
XXX-X-XXXX-XXXX-X/XX/$XX.00 ©20XX IEEE

Detecting Fake Points of Interest from Location Data

Syed Raza Bashir
Department of Computer Science

Ryerson University
Toronto, Canada

syedraza.bashir@ryerson.ca

 Vojislav Misic
Department of Computer Science

Ryerson University
Toronto, Canada

vmisic@ryerson.ca

Abstract— The pervasiveness of GPS-enabled mobile devices
and the widespread use of location-based services have resulted in
the generation of massive amounts of geo-tagged data. In recent
times, the data analysis now has access to more sources, including
reviews, news, and images, which also raises questions about the
reliability of Point-of-Interest (POI) data sources. While previous
research attempted to detect fake POI data through various
security mechanisms, the current work attempts to capture the
fake POI data in a much simpler way. The proposed work is
focused on supervised learning methods and their capability to
find hidden patterns in location-based data. The ground truth
labels are obtained through real-world data, and the fake data is
generated using an API, so we get a dataset with both the real and
fake labels on the location data. The objective is to predict the
truth about a POI using the Multi-Layer Perceptron (MLP)
method. In the proposed work, MLP based on data classification
technique is used to classify location data accurately. The
proposed method is compared with traditional classification and
robust and recent deep neural methods. The results show that the
proposed method is better than the baseline methods.

Keywords—detection, location, point-of-interest, classification,
deep learning, multilayer perceptron

I. INTRODUCTION

Geolocation uses location technologies such as Global
Positioning System (GPS) or IP addresses to identify and track
the location of connected electronic devices [1], [2].
Geolocation is useful for tracking the movements of a mobile
phone user. Today, every mobile device can save its exact GPS
position in a few metres with high precision. This useful
information is often used to prove or refute evidence in criminal
cases. Furthermore, a variety of apps, including gaming and
social networking and government-developed apps, assist in
tracking infected COVID-19 users by interacting with a
centralized server using their GPS location. The goal of tracking
geolocations is to prevent dissemination of fake information or
to protect sensitive locations [3]. Despite so many
advancements, we find a few issues with the current geolocation
technology in smart devices, which are:

1. These apps may not detect the real information that is saved
in a suspect’s or infected person’s devices (e.g.,

1 https://www.statista.com/statistics/865413/most-popular-us-mapping-apps-
ranked-by-audience/

smartphone) and thus allow the device to store fabricated
false positions on remote locations (i.e., Google timeline).
When an individual’s phone transmits its location to
centralized servers, the data is not accurate and is essentially
useless.

2. These apps allow the users to change location to anywhere,
plan a map trajectory with customized movement speeds
and thus manipulate location-based apps such as games,
social platforms, etc.

Geolocation can also be easily manipulated in the cloud and
edge servers [4]. Usually, an application requests a geolocation
value from a GPS device driver. In this process, there are many
vulnerable points to forge the current geolocation of the devices.
Related studies have proposed various levels of Trusted
Computing Base (TCB) [5], which refers to the combination of
security mechanisms within a computer system, including
hardware, firmware, and software, responsible for enforcing a
security policy. While TCB is particularly useful for establishing
system-wide information and security policies, implementing it
is a time-consuming and costly process. It necessitates the
installation of numerous security-related files on a system. The
system must then ensure that the file system tree does not
contain any files that clearly violate system security. It also
requires regular updates, additions, and deletions of trusted files.

In this work, we take a straightforward approach to the
geolocation vulnerability issue. We propose to detect vulnerable
as well as false geolocations before they become part of the
geolocation-based lifecycle. Our work in this study is motivated
by the observations as discussed in the following example.

According to a Statistica1 report in April 2018, Google Maps
alone has approximately 154.4 million monthly users in the
United States. Waze, Apple Maps, Mapquest, Google Earth,
Yahoo Maps are other popular choices. Despite so much
investment and advanced Google Maps infrastructure, it has
become apparent that Google Maps contains many false
business contacts created by companies claiming to be close by
[6]. According to the advertisers, research experts, existing and
former Google employees, Google Maps is overwhelmed with
millions of bogus addresses and false names triggered by Google

queries [6]. If the issues mentioned above are not solved on time,
there could be an exponential number of fake addresses on
Google Maps. Google has responded [6] by removing thousands
of such counterfeit addresses. For example, they remove the
business listings from Google Maps2 . But even though many of
the bogus geolocations are eliminated, the damage they have
already caused is irreversible.

