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Abstract—Federated Learning has shown great potentials for
the distributed data utilization and privacy protection. Most
existing federated learning approaches focus on the supervised
setting, which means all the data stored in each client has labels.
However, in real-world applications, the client data are impossible
to be fully labeled. Thus, how to exploit the unlabeled data
should be a new challenge for federated learning. Although a
few studies are attempting to overcome this challenge, they may
suffer from information leakage or misleading information usage
problems. To tackle these issues, in this paper, we propose a novel
federated semi-supervised learning method named FedTriNet,
which consists of two learning phases. In the first phase, we pre-
train FedTriNet using labeled data with FedAvg. In the second
phase, we aim to make most of the unlabeled data to help model
learning. In particular, we propose to use three networks and
a dynamic quality control mechanism to generate high-quality
pseudo labels for unlabeled data, which are added to the training
set. Finally, FedTriNet uses the new training set to retrain the
model. Experimental results on three publicly available datasets
show that the proposed FedTriNet outperforms state-of-the-art
baselines under both IID and Non-IID settings.

Index Terms—federated learning, semi-supervised learning,
pseudo labeling

I. INTRODUCTION

Federated learning [1]–[3] has furnished a concrete solution
to the training of machine learning models among decentral-
ized data deployment networks with relative stable privacy
preservation. A central server helps multiple clients collaborate
on learning a global model, which outperforms any local
models. This distributed framework contributes a series of
advantages to the protection of data privacy, access rights, and
security.

However, several practical issues still shackle federated
learning aggregation and affect its performance. For instance,
the clients tend to generate a large amount of data, but
they lack labels or only contain a few labels. While existing
federated methods such as FedAvg [1] mainly focus on the
supervised scenario where client data are fully labeled. It is

crucial to get full access to the information included inside the
unlabeled data to improve the global model performance.

Only a few studies are considering the unlabeled data, such
as FedMatch [4] and FedSem [5]. FedMatch [4] introduces
the inter-client consistency loss and additive parameter de-
composition to disjointly learn on both labeled and unlabeled
data. However, as this approach needs to collect information
from neighboring clients, it may leak sensitive information.
FedSem [5] uses a simple two-phase pseudo-labeling based
method for semi-supervised learning applications. If the per-
formance of the first phase, i.e., pretraining the model with
labeled data, is poor, it would introduce error messages in the
subsequent marking process of pseudo labels, which seriously
affects the learning effect.

To address those problems, in this paper, we propose a novel
two-phase learning framework named FedTriNet to guarantee
information privacy and automatically generate high-quality
pseudo labels via three networks. In the first phase, we
pretrain the framework using labeled data on each client with
FedAvg [1] like FedSem [5]. In the second phase, we aim
to generate high-quality pseudo labels for unlabeled data and
further use them for retraining each local model. Towards
this end, we design a new approach by considering three
client networks and automatically generating a threshold as the
criteria to filter out low-quality pseudo labels in each client.

Designing of Three Players. In particular, the first network
is the client model trained with labeled data in each client,
which has good classification ability. In a deep neural network,
such ability is usually determined by the last few layers. The
second one is the global model aggregated by all the client
models, which usually has a strong ability to extract features
using the first few layers. The third model combines the client
model and the global model, which tries to unify both models’
advantages by borrowing the first few layers from the global
model and the last few layers from the client model. Then, the
combined model conducts finetuning with the labeled client
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data.
Pseudo Label Generation. In each client, FedTriNet runs

three networks on unlabeled data to output three prediction
probability vectors, which are further used to generate the
pseudo labels for unlabeled data. To guarantee the quality of
the pseudo labels, we design a dynamical control mechanism
to generate a global-level threshold θ. Remarkably, each client
will identify the maximum probability value and then upload
it to the server. The server will average the uploaded client-
level maximum probability values and distribute the maximum
value, i.e., θ, to each client. To carefully add the pseudo
labeled data to the training set, a dynamic control mechanism
is designed to make that θ decreases with the increase of the
number of global training rounds. If the maximum probability
value of the three prediction probability vectors is larger than
θ, then the corresponding unlabeled data will be added to the
training data.

