
Reducing numerical precision preserves
classification accuracy in Mondrian Forests

Marc Vicuna1, Martin Khannouz1, Gregory Kiar2, Yohan Chatelain1, Tristan Glatard1
1Department of Computer Science and Software Engineering, Concordia University, Montreal, Canada

2Center for the Developing Brain, Child Mind Institute, New York, NY, USA

Abstract—Mondrian Forests are a powerful data stream clas-
sification method, but their large memory footprint makes them
ill-suited for low-resource platforms such as connected objects.
We explored using reduced-precision floating-point representa-
tions to lower memory consumption and evaluated its effect
on classification performance. We applied the Mondrian Forest
implementation provided by OrpailleCC, a C++ collection of data
stream algorithms, to two canonical datasets in human activity
recognition: Recofit and Banos et al. Results show that the pre-
cision of floating-point values used by tree nodes can be reduced
from 64 bits to 8 bits with no significant difference in F1 score. In
some cases, reduced precision was shown to improve classification
performance, presumably due to its regularization effect. We
conclude that numerical precision is a relevant hyperparameter in
the Mondrian Forest, and that commonly-used double precision
values may not be necessary for optimal performance. Future
work will evaluate the generalizability of these findings to other
data stream classifiers.

Index Terms—numerical precision, memory footprint, Mon-
drian Forests, human activity recognition, data streams, super-
vised classification, floating-point representation

I. INTRODUCTION

Mondrian Forests [1], an online variant of Random Forests,
are powerful data stream classifiers that have been used
in various applications. However, their considerable memory
footprint limits their applicability to low-memory devices such
as connected objects, which are common in online learning
settings. We aim to decrease this footprint by reducing the
numerical precision of floating-point data used throughout
their training and application. Beginning from the Orpail-
leCC [2] implementation of Mondrian Forests, we applied
this investigation to the popular use-case of human activity
recognition using the Recofit [3] and Banos et al [4] datasets.

The floating-point data standard (IEEE-754) [5] is univer-
sally supported across numerical computing. The popularity
of this standard is due to its flexibility to store both very large
and very small numbers consistently. The size of these data
structures, γ, is given by:

γ = p+ e+ 1, (1)

where p-bits are allocated to the mantissa (defining the value
itself), e-bits are allocated to the exponent (its order of
magnitude), and its sign fits in the remaining bit. Alongside
the blueprint for constructing floating-point data, the IEEE-
754 [5] norm specifies floating-point formats commonly used
in CPUs, such as binary32 (e = 8, p = 23) and binary64
(e = 11, p = 52), also known as single and double precision

or “floats” and “doubles”. Recently, deep learning has led to
the emergence of reduced formats such as Microsoft’s ms-
fp8 Minifloats (8 bits), IEEE-754 binary16 (16 bits), bfloat16
(16 bits) [6], or posits (8, 16, 32, and 64 bits) [7]. However,
reduced formats implicitly store less information compared to
double precision and should therefore be used carefully.

Mondrian classifiers are built upon like-named Mondrian
processes [8], which are multidimensional generalizations
of Poisson processes. These can be interpreted as a recur-
sive generative process that randomly makes univariate cuts
partitioning the data space hierarchically into k-dimensional
trees [9]. A key feature of these processes is that they are
self consistent: a Mondrian process operating on the partition
of some domain (e.g. a subdomain) is equivalent to a Mon-
drian process operating on the subdomain directly, allowing
simultaneous subprocesses. While Mondrian processes can be
infinite, Mondrian trees designate the classifiers formed by
finite Mondrian processes, akin to decision trees. Each split
is constructed by randomly selecting a feature and threshold,
where the probability of selection is proportional to the
normalized range of values for the feature. Finally, Mondrian
Forests are constructed by ensembling a group of Mondrian
trees, akin to Random Forest classifiers.