Furthermore, the tactics of the producers of fake
geolocations change over time, which we can refer to as data
drifts and concept drifts [7]. In concept drifts, the values of target
variables change over time. For example, the geolocation that is
labelled as true becomes fake. In data drifts, the statistical
properties of the data change, which may affect the model’s
predictions, and their correlation with other variables. Fake
geolocations may also be caused by system negligence, which is
likewise not taken into account.

In this paper, we propose a fake location-aware detection
method that can detect the fake locations which are either
generated from the users’ devices or stored in a centralized
server. We propose a supervised learning and classification
algorithm based on a feedforward artificial neural network using
a Multi-Layer Perceptron (MLP) network. Our proposed method
uses a feature combination that has the advantage of being
computationally simple compared to previous methods while
still being robust in fake location detection. The overall system
accuracy of the method is improved by optimizing the number
of feature vectors per sample, checking the sensitivity of the
hyperparameters in MLP and the total training samples. We
summarize our contributions as:

1. We crawled a dataset that consists of geolocations with
known GPS-precise locations. We also added the fake
geolocations in the dataset. The dataset provides the ground
truth labels for the geolocation accuracy.

2. We build a deep neural network-based prediction model that
can classify the geolocations into real or fake. The
experimental results on the dataset show the accuracy of our
model over the baseline methods for the fake geolocation
classification problem.

The rest of the paper is organized as follows: Section II
describes related work. Section III presents the proposed
methodology and Section IV describes the experimental setup.
Section V discusses the results and analysis and Section VI is
about the limitations. Finally, Section VII concludes the paper.

II. RELATED WORK

Points of Interest (POI) are being applied to address so many
problems it’s hard to keep track of them all. People and
businesses use POIs on a daily basis for a variety of reasons. The
POI data can be used in a variety of industries, but their true
value lies in their accuracy. When it comes to making mission-
critical decisions, POIs must be precise and accurate.

POI datasets3 are multi-sourced to provide accurate location
and company information for businesses, leisure, and
geographic features in many countries and territories around the
world. To ensure global consistency and ease of use, each
dataset is cross-referenced to identify relationships and insights,
and a hierarchical classification scheme is used to ensure global
consistency and ease of use. Despite the usefulness of these
datasets, data labelling to these POIs is a time-consuming
process, limiting the applicability of these datasets in research.

Google 4 scans millions of contributions with automated
detection systems and machine learning models. If the content
is found to violate the platform’s policies, it is automatically
removed. Despite such a robust design, the generality of Google
detection systems is limited by the availability of a large amount
of data, despite their robust design. The effect of fake POI has
already spread too far by the time such data becomes available.

The sources (humans, bots, agencies) that generate fake local
listings use the information found in emails, social-networks,
and other online platforms. Previous research [6], [8] has looked
into how these sources obtained email addresses and account
passwords through bulk registration to create fake geolocations.
Among these approaches are obtaining VoIP phone numbers
from telephony companies, obtaining mailing addresses from
postal offices to use as re-shipping hubs, and scamming people
into work-from-home scams and similar schemes to receive
their emails and addresses.

In some works [5], the Trusted Computing Base (TCB)
enforces system-wide information security regulations. TCB
allows user access to the trusted communication path by
installing and using the TCB functions. This approach requires
installing the TCB protocol on the host.

Black Hat App Search Optimization (ASO)5 is fraudulent
reviews and fake accounts in peer-opinion platforms, such as
app stores. The goal of Black Hat ASO is to improve the
visibility of apps to get more downloads quickly. It is found that
fraudulent posting activities are also connected to fake
geolocations [8], [9]. These works [8], [9] provide insights into
various aspects of fraudulent activities, such as automated
queries to Google, links manipulation, sneaky redirects, to detect
fake listing. However, such assumptions about the working
procedures of fraudsters are only based on empirical analysis
and lack an automated process. Manual processing to detect and
identify such listings is a time-consuming task.