Finally, FedTriNet will retrain the client model using both
the real labeled data and the pseudo-labeled data. Note that
since there are three models in each client, we choose to retrain
the finetuned combined model, which is significantly different
from FedAvg [1] and FedSem [5]. We evaluate the proposed
FedTriNet on three benchmark image datasets under both IID
and Non-IID data distribution settings compared with state-of-
art baselines. Experimental results show the effectiveness of
the proposed FedTriNet framework.

The remainder of this paper is organized as follows. Sec-
tion II systematically reviews the recent related work. Sec-
tion III introduces the details of the proposed FedTriNet.
Section IV presents experimental setups, results and analysis
compared with baselines. Section V concludes.

II. RELATED WORK

This section systematically reviews the studies on feder-
ated learning, federated semi-supervised learning, and semi-
supervised learning.

A. Federated Supervised Learning

Federated learning provides an efficient and privacy-
preserved collaboration strategy for mutually training between
different data owners, such as distributed data centers, cus-
tomers and diverse institutions. The majority of federated
learning works focus more on supervised learning scenarios
and solving three challenges: statistical heterogeneity [6]–[8],
system constraints [9]–[11], and trustworthiness [12]–[14].
In particular, [6] uses a shared server-stored dataset to help
the clients achieve higher performance in Non-IID settings;
[8] applies adjustment on the SGD convergence of federated
learning; and [7] adds regularization terms on the loss function
during the local training process on the clients to constrain the
divergence between the global model and local ones.

B. Federated Semi-supervised Learning

A more realistic setting in federated learning is federated
semi-supervised learning, i.e., simultaneously considering both
labeled and unlabeled data. However, the introduction of

the unlabeled data will significantly increase the difficulty
of the problem. The studies on federated semi-supervised
learning are still at the baby step, but more and more
researchers are paying attention to this research topic. In
[5], the authors propose a simple two-phase pseudo-labeling
based method for semi-supervised learning application, and
in [4], the authors introduce the inter-client consistency loss
and additive parameter decomposition to disjointly learn on
both the labeled and unlabeled data. However, the existing
methods are efficient while may violate the clients’ privacy
or have poor performance with scarce labeled data, which are
severe disadvantages for a federated semi-supervised learning
problem.

C. Semi-supervised Learning

Semi-supervised learning SSL is a research field of practical
significance and value to extract effective information from
unlabeled data and help the model achieve better training effect
and performance [15]. The previous SSL work shows a series
of diverse and coherent solutions. An intuitive approach is
pseudo labeling, which uses the pretrained model to label the
unlabeled data. [16] introduces a dynamic decision threshold
to help the model labeling the data. Another effective and
well-known strategy is to add consistency regularization on
the training loss [17]–[21]. [22] presents an SSL method
based on three neural networks, which characterize the con-
ditional distributions between images and labels. In [23], the
authors suggest that the flat platform of SGD leads to the
convergence dilemma of consistency-based SSL. UDA [24],
ReMixMatch [25], and Fixmatch [26] mix plenty of practical
methods and do further exploration. [27] adapts curriculum
learning idea into pseudo label method with self-training
strategy, especially for the setting with a small set of labeled
data and a large set of unlabeled data.

III. FEDTRINET FRAMEWORK

The goal of federated semi-supervised learning is to learn
a global model G via collaboratively training K local client
models L = {lk}Kk=1. In this paper, we focus on the fol-
lowing setting: Each client stores both labeled data Dk

L =

{(xk
i , y

k
i )}N

k
L

i=1 and unlabeled data Dk
U = {xk

j }
Nk

U
j=1, where

yki ∈ {1, · · · ,M} is the corresponding label of the data
instance xk

i , Nk
L denotes the number of labeled data of the

k-th client, and Nk
U denotes the number of unlabeled data of

the k-th client . Note that there are no data at the server side.
To learn the global model G, we design a simple yet effective
framework named FedTriNet. Next, we present the details of
our framework.

A. Model Overview

Figure 1 shows the flow of the proposed framework
FedTriNet. FedTriNet consists of two modules, i.e., local
training and server update. In the local training module,
each client k trains a local model lk using both labeled and
unlabeled data. The parameters of lk, which is denoted as ωk,
will be uploaded to the server. In the server update module, the
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Fig. 1. The proposed FedTriNet Framework

server learns a global model G by aggregating K randomly
uploaded local models, i.e.,

ωG =

K∑
k=1

ωk

K
, (1)

where ωG is the the parameters of G. ωG will be then dis-
tributed to each local client. This procedure will be repeatedly
executed until the global model G converges.