Data stream classifiers including Mondrian Forests, Micro-
Cluster Nearest Neighbours [10], Hoeffding Trees [11], and
simple Feedforward Neural Networks [12] are all commonly
used in online contexts and were previously compared in [13]
in the context of human activity recognition. Results showed
superior performance of Mondrian Forests, and Hoeffding
Trees. However, both methods remain too memory intensive
for connected objects where memory is typically in the order
of O(100KB) [14]. Without compromising the breadth or
depth of constructed forests, typically optimized hyperparame-
ters which have a considerable impact on model performance,
reducing the numerical precision used would potentially en-
able their application on memory-constrained platforms. How-
ever, given the inter-dependence of these parameters on model
performance, numerical precision, memory consumption, and
model parameterization must be studied together. This paper
uniquely quantifies the impact of reducing numerical precision
on the performance of Mondrian Forests classifiers for activity
recognition and evaluates the impact these results have on their
portability.

ar
X

iv
:2

10
6.

14
34

0v
1 

 [
cs

.L
G

] 
 2

8 
Ju

n 
20

21



II. MATERIALS AND METHODS

Using Verificarlo [15], the numerical precision of Mondrian
Forest classifiers as implemented in OrpailleCC was controlled
and modified. The reduced-precision models were tested with
multiple human activity recognition datasets, Recofit and
Banos et al., and performance was evaluated with F1 score.

A. Mondrian Forest Implementation

OrpailleCC’s implementation of Mondrian Forests pre-
allocates a fixed amount of memory shared by all the trees
in the forest, leading to a constant memory footprint. When
the amount of allocated memory is reached, tree growth is
stopped in the forest.

Mondrian trees are tuned using three parameters: base count,
discount factor, and budget. The base count is used to initialize
the prediction in the root of the tree, the discount factor
influences how reliant nodes are upon their parent prediction,
and the budget controls the tree depth. In our experiments, we
use the same sets of hyperparameters as in [13] (Table I).

TABLE I: Hyperparameters used in the Mondrian Forests

Number of trees Base count Discount Budget
1 0.0 1.0 1.0
5 0.0 1.0 0.4
10 0.0 1.0 0.4
50 0.0 1.0 0.2

Under memory constraints, increasing the number of trees
does not necessarily imply better performance as it reduces
tree depth. We tested Mondrian Forests with 1, 5, 10 and 50
trees, and in configurations with 0.6 MB, 1.2 MB or 3 MB of
memory allocated.

B. Simulating Reduced Precision

The experiments presented here rely on Verificarlo [15],
a tool that allows for the perturbation and manipulation of
floating-point data. Verificarlo is an LLVM-based compiler
that instruments floating-point instructions through different
backends. The VPREC [16] backend (for “Virtual PRE-
Cision”) was used here to simulate reduced floating-point
formats. VPREC computes each instrumented floating-point
operation using the original format (double precision in our
case) and rounds the result to the desired precision, thereby
ensuring correct rounding. VPREC also checks that the modi-
fied exponent is in the requested dynamic range [emin, emax],
where emin = 2− 2e−1 and emax = 2e−1 − 1.

We compared two instrumentation approaches to reduce the
precision of Mondrian Forests in OrpailleCC:

a) Node instrumentation (NI): reduces floating-point
precision only in tree nodes bounds, since most of the memory
used by the forest is occupied by nodes. For the node instru-
mentation, new node bounds are rounded only when they are
stored. This approach reduces memory consumption at most
by half, as in OrpailleCC the memory occupied by nodes is
equally divided between integers and floating-point numbers.

b) Whole instrumentation (WI): reduces precision in all
floating-point values, i.e., node bounds, hyperparameters, and
random splits. While whole instrumentation only marginally
reduces memory consumption compared to node instrumenta-
tion, it implies that most floating-point calculations could be
done in a globally reduced floating-point format, leading to
faster computations and lower energy consumption.

For both instrumentations, we tested Mondrian Forests on
52 levels of precision, corresponding to each precision ranging
from the maximum for 64-bit floating-point data down to a
single bit (p in Equation 1). We also tested various exponent
lengths (e in Equation 1) ranging from 11 to 2.