Some works [10] also provide an overview of the range of
geolocation detection techniques, such as IP-based geolocation
techniques, which could potentially estimate the location of a
visiting user and perform geolocation cloaking attacks. In
contrast, we implement a simple and automatic method that can
detect fake geolocation in an automated fashion without too
much prior knowledge about the system and software
infrastructures. We present an algorithmic approach to detecting
fake geolocations. Our model can perform detection even in the
absence of manual analysis as in the previous works.

2 How we fight fake business profiles on Google Maps (blog.google)
3 https://www.precisely.com/product/precisely-points-of-interest/precisely-
points-of-interest

4 https://www.blog.google/products/maps/google-maps-101-how-contributed-
content-makes-maps-helpful/
5 https://thetool.io/2018/black-hat-aso

Fig. 1: General framework of Fake Point.

III. METHODOLOGY

A. Problem Definition

Given geolocation or POI, (In this paper, we use the term
POI or geolocation interchangeably) the task of fake POI
detection is to determine if a POI is fake or real. Formally, it can
be defined as:

 Input: Geolocation or POI

 Output: One of two labels: “fake” or “real”

B. Proposed Framework

We propose a deep learning-based detection system to detect
POIs (as fake or real) from a given dataset. In this section, we
briefly describe our proposed framework, that we name as Fake
Point (FP), which is shown in Fig. 1. The framework consists of
the following parts:

Data component takes as input the geolocation data. It has the
following modules:

 Preprocessing module takes input from the data storage
and preprocesses the data in a structured format.

 Data labelling module takes the structured data from
the preprocessing module and performs the labelling
task.

 MLP training module takes the labelled data and
prepare it for model training.

Classifier takes the input from the training module and the
testing data. The classifier, then fits the model on training data
and evaluates on the test data. This module predicts if
geolocation is fake or real, as its outcome.

Next, we dive into more details of the functionality and
operation of each part of Fig. 1.

6 Points of Interest | Data Portal - Region of Peel (peelregion.ca)

 Data component: The component inputs the POI data from
the data storage and prepares the data for the classification. We
use a real-time POI data set of Regional Municipality of Peel6

and added the synthetic information for the fake POI using
Faker7. More details about the dataset are given in Section IV. It
has preprocessing, data labeling and MLP training modules.

Preprocessing: This module processes the POI data that
involves converting raw data into a structured format. The goal
is to process and clean the data, detect missing values, handle
imbalanced data, and detect duplicate records. The whole
process transforms the data into the format that is ready to be
input into the proposed deep neural network-based model. We
perform a couple of steps in this regard: a) data cleaning by
handling the missing data either by ignoring the tuple or filling
the missing values manually where possible; b) cleaning noisy
(erroneous) data; c) handling imbalanced data.

Data Labelling: The input to the data labelling module is the
processed data, and output is the data that is labelled. We get the
ground truth data from the Peel Region Data Center from the
Government of Canada. The crawled data from this data centre
is accurate and updated regularly, which is also available under
an Open Data License. So, we consider the crawled data from
the Peel Region Data Center as having true labels. The data
using the Faker API is used to generate fake data. The usage of
Faker to create fake data labels is also seem in the literature [11],
so that portion of the data is considered to have ‘fake’ data
labels.

MLP Training: This module prepares the data for training
for the classifier model.

Classifier: The input to the classifier component is the
labelled data with ground truth labels. This component consists
of a deep neural network and is used to detect a POI as being
‘true’ or ‘fake’. We use the MLP neural network in this module,
discussed in Section III. This component takes the training part

7 Faker · PyPI

in that is used to fit the model, and it also takes as input the test
part that is used to evaluate the model. This component provides
training to the neural network. This component’s output is the
POI labeled as ‘true’ or ‘fake’.

C. Proposed Methodology

In this section, we discuss the proposed method and our
classifier in detail. First, we discuss the preliminaries and then
we go into the details of the model.

1) Preliminaries
A Perceptron is a supervised learning algorithm for binary

classifiers. The MLP is a deep neural network that extends the
perceptron to perform classification or regression, depending on
its activation function [12]. We choose to work with MLP in this
research because of its ability to solve the classification problem.
While other neural networks can also be used for classification,
in this study, we are more interested in the simplicity of the
solutions while achieving a higher accuracy goal. Our intuition
is to avoid excessive model complexity while maintaining some
control and interpretability in the modelling process.

