCK
ARC
in-vector LRU

hi
gh

er
 is

 b
et

te
r

hi
gh

er
 is

 fa
st

er

cache hit ratio throughput



Figure 14 compares the relative throughputs of the three 
algorithms for 1 to 8 cores over the throughput of multi-step 
LRU with 1 core. The cache size was 32M items. Note that the 
algorithms with 1 core were slower than of the serial 
implementations due to locking overheads. Multi-step LRU and 
GCLOCK showed good scalability with increasing number of 
cores used with up to 8 cores. With 8 cores, multi-step LRU 
achieved 6.6x to 7.7x increase in speed and GCLOCK showed 
6.3x to 8.0x increase in speed. With 4 cores, the increases were 
3.6x to 4.0x for multi-step LRU and 3.4x to 4.0x for GCLOCK. 
Since both algorithms showed similar scalability, the advantage 
of multi-step LRU in terms of execution speed remained 
unchanged from that of serial implementations, as discussed in 
previous sections. Compared to the other two algorithms, exact 
LRU does not scale because the lock to guard the LRU linked 
list becomes the bottleneck of scalability. All queries attempt to 
update the head of the LRU linked list for updating recently-
used item information; hence, it is difficult to improve 
scalability by applying fine-grained locking. 

E. Warming Up Performance  
One possible drawback of multi-step LRU is the potential 

longer time for warming up, i.e., the time until the cache reaches 
a steady state. With multi-step LRU, upgraded items are not 
evicted due to other items accessed only once. This is the main 
reason of the superior cache hit ratios in steady state. However, 
once the upgraded items become inactive, e.g., due to a phase 
change in the access patterns, these now inactive items are not 
evicted quickly. To evaluate such effects, Figure 15 compares 
the cache hit ratios during the warmup phase for the three 

distributions with the cache size of 4M items. We initialized the 
cache with random keys; hence, all cached items were garbage 
at first. For all distributions, multi-step LRU required a longer 
time for the warmup. During a part of the warmup phase, multi-
step LRU showed a lower cache hit ratio than exact LRU since 
a fraction of the cache is filled by already inactive items until 
they are evicted. Such inactive items may remain in the cache, 
especially when the cache hit ratio is low, because not so many 
items are upgraded. GCLOCK and exact LRU do not suffer 
from long delay before evicting the inactive items. If the 
workload suffers from this problem, e.g., if the access patterns 
are frequently changing, we can adaptively switch the algorithm 
to in-vector LRU, which does exact LRU in each set, during the 
warmup. For example, we can use a significant drop in the ratio 
of queries that hit in the first vector as a trigger for switching the 
algorithm. Note that the case shown in Figure 15 is an extreme 
case of the phase change where all the hot data become inactive 
at once. The problem is not that significant if the changes in the 
access patterns occur gradually. Also, if the initial state of the 
cache is the empty state instead of full of inactive garbage data, 
this problem does not occur since multi-step LRU can add new 
items into the cache if there is an empty slot in any of the vectors. 

V. SUMMARY 
We proposed a cache replacement algorithm called multi-

step LRU that achieves 1) high memory efficiency, 2) fast 
processing, and 3) high precision at the same time. Multi-step 
LRU yields high throughput because it does not use per-item 
LRU metadata and also efficiently exploit SIMD instructions. It 
yields a higher cache hit ratio than other widely used LRU or 

 
Figure 15. Cache hit ratios during startup time from randomly initialized state. X-axis is number of queries processed in logarithmic scale   

 
 

0%

10%

20%

30%

40%

50%

60%

70%

10000 100000 1000000 10000000 100000000 1E+09

ca
ch

e 
hi

t r
at

io

number of queries

our multi-step LRU
GCLOCK
exact LRU

zipfian

100k 1M 10M 100M 1G10k
0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

10000 100000 1000000 10000000 100000000 1E+09

ca
ch

e 
hi

t r
at

io

number of queries

our multi-step LRU
GCLOCK
exact LRU

100k 1M 10M 100M 1G10k
0%

5%

10%

15%

20%

25%

30%

35%

40%

45%

50%

10000 100000 1000000 10000000 100000000 1E+09

ca
ch

e 
hi

t r
at

io

number of queries

our multi-step LRU
GCLOCK
exact LRU

hi
gh

er
 is

 b
et

te
r

latest scan

 
Figure 14. Throughput scalability with increasing number of cores used for multi-step LRU, GCLOCK, and exact LRU    