C. Datasets

We tested reduced precision on the two publicly-available
datasets in human activity recognition. The Banos et al.
dataset [4], [17] (henceforth referred to as “Banos”) is a
human activity dataset with 17 participants and 9 sensors per
participant. Each sensor samples 3D acceleration, gyroscope,
and magnetic field, as well as orientation in a quaternion
format, producing a total of 13 values. Sensors were sampled
at 50 Hz, and each sample was associated with one of 33
possible activities. In addition to the 33 activities, an extra ac-
tivity labelled 0 indicated no specific activity. We preprocessed
the Banos dataset using non-overlapping windows of one
second (50 samples) and 6 axes (acceleration and gyroscope
of the right forearm sensor). We computed the average and
the standard deviation over the window as features for each
axis and assigned the most frequent label to the window. To
ensure that our results were independent of the order of the
data points in the dataset, 7 random orderings were tested.

The second dataset, Recofit [3], is a human activity dataset
containing 94 participants. Similar to the Banos dataset, the
activity labeled 0 indicated no specific activity and similar
activities were merged (see Table 2 in [18]). We preprocessed
the dataset similarly to the Banos, using non-overlapping
windows of one second and 6 axes of data (acceleration and
gyroscope) from one sensor. From these 6 axes, the average
and the standard deviation over the window were used as
features. Previously reported F1 scores were globally much
lower in this dataset, which is hypothesized to be due to the
higher number of participants.

III. RESULTS

We compared the classification performance obtained with
the node (NI) and whole (WI) instrumentations to the original
double precision Mondrian Forests implementation in Orpail-
leCC. F1 scores were evaluated using the prequential error,
meaning that for each new data point the model was first tested
and then trained. We computed the resulting F1 score every
50 elements.

A. Reduced precision minimally affects performance

Figure 1 shows the difference in F1 scores (∆F1 =
F1p=i −F1p=52) between reduced-precision and double pre-
cision classifiers across instrumentations and datasets. All



(a) (b)

(c) (d)

Banos (14.2K elements) Recofit (84.8K elements)
Datasets

N
od

e
W

ho
le

In
st

ru
m

en
ta

tio
ns

Fig. 1: Difference between the F1 scores obtained at reduced and double precision (p = 52 bits) with 3.0 MB of memory
and 5 trees. Negative values indicate that the instrumented implementation performed worse than the original. Color shades
represent the standard deviation in the corresponding Mondrian Forest. The grey lines at −0.05, 0.05 are for reference only.
The 7 ordering of data points tested in Banos performed similarly.

datasets have been processed with an exponent length of 11
bits and with 3.0 MB of memory.

Across all configurations, the F1 score difference stabilized
within approximately the first 25% of the dataset and remained
stable beyond that point, indicating an overall good tolerance
of Mondrian Forests to low precision.

With node instrumentation, reductions in F1 scores re-
mained within the standard deviation of performance for
configurations with p ≥ 2 (Figures 1a and 1b), indicating
that using a low precision for the node bounds has almost
no influence on the F1 score. This can likely be attributed to
the randomness of Mondrian Forests: given the randomness
of the imposed splits, performance does not depend highly on
their precision. Generally, the error due to reduced precision
remains within the existing randomness of node bounds.

In contrast, whole instrumentation (WI) shows significant
deviations in F1 scores for configurations with p ≤ 6 (Figures
1c and 1d), indicating the high impact of precision loss
in model hyperparameters. Distinctly, reducing the precision
below p = 6 decreased the F1 score in the Banos dataset but
increased the F1 score in the more complex Recofit dataset.

Observed differences between NI and WI stem from low-
precision representations of the split thresholds and bud-
get, since all other hyperparameters can be represented pre-
cisely with low precision (see Table I). Low-precision split
bounds and budget both lead to increased regularization.
Low-precision split bounds reduce minimal distances between
random splits, while a low-precision budget reduces tree depth.
In complex datasets such as Recofit, which contain numer-
ous activity classes and participants, regularization reduces



overfitting. In contrast, simpler datasets such as Banos may
not benefit from this form of regularization since the risk for
overfitting is reduced.