In particular, the local training module of the proposed
FedTriNet has two stages, which are pre-training and pseudo
label learning. The goal of the pre-training stage is to
train each local model and global model T1 rounds only
using labeled data. Then in the pseudo label learning stage,
FedTriNet generates a pseudo label for each unlabeled data
using three networks, which are original local network, down-
loaded global network, and a spliced network separately.

The spliced network is a combination of the original local
network and global network. Here, we assume that the global
model’s low-level feature extraction ability is better than
that of the local model, which can be represented by the
first n layers of G. However, the local model can capture
the classification characteristics of local data, which can be
described by the last m layers of ωk. Thus, we can obtain a
new network with n+m layers to predict a pseudo label for
each unlabeled sample.

By aggregating the outputs of the three networks, we can
finally assign labels to unlabeled data. Using both labeled and
pseudo labeled data, we can run a local training module to
update the parameters, which will be uploaded to the server to
update the global parameters. The new global parameters will
also be distributed to each local client until they converge or
the procedure runs T2 rounds. The server update uses Eq. (1),
and next, we will present the details of the local training in
the proposed FedTriNet framework.

B. Pre-training Stage

The proposed FedTriNet framework aims to generate
pseudo labels for unlabeled data and then to update the local

model using both labeled and pseudo labeled data. The critical
issue of this approach is how to guarantee the quality of the
generated pseudo labels. Towards this end, we propose to pre-
train the local and global models only using labeled data by
optimizing the following loss function as FedAvg [1]:

Ll(Dk
L) = min

 1

Nk
L

Nk
L∑

i=1

CE
(
f
(
xk
i ;ωk

)
, yki
) , (2)

where Ll(Dk
L) denotes the total loss, CE is the cross-entropy

loss, f(·; ·) represents the neural network such as convolutional
neural network (CNN), and ωk is the parameter set. Then
Eq. (1) is used to obtain the parameter set ωG

t of the global
model G.

In each communication round, the clients will download the
global model’s parameter for local training with predefined
epochs from the server. After that, part of the clients will
take part in the global aggregation that their local model
parameters will be uploaded to the server. We repeatedly run
this procedure T1 times to pretrain both local and global
models, and then FedTriNet starts to consider the unlabeled
data..

C. Pseudo Label Learning Stage

To make fully use of unlabeled data, a straightforward
approach is to generate pseudo labels based on the pre-
trained model in the pre-training stage. However, there are
two kinds of models for each client, i.e., a local model lk

and a global model G. The local model may perform better
when the unlabeled data follow a similar distribution as the
labeled data. However, real-world applications may not satisfy
this constraint. The global model G is aggregated by several
local models. Using G to generate the pseudo labels may not
capture the characteristics of local models. Thus, either using
local models or the global model may be prone to generate
incorrect labels, further introducing incorrect information to
model learning.



To guarantee the quality of pseudo labels as much as
possible, in this paper, we introduce a combined model for
each client, a combination of each local model and the global
model. Intuitively, the shallow layers of deep neural networks
focus more on low-dimensional feature learning, which can
be shared even for different images. On the contrary, the
class-related features of an image are abstracted into deeper
layers, which are uniqueness. Based on this intuition, we can
assemble a new network using the shallow layers’ parameters
of the global network that have better generalization ability and
deep layers of the local network for capturing class-specific
characteristics.

For instance, a convolutional neural network consists of
three convolutional layers and two full connection layers. We
usually select the parameters of the first two convolutional
layers of the global network and the parameters of the full
connection layers of the local network to form a new combined
network. Note that the specific method of interception and
the selection of layers are influenced by data type, network
structures, and training parameter settings.

1) Multi-view Pseudo-labeling: In the pseudo-labeling pro-
cess, the pseudo label of one unlabeled data is decided by a
mutual output based on the sum of the prediction probabilities
of three players. Different from the majority voting strategy,
which uses one-hot coding to adapt the position with the
highest vote identified as the category to which the input
belongs, our method uses the outputs of the softmax layer,
where the location of the output to which the input belongs
is a probability value. This could avoid some statistical errors
arisen in the decision process, such as three different votes,
rounding errors.