A MLP is a feedforward artificial neural network that
produces outputs from a set of inputs. An MLP is described by
several layers of input nodes connected as a directed graph
between the input and output layers. MLP trains the network
using backpropagation. Backpropagation is a standard algorithm
for training feedforward neural networks that calculates the
gradients of a loss function concerning all the weights in the
network [13]. This paper uses the terms’ activation function’ and
the ‘loss function’ a few times. The difference between the two
functions is that the activation function activates the neuron
required for the desired output and converts linear input to non-
linear output. On the other hand, the loss function figures out the
model’s performance and finds how good the model can
generalize; it computes the error for every training sample.

A MLP consists of an input layer, one or more hidden layers,
and an output layer. The nodes (neurons) in the input layer
correspond to the number of input variables in the processed
data. When the data passes through the input layer, the values
are weighted and processed onto the hidden layer. The output of
the hidden layer can now be fed directly as input to another
hidden layer or taken as output. The number of neurons in the
output layer equals the number of outputs associated with each
input.

The problem discussed in this work is to detect if a POI is
real or fake. Next, we discuss the steps used in the classification
algorithm in detail.

2) Algorithm
Step 1: Feed the input data to the input layer. The input layer

consists of the neurons that receive inputs and pass them on to
the other layers. The number of neurons in the input layer are
equal to the attributes or features in the dataset. We represent our
input by the explanatory variables (predictors) as
(𝑥ଵ ,𝑥ଶ , … , 𝑥௡) ∈ 𝑋 . The input is multiplied by the assigned
weight values, and a bias value is added with each product,
which is shown in Equation (1):

 𝛼 = ෍ 𝑤௜

௡

௜ୀଵ
𝑥௜ + 𝑏 (1)

Here 𝛼 represents the weighted combination of inputs being
aggregated, 𝑤௜ refers to the weight with the input variable 𝑥௜
and b represents the bias associated with weight. The weights
are the strength or amplitude of a connection between two
neurons, frequently initialized to small random values, such as
0.0 to 1.0.

Step 2: The input 𝛼 is mapped to the output by an activation
function f, as shown in Fig. 2.

Fig. 2: Activation Function.

In Fig. 2, (𝑥ଵ, . . . , 𝑥୬) is the signal vector that gets
multiplied with the weights, (𝑤ଵ , 𝑤ଶ, . . . , 𝑤୬). This is followed
by accumulation (summation + addition of bias 𝑏). Finally, an
activation function 𝑓 is applied to this sum. Note that the
weights (𝑤ଵ, 𝑤ଶ, . . . , 𝑤୬) and the bias 𝑏 transform the input
signal linearly. Finally, the weighted sum obtained is turned into
an output signal y by feeding the weighted sum into a non-linear
activation function f (also called transfer function).

There are several activation functions for different use cases.
In this work, we apply the Rectified Linear Unit (ReLU)
activation function, which if the input is positive, outputs the
input directly; otherwise, it outputs zero. ReLU is also easier to
train and often achieves better performance [14] compared to
other activation functions, such as sigmoid, logistic, tanh, erf,
and similar. ReLu are also simple, faster to compute, and do not
suffer from vanishing gradients, so we choose to work with this
activation function in this work.

Step 3: We choose to work with cross-entropy [15], which is
commonly used in classification tasks. Cross entropy loss
function is an optimization function used for training
classification models that classify the data by predicting the
probability (value between 0 and 1) of whether the data belong
to one class or another class. Cross-entropy loss is commonly
used as the loss function for the models which has SoftMax
output (a generalization of logistic regression to multiple
dimensions) [15].