B. Reduced exponent size unimpactful down to 4 bits

Table II shows F1 score differences (∆F1 = F1e=i −
F1e=11) between reduced-exponent and full-exponent Mon-
drian Forests. All classifiers used 52 bits of precision. The
reported F1 score differences were calculated after having
processed all the data points in the stream.

TABLE II: F1 score differences with reduced exponent length

Instru Dataset Memory Trees Exponent length e
2 bits 3 bits 4 bits 5 bits

NI Banos 0.6 MB 1 -0.4321 -0.0446 0.0000 0.0000
5 -0.5374 -0.0157 0.0000 0.0000
10 -0.5344 -0.0173 0.0000 0.0000
50 -0.3971 -0.0047 0.0000 0.0000

1.2 MB 1 -0.4696 -0.0904 0.0000 0.0000
5 -0.5937 -0.0275 0.0000 0.0000
10 -0.5805 -0.0217 0.0000 0.0000
50 -0.4771 -0.0045 0.0000 0.0000

3.0 MB 1 -0.4628 -0.0878 0.0000 0.0000
5 -0.6334 -0.0404 0.0000 0.0000
10 -0.6396 -0.0331 0.0000 0.0000
50 -0.5482 -0.0155 0.0000 0.0000

Recofit 0.6 MB 1 -0.1763 -0.1291 -0.0031 0.0000
5 -0.1491 -0.1070 -0.0009 0.0000
10 -0.0996 -0.0700 0.0000 0.0000
50 -0.0482 -0.0225 0.0000 0.0000

1.2 MB 1 -0.1948 -0.1470 -0.0038 0.0000
5 -0.1802 -0.1388 -0.0025 0.0000
10 -0.1501 -0.1090 -0.0009 0.0000
50 -0.0683 -0.0408 0.0000 0.0000

3.0 MB 1 -0.2127 -0.1601 -0.0042 0.0000
5 -0.2214 -0.1726 -0.0018 0.0000
10 -0.1966 -0.1521 -0.0008 0.0000
50 -0.1003 -0.0717 -0.0001 0.0000

WI Banos 0.6 MB 1 N/A -0.4628 -0.0006 0.0000
5 N/A -0.5590 -0.0137 0.0000
10 N/A -0.5404 -0.0309 0.0000
50 N/A -0.3984 -0.1729 0.0000

1.2 MB 1 N/A -0.4840 -0.0002 0.0000
5 N/A -0.6130 -0.0009 0.0000
10 N/A -0.5937 -0.0078 0.0000
50 N/A -0.4798 -0.1351 0.0000

3.0 MB 1 N/A -0.4923 -0.0001 0.0000
5 N/A -0.6571 -0.0031 0.0000
10 N/A -0.6586 -0.0091 0.0000
50 N/A -0.5590 -0.1388 0.0000

Recofit 0.6 MB 1 N/A -0.1856 -0.0121 0.0000
5 N/A -0.1552 -0.0389 0.0000
10 N/A -0.1069 -0.0260 0.0000
50 N/A -0.0548 -0.0260 0.0000

1.2 MB 1 N/A -0.2066 0.0088 0.0000
5 N/A -0.1874 -0.0017 0.0000
10 N/A -0.1577 -0.0235 0.0000
50 N/A -0.0753 -0.0220 0.0000

3.0 MB 1 N/A -0.2237 0.0159 0.0000
5 N/A -0.2321 0.0360 0.0000
10 N/A -0.2058 0.0212 0.0000
50 N/A -0.1073 -0.0107 0.0000

For both datasets and instrumentations, all tree numbers, and
all memory values, the F1 score did not significantly change
until the exponent length was reduced to ≤ 3 bits, with some
exceptions in WI. For lower exponents lengths, forests with
larger numbers of trees tended to perform better. The whole
instrumentation at e = 2 was not evaluated since it causes
segmentation faults due to the creation of infinite values. For
the tested datasets, an exponent size of 4 bits may be used
without loss of classification performance. For other datasets,
this limit could likely be estimated given awareness of the
dynamic range of the acquired signals.

C. Larger forests are more robust to reductions in precision

Table III shows F1 score differences between reduced and
double precision for each set of tested hyperparameters. All
classifiers used an exponent length of 11 bits. As before, the
reported F1 score differences were calculated after having
processed all the complete stream of data.