Let plk(xk
j ) be the probability vector predicted by the

local models lk with parameters ωk on the unlabeled data
xk
j , and pG(xk

j ) be the probability vector outputted by the
global model G. Let ck denote the combined model and
pck(xk

j ) be the outputted probability vector. Note that in our
implementation, we use labeled data to fine-tune the model
ck first and then use it to make predictions. Thus, the pseudo
label of the unlabeled data xk

j is

pk
j =

1

3

[
plk(xk

j ) + pG(xk
j ) + pck(xk

j )
]
,

ŷkj = arg maxpk
j .

(3)

In order to use the pseudo labeled data to update the model,
we must guarantee the quality of the pseudo labels. In other
words, we cannot directly use all the pseudo labeled data and
only use the data with high confidence. Thus, we design the
following mechanism to control the quality of pseudo-labeled
data dynamically. In particular, FedTriNet dynamically gen-
erates a global threshold θ. If the maximum probability of
unlabeled data is greater than θ, then the corresponding data
will be added to the training set. Next, we will how to estimate
the value of θ.

2) Dynamic Pseudo-labeled Data Selection: Towards the
goal of generating a global threshold θ, we first run the global
model G on each unlabeled sample xk

j stored in each client

k ∈ {1, · · · ,K} to obtain the prediction pG(xk
j ). Then we can

have the maximum probability of pG(xk
j ), i.e., max(pG(xk

j )).
Since there are Nk

U unlabeled data in client k, we can obtain
Nk

U maximum probability values, i.e., {max(pG(xk
j ))}N

k
U

j=1.
Finally, the maximum predictive probability of all the unla-
beled data is

θk = max{max(pG(xk
1)), · · · ,max(pG(xk

Nk
U

))}. (4)

Since there are K clients, for each client, we can obtain a
client-level threshold. These K thresholds are uploaded to the
server to generate the global-level threshold θ as follows:

θ(t) =


αθ̄ t < 10,
(100−2t)

100 αθ̄ 10 ≤ t < 35,
1
2αθ̄ t ≥ 35,

(5)

where t represents the number of communication rounds in the
pseudo label learning stage, α is a predefined hyper-parameter
to control the threshold, and θ̄ denotes the average of all the
uploaded client-level thresholds, i.e., θ̄ = 1

K

∑K
k=1 θ

k. The
motivation behind Eq. (5) is that we want the local model to be
more stable in the first few rounds of the pseudo label process.
In order to avoid updating too many pseudo labeled data into
the training set at one time, a larger threshold is used at the
beginning of the pseudo label learning stage (i.e., t < 10) by
setting α = 0.93 (experimental result) in the experiment. In
such a way, only a tiny amount of high-quality pseudo labeled
data will be added to the training first. With the increase of
the communication rounds, the threshold value will decrease.
In other words, there will be more data to be added to the
training set.

The global threshold θ(t) using Eq. (5) is then distributed
to each client k. If max(pk

j ) in Eq. (3) is greater than θ(t),
then the corresponding unlabeled data will be added to the
training set. Let Dk

P denote the selected pseudo labeled data,
which will be used to retrain the local model.

3) Local Model Retraining & Server Aggregation:
FedTriNet is able to generate pseudo labels for unlabeled
data and automatically add high-quality unlabeled data to the
training set. Thus, based on the new training data {Dk

L,Dk
P },

we can retrain each local model by minimizing the following
loss function:

Ltotal = Ll(Dk
L) + λLp(Dk

P ), (6)

where Ll(Dk
L) is the loss on the labeled data calculated by

Eq. (2), λ is a hyperparameter to balance the loss obtained
from the pseudo-labeled data, and Lp(Dk

P ) is the loss of the
pseudo-labeled data and defined as follows:

Lp(Dk
P ) = min

 1

Nk
P

Nk
P∑

j=1

CE
(
f
(
xk
j ;ωk

)
, ŷkj
) , (7)

where Nk
P is the number of selected high-quality pseudo-

labeled data, and ŷkj is the pseudo label of the unlabeled data
xk
j . We maintain the same uploading, model aggregation and

downloading methods as in the pre-training stage to retrain



the model in the pseudo label learning stage until FedTriNet
converges or runs T2 times. However, the difference is that we
train the combined network, i.e., ck, at client side instead of
the renewed global model G as FedAvg. The whole learning
procedure is shown in Algorithm 1.