 Cross Entropy Classification:
Considering 𝑡(௝) and 𝑂(௝) as the predicted (also known as

target) output and actual output, respectively, for training
example j; and y represent the output units and O the output
layer, we define the loss function as shown in Equation (2):

𝐿(𝑊, 𝐵|𝑗) = ∑ ቀ𝑙𝑛(𝑂𝑦
(𝑗)

). 𝑡𝑦
(𝑗)

+ 𝑙𝑛(1 − 𝑂𝑦
(𝑗)

). (1 − 𝑡
𝑦
(𝑗))ቁ 𝑦∈𝛰 (2)

Step 4: In the next step, we minimize the loss function
𝐿(𝑊, 𝐵|𝑗) during the model training. Usually, the Stochastic
Gradient Descent (SGD) is used to minimize the loss function
and optimize the model’s hyperparameters [16] . Although
stochastic gradient descent is quick and memory-efficient, it is
difficult to parallelize without becoming slow. So, we use
Hogwild [17], which is a lock-free parallelization scheme to
address this issue of SGD. The Hogwild optimization algorithm
is given below in Algorithm 1.

Algorithm 1

1. Initialize global model parameters 𝑊, 𝐵

2. Distribute training data 𝒯 across nodes (can be disjoint or
replicated)

3. Iterate until convergence criterion reached:
3.1. For nodes 𝑛 with training subset 𝒯௡, do in parallel:

a. Obtain copy of the global model parameters 𝑊௡, 𝐵௡
b. Select active subset 𝒯௡௔ ⊂ 𝒯௡ (user-given number of

samples per iteration)
c. Partition 𝒯௡௔ into 𝒯௡௔௖ by cores 𝑛௖
d. For cores 𝑛௖ on node 𝑛 , do in parallel:

i. Get training example 𝑖 ∈ 𝒯௡௔௖
ii. Update all weights 𝑤௝௞ ∈ 𝑊௡, biases 𝑏௝௞ ∈ 𝐵௡

𝑤௝௞ ≔ 𝑤௝௞ − 𝛼
∂𝐿(𝑊, 𝐵|𝑗)

∂𝑤௝௞

𝑏௝௞ ≔ 𝑏௝௞ − 𝛼
𝜕𝐿(𝑊, 𝐵|𝑗)

𝜕𝑏௝௞

3.2. Set 𝑊, 𝐵 := 𝐴𝑣𝑔௡ 𝑊௡, 𝐴𝑣𝑔௡ 𝐵௡
3.3. Optionally score the model on a (potentially sampled)

train/validation scoring sets

In Algorithm 1, the weights and bias updates follow the
asynchronous algorithm to adjust each node’s parameters
incrementally 𝑊௡ , 𝐵௡ on example i. The 𝐴𝑣𝑔 notation
represents the final averaging of these local parameters across
all nodes to obtain the global model parameters and complete
training.

IV. EXPERIMENTAL SETUP

A. Data Set

We scraped the geolocation dataset from Regional
Municipality of Peel Open Data8. It contains around 1300 entries
in different categories that range from institutional to public
housing to early years centres. Some examples of the categories
contained within the dataset are:

 Arts, museum, and cultural spaces
 Emergency responder stations: fire, police, and

paramedics
 Institutional buildings: city/town halls, court houses,

libraries
 Hospitals, medical centres, and walk-in clinics
 Housing: public housing, co-operative housing, shelters
 Food banks

8 Points of Interest | Data Portal - Region of Peel (peelregion.ca)

 Long term care homes and retirement homes
 Post office
 Recreation centres and other municipal meeting places:

arenas, pools, community centres, meeting halls
 Settlement services and other related services for

immigrants and newcomers
 Shopping centres: plazas, big box centres, and malls
 Transportation: airports, major bus stations, and

passenger rail stations

In the original dataset, there are 19 attributes, out of which
we choose to work with some shown in Table I:

TABLE I. ATTRIBUTES USED.

Attributes Description

LM_ID Landmark ID

X Latitude

Y Longitude

LM_NAME Landmark Name

CATE Category (type) of place

STR_ADD Street Address

U Unit number

MUN Municipality

PR Province

PC Postal Code

PHONE Phone number

WEBSITE Website address

We use the Faker9 API to generate around 500 fake entries,
on the top of original data. We classified the real POI as ‘1’ and
fake as ‘0’.