TABLE III: F1 score differences with reduced precision

Instru Dataset Memory Trees Precision p
1 bit 2 bits 3 bits 4 bits 5 bits 6 bits

NI Banos 0.6 MB 1 -0.0514 -0.0132 0.0119 0.0146 0.0135 0.0134
5 -0.0032 0.0087 0.0098 -0.0065 0.0019 0.0007
10 -0.0070 -0.0011 -0.0014 0.0012 0.0007 -0.0022
50 -0.0077 -0.0026 -0.0040 -0.0029 -0.0006 -0.0015

1.2 MB 1 -0.0561 -0.0274 -0.0082 -0.0114 -0.0022 -0.0019
5 -0.0280 -0.0130 -0.0005 -0.0045 0.0013 -0.0025
10 -0.0152 -0.0030 -0.0049 0.0021 0.0040 -0.0029
50 -0.0036 0.0008 -0.0007 0.0008 0.0014 0.0027

3.0 MB 1 -0.0692 -0.0323 -0.0058 -0.0070 0.0004 0.0006
5 -0.0257 -0.0060 0.0037 -0.0022 0.0037 0.0017
10 -0.0155 0.0004 0.0001 0.0042 0.0014 0.0029
50 -0.0033 0.0022 -0.0006 -0.0010 0.0003 0.0012

Recofit 0.6 MB 1 -0.0063 -0.0033 -0.0009 -0.0034 -0.0004 -0.0024
5 -0.0024 0.0003 0.0000 -0.0013 -0.0013 -0.0019
10 0.0006 0.0014 0.0005 0.0002 0.0012 0.0009
50 0.0018 0.0006 0.0005 0.0003 0.0008 0.0001

1.2 MB 1 -0.0154 -0.0051 -0.0012 -0.0014 -0.0025 -0.0012
5 -0.0031 -0.0011 -0.0002 -0.0004 -0.0007 0.0001
10 -0.0005 0.0025 0.0023 0.0010 0.0026 0.0010
50 0.0018 -0.0006 0.0002 -0.0010 0.0001 -0.0005

3.0 MB 1 -0.0140 -0.0072 -0.0007 -0.0005 -0.0005 -0.0003
5 -0.0036 -0.0001 0.0018 -0.0001 0.0007 -0.0004
10 -0.0026 0.0019 0.0013 -0.0007 0.0012 0.0000
50 0.0007 0.0001 -0.0004 -0.0003 0.0004 -0.0011

WI Banos 0.6 MB 1 -0.0755 -0.0570 -0.0330 -0.0239 -0.0072 -0.0064
5 -0.0935 -0.0603 -0.0272 -0.0124 -0.0055 -0.0059
10 -0.1150 -0.0510 -0.0172 -0.0090 -0.0038 -0.0041
50 -0.2147 -0.1505 -0.0773 -0.0111 0.0020 0.0011

1.2 MB 1 -0.0705 -0.0647 -0.0271 -0.0193 -0.0165 0.0016
5 -0.1087 -0.0678 -0.0309 -0.0177 -0.0098 -0.0069
10 -0.1203 -0.0624 -0.0217 -0.0107 -0.0011 -0.0030
50 -0.2223 -0.1351 -0.0513 -0.0049 0.0025 0.0001

3.0 MB 1 -0.0737 -0.0660 -0.0331 -0.0348 -0.0127 -0.0051
5 -0.1038 -0.0729 -0.0294 -0.0149 -0.0106 -0.0068
10 -0.1228 -0.0648 -0.0199 -0.0122 -0.0033 -0.0042
50 -0.2035 -0.0994 -0.0405 -0.0079 0.0023 0.0002

Recofit 0.6 MB 1 -0.0024 0.0121 0.0093 0.0058 0.0031 0.0014
5 0.0159 0.0214 0.0088 0.0076 0.0066 0.0026
10 0.0103 0.0206 0.0127 0.0123 0.0038 0.0024
50 0.0112 0.0077 0.0018 0.0019 0.0018 0.0007