4) Layers Selection for Model Splicing: Obviously, the
global model generally has the better generalization ability
than the local models after aggregation. In contrast, the local
models show better performance on their corresponding local
datasets due to the difference among local trainsets. For a deep
neural network, we can call the first few layers as shallow
layers, and the counter-down few layers as deeper layers.
The training of deep neural networks is often a process of
extracting high-dimensional information from data. The deeper
the network layer, the more abstract the information processed.
Based on that we believe the shallow layers are tending to
focus more on common features of a dataset, while deeper
layers for more specific ones. Thus, the combination of the
shallow layers of the global model and the deeper layers of
local models could creat a stronger combined networks.

In our work, considering that the CNN network used
has a relatively simple structure, we choose the first two
convolutional networks as shallow layers, and the remaining
network structure as deeper layers. Our method can replace
the data set and network structure relatively easily. When
faced with a complex network structure, in order to achieve
the optimal training effect, further experiments are needed to
find the optimal network splicing method. But in this work,
our experiment results show that appropriate adjustments to
shallow layers will not cause a huge difference in classification
accuracy. Therefore, in the subsequent experimental sections,
we will focus on the method itself instead of the selection of
layers structure.

IV. EXPERIMENT

In this section, we first introduce the experimental settings,
implementation, and then present the experimental results
under both IID and Non-IID scenarios.

A. Experimental Settings

1) Datasets: In our experiments, we use three public
datasets in our experiment: MNIST, Fashion-MNIST, and
SVHN. For MNIST and Fashion-MNIST datasets, both of
them are divided into a training set of 60,000 images and a
test set of 10,000 images. For the SVHN dataset, 73,257 digits
are used for training and 26,032 digits for testing. The three
datasets are all used for the image classification task with 10
categories (i.e., C = 10).

2) Data Distribution Setting: Each of the three datasets is
randomly shuffled and divided into 10 shares for N different
clients. Given training data number D and labeled data pro-
portion α, there is D×α/N labeled data and D× (1−α)/N
unlabeled data for each client. To estimate our model perfor-
mance, we use labeled data amount and class categories in
each client to control the data distribution. Furthermore, we
consider non-IID and IID distribution settings respectively. For

Algorithm 1 FedTriNet
Require: DL and DU

1: procedure PHASE I (Pretrain)
2: Initialization: ω0 . initialize weights
3: for each communication round t = 1, 2, 3 · · · , T1 do
4: Lt = {lk}Nt

k=1 ← L = {lk}Nk=1 . random selection
of clients for server aggregation

5: for each client k ∈ Lt in parallel do
6: ∆ωk

t+1, l
k
t ← Local Update I(ωG

t , D
k
L) . local

model training with labeled data
7: end for
8: ωG

t+1 ← ωG
t + 1

Nt

(∑Nt

i=1 ∆ωk
t+1

)
. server

aggregation by weights averaging
9: end for

10: end procedure
11: procedure PHASE II (Pseudo Label Learning)
12: for each communication round t = 1, 2, 3 · · · , T2 do
13: Lt = {lk}Nt

k=1 ← L = {lk}Nk=1 . random clients
selection

14: for each client k ∈ Lt in parallel do
15: ∆ωk

t+1, l
k
t ←

Local Update II(ωG
t , ω

G
t−1, D

k
L, D

k
U , t) . client k’s local

training and pseudo labeling
16: end for
17: ωG

t+1 ← ωG
t + 1

Nt

(∑Nt

i=1 ∆ωk
t+1

)
. server

aggregation by weights averaging
18: end for
19: end procedure
20:
21: function LOCAL UPDATE I (ωG

t , D
k
L)

22: for i in local epochs do
23: for B1 in Dk

L do
24: lkt ← Ll

(
ωk
t , B1

)
. supervised loss

computation
25: ωk

t+1 ← ωk
t − η∇lkt . mini batch gradient

descent
26: end for
27: end for
28: return ωk

t+1, l
k
t . return updated weights and client

loss
29: end function
30: function LOCAL UPDATE II (ωG

t , ω
G
t−1, D

k
L, D

k
U , t)

31: ωk
t = ωG

t [0 : n] ∪ ωk
t−1[n+ 1 : m] . model

combination
32: Ŷ k

j = arg maxpk
j (Dk

U ) . joint prediction
33: if pkj (Dk

U ) > θ(t) then . compare joint prediction
value with threshold

34: D̂k
U ← Ŷ k

j . pseudo labeling
35: end if
36: for i in local epochs do
37: for B1, B2 in Dk

L, D̂
k
U do

38: lkt ← Lp

(
ωk
t , B1, B2

)
. pseudo labeled loss

computation
39: ωk

t+1 ← ωk
t − η∇lkt . mini batch gradient

descent
40: end for
41: end for
42: return ωk

t+1, l
k
t . return updated weights and client

loss
43: end function



the IID setting, both labeled and unlabeled data in the train
set will be shuffled randomly and allocated to each client. For
non-IID setting, every client owns all categories of unlabeled
data and only two categories of labeled data.