 
 
 

0

1

2

3

4

5

6

7

8

9

1 core 2 cores 4 cores 8 cores

re
la

tiv
e 

th
ro

ug
hp

ut
 o

ve
r 

ou
r m

ul
ti-

st
ep

 L
RU

 w
ith

 1
 c

or
e

number of cores used

our multi-step LRU

GCLOCK

exact LRU

0

1

2

3

4

5

6

7

1 core 2 cores 4 cores 8 cores

re
la

tiv
e 

th
ro

ug
hp

ut
 o

ve
r 

ou
r m

ul
ti-

st
ep

 L
RU

 w
ith

 1
 c

or
e

number of cores used

our multi-step LRU

GCLOCK

exact LRU

0

1

2

3

4

5

6

7

8

1 core 2 cores 4 cores 8 cores

re
la

tiv
e 

th
ro

ug
hp

ut
 o

ve
r 

ou
r m

ul
ti-

st
ep

 L
RU

 w
ith

 1
 c

or
e

number of cores used

our multi-step LRU

GCLOCK

exact LRU

hi
gh

er
 is

 fa
st

er

zipfian latest scan



GCLOCK algorithms by taking both access frequency and 
access recency of items into account. Since a key-value cache is 
a key building block of applications that access a huge amount 
of data with high throughput, multi-step LRU can contribute to 
real-world workloads by improving cache hit ratios without 
sacrificing processing efficiency. 

REFERENCES 
[1] Memcached - a distributed memory object caching system, 

https://memcached.org/ Using Redis as an LRU cache, 
https://redis.io/topics/lru-cache 

[2] Using Redis as an LRU cache, https://redis.io/topics/lru-cache 
[3] Fan, B., Andersen, D. G., Kaminsky, M. MemC3: compact and concurrent 

MemCache with dumber caching and smarter hashing. In Proceedings of 
the 10th USENIX conference on Networked Systems Design and 
Implementation (NSDI ’13). 2013, 371–384. 

[4] Johnson, T., and Shasha, D. 2Q: A Low Overhead High Performance 
Buffer Management Replacement Algorithm. In Proceedings of the 20th 
International Conference on Very Large Data Bases (VLDB ’94). 1994, 
439–450. 

[5] Megiddo, N., and Modha, D. S. ARC: A Self-Tuning, Low Overhead 
Replacement Cache. In Proceedings of the 2nd USENIX Conference on 
File and Storage Technologies (FAST ’03). 2003, 115–130. 

[6] Wang, R., Wang, Y., Tai, T., Dumitrescu, C. F., Guo, X., Technologies for 
a least recently used cache replacement policy using vector instructions. 
US20190042471, July 2019. 

[7] Bansal, S. and Modha, D. S., CAR: Clock with Adaptive Replacement. In 
Proceedings of the 3rd USENIX Conference on File and Storage 
Technologies (FAST ’04). 2004, 187–200. 

[8] Jiang, S., Chen, F., and Zhang, X., CLOCK-Pro: an effective improvement 
of the CLOCK replacement. In Proceedings of the annual conference on 
USENIX Annual Technical Conference (USENIX ’05). 2005, 323–336. 

[9] Smith, A. J., Sequentiality and prefetching in database systems. ACM 
Trans. Database Syst. 3, 3 (Sept. 1978). 223–247. 

[10] O’Neil, E. J., O’Neil, P. E., and Weikum, G., The LRU-K page 
replacement algorithm for database disk buffering. In Proceedings of the 
ACM SIGMOD International Conference on Management of Data 
(SIGMOD ’93), 1993, 297–306.  

[11] Zhou, Y., Philbin, J., and Li, K., The Multi-Queue Replacement Algorithm 
for Second Level Buffer Caches. In Proceedings of the 2001 USENIX 
Annual Technical Conference (USENIX ’01). USENIX Association, USA, 
91–104. 

[12] Patterson, D. A., and Hennessy, J. L., Computer Organization and Design: 
The Hardware/Software Interface. Morgan Kaufmann Publishers Inc. 
2013. 