1.2 MB 1 0.0084 0.0203 0.0099 0.0132 0.0046 0.0052
5 0.0197 0.0295 0.0176 0.0131 0.0043 0.0057
10 0.0091 0.0227 0.0135 0.0132 0.0052 0.0053
50 0.0071 0.0058 0.0010 0.0020 0.0021 0.0011

3.0 MB 1 0.0124 0.0282 0.0177 0.0148 0.0071 0.0105
5 0.0322 0.0426 0.0341 0.0268 0.0177 0.0115
10 0.0181 0.0356 0.0300 0.0264 0.0142 0.0060
50 0.0097 0.0147 0.0036 0.0038 0.0038 0.0004

For NI and WI, classifiers with a higher number of trees
were consistently less affected by the precision reduction. This
was likely because ensembling lowers the standard deviation
in final predictions. The exception to the above observation
was when using the WI for prediction of the Banos dataset
with p < 4, where the loss of useful complexity in the node
splits appeared amplified by the resulting lower number of
nodes per tree.

We also observed the F1 score differences at p > 2 were
non-significantly related to memory. The fact that the reduction
in precision did not affect memory allocations differently
suggests that these benefits could be translated to higher or
lower memory allocations than the ones tested.

As mentioned in Figure 1 and observed here consistently,
the NI performance was stable on every precision tested,
while WI had different tendencies depending on the dataset.
Computations based on Table III revealed that p = 3 was
the lowest precision where all results are within 2 standard
deviations of results at full precision.



(a) Banos (b) Recofit

Datasets

Fig. 2: F1 Score of the uninstrumented classifiers with 0.6 MB and 1.2 MB, NI and WI classifiers at 4 bit exponent and 3 bit
precision (8 bits) with 1.2 MB.

D. Expected memory footprint reduction

Under constant memory constraints, reducing memory con-
sumption could allow trees to grow deeper, thereby potentially
improving classification performance. To quantify this perfor-
mance improvement, Figure 2 shows performance using dou-
ble precision with 0.6 MB of memory and reduced precision (8
bits) with 1.2 MB of memory. As the execution platform does
not natively support 8-bit minifloats, we achieve similar mem-
ory scaling by doubling available memory. In reality, taking
into account integer values in the implementation, the amount
of memory consumed by the uninstrumented implementation
is only 1.8× larger than for NI or WI. Indeed, the memory
consumed by the uninstrumented implementation is I + F ,
where I is the memory consumed by integer values and F is
the memory consumed by floating-point values (I = F in our
implementation), while the memory consumed by NI or WI
with 8-bit minifloats is I + F/8. The limit of 0.6 MB was
selected as a realistic memory allocation bound for connected
objects [14].

The F1 score obtained with NI at 1.2 MB showed a
16.62% average increase (10.79% on Banos, 22.45% on
Recofit) compared to the uninstrumented classifier at 0.6 MB,
which quantifies the classification performance improvement
expected from reduced precision under memory constraints
on platform-supporting minifloats. Besides, at 1.2 MB, NI
has a very similar behavior to the uninstrumented 1.2 MB
classifier (superposed blue and red curves), confirming that 8-
bit bounds for nodes are practically possible and do not affect
performance.

As observed previously, WI was more variable, leading to
inconsistent F1 score improvements or decreases depending
on the number of trees.

IV. RELATED WORK

Mixed and reduced precision have been studied in various
contexts with popular classifiers in recent years. Rojek [19]
dynamically reduced the energy consumption of Random
Forest training up to 36% by using mixed precision data.
The objective of reducing energy consumption and memory
on tree-based classifiers is common to our goal, however,
Mondrian forests were not previously included in such a test.
It is also not known how tight the relationship is between
energy savings obtained in the context of supercomputers
versus those in connected devices. Since Random Forests and
Mondrian Forests are very similar, we hypothesize efficient
implementations of our improvements on Mondrian Forests
would lead to lower energy consumption.