3) Baselines: To fairly validate the proposed FedTriNet
framework, we use one federated supervised learning model
FedAvg [1], and two federated semi-supervised learning mod-
els, which are FedSem [5] and FedMatch [4].

• FedAvg [1], proposed by McMahan, et al., presents how
to conduct federated learning of deep networks with
decentralized data based on iterative model averaging
under the communication cost constraints. Each client
updates local models by stochastic gradient descent and
the server performs model averaging. With empirical
evaluation, this approach is robust to unbalanced and non-
IID data distributions.

• FedSem [5], proposed by Abdullatif Albaseer, et al.,
combines pseudo labeling idea with federated semi-
supervised learning problems in the smart city applica-
tion. In this work, the training process is divided into
two phases. In phase one, with the existing labeled data
to supervise the training process, the local model obtains
the certain classification ability. With the model, the
local unlabeled data is labeled with the predicted value
as a pseudo-label. In phase two, the whole federated
framework will continue the same training process as in
Phase I with data with real labels and pseudo-labels..

• FedMatch [4] adopts the idea of consistency regulariza-
tion and designs two kinds of loss functions to guide
the training of the model, namely Inter-client Consistency
Loss and Data-level Consistency Regularization. The idea
of consistency regularization is that the output of the
predictor is expected to be as consistent as possible
between an original sample and the processed version by
data enhancement (the idea of consistency). In the process
of server parameter delegation, in addition to the original
model of the client, several models of other clients will
be sent to the client as helper agents. The final purpose of
local unsupervised training is to minimize the difference
between the prediction results of the local model and
the labels provided by each consensus model as small
as possible.

In the following subsections, we will compare the performance
of our model FedTriNet with the discussed baselines under
two different data distribution settings.

B. Implementation

When implementing all baselines and FedTriNet, we use
the same local model for each client. A Convolutional Neural
Network (CNN) is used for the image classification tasks
of three datasets. We adopt the weak data argumentation
technique on the three datasets for all the baselines and
FedTriNet, where the main process contains random reflect,
flip, contrast adjustment, grayscale, and crop. For all the IID
experiments, we set the local training epochs as 5 and total
communication rounds T as 100. For the non-IID setting,

the local training epoch is set to the same number as IID
along with other parameters. For MNIST, the pre-training stage
rounds T1 is 40 and pseudo label learning stage rounds T2 is
60; for Fashion-MNIST, T1 is 30 and T2 is 70; for SVHN, T1
is 60 and T2 is 40. Besides, the client number is fixed as 10.
The local training batch size is set as 50 for both labeled data
and unlabeled data.

C. Performance Evaluation for the IID Setting

Table I shows the performance of all the approaches un-
der the IID scenario. From Table I, we can observe that
FedTriNet shows the best performance with all the given
settings on the three datasets. Besides, with the increase of the
number of labeled data, the performance of all the approaches
increases. Although Fedsem also uses two-phase training,
it cannot even outperform the supervised method FedAvg.
The reason is that after phase I training, Fedsem generates
pseudo labels for all the unlabeled data, which are then used
for phase II training. Since the quality of pseudo labels is
pretty low when the number of labeled data is small, the
misleading information further hurts the learning of Phase II.
Thus, Fedsem performs worst compared with other baselines.
FedMatch uses data augmentation, inter-client consistency,
and disjoint learning techniques to achieve the second-best
performance for all the settings. It has 46.75% accuracy on
the MNIST dataset when the number of labeled data is set to
60 for all the clients, while FedAvg and Fedsem collapse. For
the experiments on the SVHN dataset, we can also see that the
FedMatch reaches 59.61% compared to the poor performance
of both FedAvg and Fedsem.