[13] Intel corp., Intel C++ Compiler Developer Guide and Reference. 
[14] Inoue, H., Komatsu, H., Nakatani, T., Accelerating UTF-8 Decoding 

Using SIMD Instructions (in Japanese), Information Processing Society of 
Japan Transactions on Programming 1 (2), 2008, 1–8.  

[15] Stepanov, A. A., Gangolli, A. R., Rose, D. E., Ernst, R. J., and Oberoi, P. 
S., SIMD-based decoding of posting lists. In Proceedings of the 20th ACM 
international conference on Information and knowledge management 
(CIKM ’11). 2011, 317–326. 

[16] Cooper, B. F., Silberstein, A., Tam, E., Ramakrishnan, R., and Sears, R., 
Benchmarking cloud serving systems with YCSB. In Proceedings of the 
1st ACM symposium on Cloud computing (SoCC ’10). 2010. 143–154. 

[17] Zipf, G. K., Relative Frequency as a Determinant of Phonetic Change. 
Harvard Studies in Classical Philology 40, 1929, 1–95. 

[18] Breslau, L., Cao, P., Fan, L., Phillips, G., and Shenker, S., Web caching 
and Zipf-like distributions: evidence and implications. In Proceedings of 
IEEE INFOCOM '99. Conference on Computer Communications. 1999, 
126–134. 

[19] Appleby, A., MurmurHash3, https://github.com/aappleby/smhasher/ 
[20] Pagh, R., and Rodler, F. F., Cuckoo hashing. J. Algorithms 51, 2 (May 

2004), 122–144. 

  



Appendix 
 

 
Figure. Pseudo code of in-vector LRU using Intel’s intrinsics for AVX instruction 

const int patternTable[] = {0,1,  2,3,  4,5,  6,7,  // pattern to move the first item to MRU (do nothing) 
                            2,3,  0,1,  4,5,  6,7,  // pattern to move the second item to MRU 
                            4,5,  0,1,  2,3,  6,7,  // pattern to move the third item to MRU 
                            6,7,  0,1,  2,3,  4,5}; // pattern to move the last (LRU) item to MRU 
 
int64 get(int64 *pKeys, int64 *pVals, int64 keyToSearch) { 
  // 1) Load P keys from memory into a vector register. 
  __m256i vKeys = _mm256_load_si256(pKeys);  
  // 2) Check P keys against the query using SIMD compare. 
  // `bitmask` shows hit or not for each comparison. `pos` shows the position of the hit. 
  int bitmask = _mm256_movemask_pd(_mm256_cmpeq_epi64(_mm256_set1_epi64x(keyToSearch), vKeys)); 
  int pos = 31 - _lzcnt_u32(bitmask);  
  // 3) If no key hits, return here (a cache miss).  
  if (pos < 0) return CACHE_MISS;  
  // 4) Look up the in-memory pattern table using the position of the matched key (pos) as the index. 
  const __m256i pattern = _mm256_load_si256(((__m256i*)patternTable) + pos);  
  // 5) Move the hit key into the MRU position by a permutation and store back the rearranged keys. 
  vKeys = _mm256_permutevar8x32_epi32(vKeys, pattern); 
  _mm256_store_si256(pKeys, vKeys);  
  // 6) Load values into a vector register, rearrange them using the same pattern, and store back. 
  __m256i vVals = _mm256_load_si256(pVals); 
  _mm256_store_si256(pVals, _mm256_permutevar8x32_epi32(vVals, pattern));  
  // 7) Return the result (a cache hit). The result is always stored in the first element. 
  return pVals[0];  
} 
 
void put(int64 *pKeys, int64 *pVals, int64 newKey, int64 newVal) { 
  // 1) Load P keys into a vector register.  
  __m256i vKeys = _mm256_load_si256(pKeys);  
  // 2) move the LRU key into the MRU position. 
  const __m256i pattern = _mm256_load_si256(((__m256i*)patternTable) + P - 1); 
  vKeys = _mm256_permutevar8x32_epi32(vKeys, pattern);  
  // 3) Replace the LRU key with the new key and then store back them into memory. 
  vKeys = _mm256_insert_epi64(vKeys, newKey, 0 /* position */); 
  _mm256_store_si256(pKeys, vKeys);  
  // 4) do step 1 to 3 for values 
  ... (omitted) 
} 

 