Yuval et al. [20] demonstrated the use of online and offline
Random Forests to learn a parameterization from the coarse-
grained output of a three-dimensional high-resolution idealized
atmospheric model. In their experiment, numerical precision is
low (16 bits) and the classifiers are trained across resolutions.
We note from their work that online random forests have
more stable performance across resolutions than offline ones.
This could indicate our observed performance stability across
numerical precisions is correlated characteristics of online
algorithms.

Wang et al. [21] successfully reduced a wide spectrum of
DNN data and computations for training to 8-bit floating-point



numbers with a potential of 2-4x improved throughput. Recent
research [22] in Deep Neural Networks (DNNs) demonstrates
that DNNs can have more than 99% of their training reduced
to half precision with similar accuracy to corresponding unre-
duced training. The comparison of unreduced, dynamically
reduced, and mostly reduced trained performances is similar to
our approach, but deals with a very different machine learning
model, and very low-precision formats are not explored.

V. CONCLUSION

Node bounds in Mondrian Forests can be implemented
using an 8-bit floating-point format with negligible impact
on the F1 score, reducing the entire memory footprint by
approximately 1.8× compared to double precision implemen-
tations on 0.6 MB. For a given amount of memory, decreasing
node size allows Mondrian Forests to grow deeper trees or
have more trees, potentially resulting in higher performance.
In our configurations, performance improvements resulting
from memory reduction at 0.6 MB improved the F1 score
by 16.62% on average. Improvements are hypothesized to be
proportionally greater on lower memory at an optimal tree
number.

Reducing the precision of random cuts and the budget
hyperparameter in Mondrian trees may improve or worsen
classification performance depending on the dataset. While the
observed performance improvements are encouraging, future
research is required to fully understand when such improve-
ments can be expected. In the meantime, hyperparameterizing
numerical precision using variable-length floating-points for-
mats is a practical way to test this strategy.

Overall, reduced precision creates important opportunities
for data stream classification in memory-constrained platforms
such as connected objects. While we focused on reducing
memory consumption, reduced precision would also decrease
computation time substantially. Fully leveraging this result
requires reduced-precision floating-point formats to be imple-
mented in the target systems. Future research is required to
test this technique with other data stream classifiers.

VI. CODE & DATA AVAILABILITY

The data, experimental results, plots, and code involved in
our experiments are publicly available at https://github.com/
big-data-lab-team/benchmark-har-data-stream/tree/veripaille.

ACKNOWLEDGMENTS

We thank Compute Canada and Calcul Québec for providing
the computing infrastructure for our experiments. This work

REFERENCES

[1] B. Lakshminarayanan, D. M. Roy, and Y. W. Teh, “Mondrian forests:
Efficient online random forests,” arXiv preprint arXiv:1406.2673, 2014.

[2] M. Khannouz, B. Li, and T. Glatard, “OrpailleCC: a library for data
stream analysis on embedded systems,” in Journal of Open Source
Software, 2019.

is partially funded by the Canada Research Chairs program,
and by a Strategic Project Grant of the National Science and
Engineering Research Council.
[3] D. Morris, T. S. Saponas, A. Guillory, and I. Kelner, “Recofit: using

a wearable sensor to find, recognize, and count repetitive exercises,” in
Proceedings of the SIGCHI Conference on Human Factors in Computing
Systems, pp. 3225–3234, 2014.

[4] O. Baños, M. Damas, H. Pomares, I. Rojas, M. A. Tóth, and O. Amft,
“A benchmark dataset to evaluate sensor displacement in activity recog-
nition,” in Proceedings of the 2012 ACM Conference on Ubiquitous
Computing, pp. 1026–1035, 2012.

[5] M. S. Committee et al., “754-2019-ieee standard for floating-point
arithmetic,” 2019.

[6] D. Kalamkar, D. Mudigere, N. Mellempudi, D. Das, K. Banerjee,
S. Avancha, D. T. Vooturi, N. Jammalamadaka, J. Huang, H. Yuen,
et al., “A study of bfloat16 for deep learning training,” arXiv preprint
arXiv:1905.12322, 2019.