D. Performance Evaluation for the Non-IID Setting

In Table II, with the Non-IID setting, our proposed approach
FedTriNet still outperforms all the baselines. Especially
for the experiment with 6000 labeled data, the accuracy
of FedTriNet was 3.21% and 16.96% higher than that of
FedAvg on MNIST and SVHN, respectively. Compared with
the results listed in Table I, we find that all the accuracy drops.
This observation is in accord with the fact, that is, the Non-IID
setting is more challenging than the IID setting for federated
learning due to the data and label imbalance.

It is worth mentioning that Fedsem shows extreme dis-
comfort with Non-IID data, which has the greatest drop
in performance among all the methods. This phenomenon
further proves the fragility of the traditional self-training based
pseudo-labeling method. FedTriNet with the three-player
framework achieves the better ability for the heterogeneity
challenge and even achieves higher classification accuracy for
SVHN 3000 labeled data setting than the IID one.

E. Ablation Study

In this experiment, we aim to conduct the model in-
sight analysis removing each of the following modules in
FedTriNet, and the results are shown in Table III.

• Threshold Guarantee Mechanism. In the later stage of
model training, the threshold of pseudo-labeling control



TABLE I
ACCURACY ON THE THREE DATASETS UNDER THE IID SETTING, WHERE ALL CLIENTS HAVE THE SAME DISTRIBUTION.

Dataset MNIST Fashion-MNIST SVHN
# Labeled Data 60 600 6000 600 3000 6000 1000 3000 6000

FedAvg 29.26% 88.26% 96.46% 65.19% 74.54% 78.32% 27.82% 78.44% 87.77%
Fedsem 39.49% 84.54% 96.31% 45.33% 74.29% 78.78% 18.47% 76.22% 86.16%
FedMatch 46.75% 89.28% 97.14% 69.56% 77.28% 79.15% 59.61% 78.94% 88.26%
FedTriNet 77.25% 93.80% 97.56% 71.88% 78.01% 81.00% 63.99% 79.47% 89.48%

TABLE II
ACCURACY ON THE THREE DATASETS UNDER THE NON-IID SETTING.

Dataset MNIST Fashion-MNIST SVHN
# Labeled Data 60 600 6000 600 3000 6000 1000 3000 6000

FedAvg 26.29% 77.67% 91.79% 63.86% 70.56% 74.28% 19.38% 46.70% 66.45%
Fedsem 32.06% 74.12% 84.11% 17.06% 56.67% 63.93% 18.95% 49.02% 53.94%
FedMatch 69.28% 79.15% 93.20% 65.44% 71.26% 74.81% 54.34% 74.27% 79.42%
FedTriNet 79.60% 82.55% 95.00% 69.50% 72.77% 75.05% 57.26% 82.78% 83.41%

is maintained at a relatively high value, which ensures
that the pseudo-labeling data updated into the training
set has consistently high quality and does not affect the
model performance. The experiment results show that the
shutdown of the Threshold Guarantee Mechanism will
cause the performance drop by a few percent. The higher
the original accuracy is, the less the drop is. This indicates
that this mechanism can maintain the pseudo label quality
to avoid introducing misleading information.

• Fine-tuning. In order to make the network parameters
more suitable for local data, a new network constructed
from the first several layers of the new global model and
the several latter layers of the old local model will be
labeled with fine-tuning operation with the labeled data.
Another important reason for the fine-tuning process is
that if the labeled data and unlabeled data are trained with
the same model parameter respectively (that is, the model
parameters are shared), the unlabeled training process
may cause the model to forget the knowledge learned
from the labeled data. To make a fair comparison, we
compensate for additional local training epochs in the
latter half of the communication round during the training
process of the baseline models. From the results, we can
see that the fine-tuning operation is essential for model
learning.

• Pseudo Labeling. In the proposed FedTriNet, we first
pre-train the model and then conduct the pseudo label
learning. During the second phase, we remove the pseudo
labeling operation and directly use the combined network
ck and the labeled data to train the model. We can observe
that the performance of pseudo labeling significantly
drops compared with that of FedTriNet. These results
clearly demonstrate the importance of pseudo labeling for
federated semi-supervised learning.