[7] J. L. Gustafson and I. T. Yonemoto, “Beating floating point at its
own game: Posit arithmetic,” Supercomputing Frontiers and Innovations,
vol. 4, no. 2, pp. 71–86, 2017.

[8] D. M. Roy and Y. Teh, “The Mondrian process,” in Advances in Neural
Information Processing Systems (D. Koller, D. Schuurmans, Y. Bengio,
and L. Bottou, eds.), vol. 21, Curran Associates, Inc., 2009.

[9] J. L. Bentley, “Multidimensional binary search trees used for associative
searching,” Commun. ACM, vol. 18, p. 509–517, Sept. 1975.

[10] M. Tennant, F. Stahl, O. Rana, and J. B. Gomes, “Scalable real-time
classification of data streams with concept drift,” Future Generation
Computer Systems, vol. 75, pp. 187–199, 2017.

[11] P. Domingos and G. Hulten, “Mining high-speed data streams,” in
Proceedings of the Sixth ACM SIGKDD International Conference on
Knowledge Discovery and Data Mining, KDD ’00, (New York, NY,
USA), p. 71–80, Association for Computing Machinery, 2000.

[12] T. L. Fine, Feedforward neural network methodology. Statistics for
engineering and information science., Springer, 2021.

[13] M. Khannouz and T. Glatard, “A benchmark of data stream classification
for human activity recognition on connected objects,” Sensors, vol. 20,
no. 22, p. 6486, 2020.

[14] M. Research, “Neblina datasheet: Neblina v2 module bluetooth® smart
9 axis motion tracking,” 2017.

[15] C. Denis, P. D. O. Castro, and E. Petit, “Verificarlo: Checking floating
point accuracy through monte carlo arithmetic,” in 2016 IEEE 23nd
Symposium on Computer Arithmetic (ARITH), pp. 55–62, IEEE, 2016.

[16] Y. Chatelain, E. Petit, P. de Oliveira Castro, G. Lartigue, and D. De-
four, “Automatic exploration of reduced floating-point representations
in iterative methods,” in European Conference on Parallel Processing,
pp. 481–494, Springer, 2019.

[17] O. Banos, M. A. Toth, M. Damas, H. Pomares, and I. Rojas, “Dealing
with the effects of sensor displacement in wearable activity recognition,”
Sensors, vol. 14, no. 6, pp. 9995–10023, 2014.

[18] A. Dehghani, O. Sarbishei, T. Glatard, and E. Shihab, “A Quantitative
Comparison of Overlapping and Non-Overlapping Sliding Windows for
Human Activity Recognition Using Inertial Sensors,” Sensors, vol. 19,
no. 22, p. 5026, 2019.

[19] K. Rojek, “Machine learning method for energy reduction by utilizing
dynamic mixed precision on gpu-based supercomputers,” Concurrency
and Computation: Practice and Experience, vol. 31, no. 6, p. e4644,
2019. e4644 cpe.4644.

[20] J. Yuval and P. A. O’Gorman, “Stable machine-learning parameterization
of subgrid processes for climate modeling at a range of resolutions,”
Nature Communications, vol. 11, no. 1, p. 3295, 2020.

[21] N. Wang, J. Choi, D. Brand, C. Chen, and K. Gopalakrishnan, “Train-
ing deep neural networks with 8-bit floating point numbers,” CoRR,
vol. abs/1812.08011, 2018.

[22] J. Osorio, A. Armejach, E. Petit, and M. Casas, “A dynamic approach
to accelerate deep learning training,” ICLR 2020 Conference Blind
Submission, 2020.

https://github.com/big-data-lab-team/benchmark-har-data-stream/tree/veripaille
https://github.com/big-data-lab-team/benchmark-har-data-stream/tree/veripaille

	I Introduction
	II Materials and Methods
	II-A Mondrian Forest Implementation
	II-B Simulating Reduced Precision
	II-C Datasets

	III Results
	III-A Reduced precision minimally affects performance
	III-B Reduced exponent size unimpactful down to 4 bits
	III-C Larger forests are more robust to reductions in precision
	III-D Expected memory footprint reduction

	IV Related Work
	V Conclusion
	VI Code & Data Availability
	References