F. Phase Round Combination

For a constant total communication round setting, differ-
ent phase I and phase II ratios may cause different model
performances. Due to the different amounts of information
in different images, a properly supervised learning training
period would benefit the model performance more than an
early entrance to the semi-supervised phase, a.k.a. pseudo label
stage. Table IV demonstrates the performance changes with the
different phase rounds under both IID and Non-IID settings.
Here the first column represents the different phase round
combinations. For example, 30 + 70 means the experiment
is 30 phase I rounds and 70 phase II rounds.

Our IID experiments on MNIST, Fashion-MNIST, and
SVHN show that under the parameter controlling condition,
the model’s performance will increase as the supervised learn-
ing round increases till reaching a peak and then decrease.
In our experiments, the most proper ratio for MNIST and
Fashion-MNIST is 50 rounds in phase I and 50 rounds in
phase II (50+50). For SVHN, the setting is 60+40 rounds.
While for the non-IID setting, there is no apparent accuracy
changing trends with the phase round combination for all
three datasets. The best results of the three datasets MNIST,
Fashion-MNIST, and SVHN are achieved with the settings of
50+50 rounds, 60+40 rounds, and 50+50 rounds, respectively.
The overall results indicate the robustness of our algorithm for
data distribution.

Fig 2 illustrates the loss and accuracy curves of phase
round combination experiment for three datasets under IID
setting. In loss curves, the start round of phase II usually
causes a plummet, which is because the pseudo-labeled data
is added into the training set. This results in the accuracy
fluctuation within a narrow range, which usually happens to
the curves whose finally performance is not satisfying, either.
A proper phase round combination will allow the model to
avoid introducing too many pseudo labeling errors into the
training. For instance, in the accuracy curve of SVHN, the



TABLE III
ABLATION EXPERIMENT ON THE THREE DATASETS UNDER THE IID SETTING.

Dataset MNIST Fashion-MNIST SVHN
# Labeled Data 600 1000 3000

FedTriNet 93.80% 78.07% 79.47%
-Threshold Guarantee Protection 90.22% 71.70% 74.93%
-Fine-tuning 87.20% 72.34% 71.30%
-Pseudo Labeling 86.50% 70.75% 72.73%
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Fig. 2. Phase Round Combination Results under IID setting

60+40 case achieves best result, while the 30+70 one does
not rise but fall. What noticeable else, is in phase II, the
loss curves firstly increase then decrease, which reflects the
correction function of our methods. Fig 3 shows the similar
phenomenons under NonIID setting, with larger training curve
fluctuation.

V. CONCLUSION

Federated learning is a new collaborative learning approach
without sharing client data and can apply to many real-world
applications. Although many federated learning approaches are
proposed, they mainly focus on the supervised setting, which
is not realistic due to the strict requirement that all the client
data have corresponding labels. Only a few studies are trying
to explore the power of unlabeled data, but they either need

to know the information of neighboring clients or introduce
low-quality pseudo labels into the model training.

To address these problems, in this paper, we propose an
effective pseudo labeling method with three players for feder-
ated semi-supervised learning called FedTriNet. FedTriNet
consists of two learning phases. In the first phase, we use
the labeled data to pre-train FedTriNet using FedAvg. In the
second phase, we aim to use unlabeled data by generating
high-quality pseudo labels. Towards this end, we propose to
use three networks, including one local model, one global
model, and one combined model from the previous two
models. Besides, a quality control mechanism is proposed to
generate a global-level threshold, which dynamically changes
with the global training rounds. The corresponding unlabeled
data can be added to the training set only when the max-
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Fig. 3. Phase Round Combination Results under Non-IID setting

TABLE IV
ACCURACY ON THE THREE DATASETS UNDER DIFFERENT PHASE I AND PHASE II ROUNDS COMBINATION FOR IID AND NON-IID DATA.

Setting IID Non-IID
Dataset MNIST Fashion-MNIST SVHN MNIST Fashion-MNIST SVHN

# Labeled Data 600 1000 3000 600 1000 3000

30+70 88.56% 74.79% 68.14% 80.94% 71.03% 72.31%
40+60 94.66% 75.84% 78.44% 80.65% 67.46% 82.36%
50+50 94.80% 79.05% 77.45% 87.06% 70.78% 84.57%
60+40 94.64% 77.67% 83.15% 85.51% 72.45% 77.57%

imum probability value is larger than this threshold. Finally,
FedTriNet retrains the combined model with the new training
data. We conduct experiments on three benchmark datasets to
show the effectiveness of the proposed FedTriNet compared
with state-of-the-art baselines.
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