B. Evaluation Metrics

Fake POI detection task is a binary decision problem, where
the detection result is either fake or real geolocation. To assess
the performance of our proposed model, we use the accuracy,
precision, recall and F1-score as the evaluation metrics. The
information about actual and predicted classifications is
determined by the confusion matrix as shown in Table II. True
Positive (TP) indicates that predicted fake samples are fake.
False Positive (FP) indicates that predicted real samples are fake.
False Negative (FN) indicates that predicted news samples are
real. True Negatives (TN) indicates that predicted real samples
are real.

TABLE II. CONFUSION MATRIX.

 Actual Fake Actual Real

Predicted Fake TP FP

Predicted Real FN TN

For the precision, recall, F1-score and accuracy, we perform

the specific calculation as:

Accuracy is the overall performance of the model and can be
defined as in Equation (3):

9 https://pypi.org/project/Faker/

 Accuracy =
்௉ ା ்ே

்௉ ା ்ே ା ி௉ ା ிே
 (3)

Recall is the coverage of actual positive samples and can be
defined as in Equation (4):

 Recall =
்௉

்௉ ା ிே
 (4)

Precision indicates how accurate are the positive predictions
in Equation (5):

 Precision =
்௉

்௉ ା ி௉
 (5)

F1 score indicates the hybrid metric useful for unbalanced
classes in Equation (6):

 F1 score =
ଶ்௉

ଶ்௉ ା ி௉ ା ிே
 (6)

We also test our model using Root Mean Square Error
(RMSE) is a standard method of calculating a model’s error in
predicting quantitative data. It measures the difference between
values predicted by a model and the actual values observed from
the environment that is being modelled.

We divide the dataset into three different parts: training set
(70%), validation set (15%) and testing set (15%). We use the k-
fold cross-validation to select the model parameters. We take 5
k folds. To handle the data imbalance problem, we use the
Synthetic Minority Oversampling Technique (SMOTE) [18],
where the synthetic samples are generated for the minority class.
We have used the adaptive learning rate algorithm ADADELTA
[19] that combines the benefits of learning rate and momentum
training to avoid slow convergence.

C. Hyperparameters

The hyperparameters used in this model are in Table III.

TABLE III. HYPERPARAMETERS WITH VALUES.

Hyperparameter Value

Hidden layer size 200

Epochs 10

Seed -1

Adaptive learning rate Enabled

Adaptive learning rate time decay factor 0.99

Epsilon for adaptive_rate 1e-08

Dropout ratio 0.5

L1 regularization 1e-5

L2 regularization 1e-5

Activation function ReLu

Optimizer Adadelta

Adaptive learning:𝝆(rho) for Adadelta 0.99

Adaptive learning:𝝐(epsilon), for Adadelta 0.99

We tested different L1 and L2 regularization values on the

RMSE and reported the result with the best performing values.
The performance of the model with varying values of L1-
regularization is shown below in Fig. 3. While using one value
for regularization, the other is fixed. We conduct experiments in
parallel with many values of the regularization terms. To explain
the significance of each of these values and their importance in
the sensitivity analysis, we are showing these results
sequentially in Fig. 3 and Fig. 4.

The result in Fig. 3 shows the best performance of our model
when the strength of L1 regularization is 1.0E-05, so we choose
to work with this value of L1-regularization in our experiments.

Fig. 3: RMSE as function of the value of L1.

We also test the performance of our model with l2-
regularization and show the results in Fig. 4:

Fig. 4: RMSE as function of the value of L2.

We see the best performance of the model with L2-

regularization value at 1.E-02, so we use this value in for our
model. We also test various hyperparameters like dropout rate,
adaptive learning rate and different number of epochs and report
the best performing hyperparameters in Table III.

D. Baselines

We have used a mix of machine learning and deep neural
network-based baselines. Our chosen baselines are listed below:

BERT (Bidirectional Encoder Representations from
Transformers) [20]: BERT is a Google-developed transformer-
based machine learning technique for pre-training in natural
language processing (NLP). We use the cased and uncased
versions of BERT.

Funnel Transformer [21]: Funnel Transformer is a
bidirectional transformer model similar to BERT, but with a
pooling operation after each block of layers, similar to how
traditional convolutional neural networks (CNN) in computer
vision work.

BART (Bidirectional and Auto-Regressive Transformer)
[22]: BART is a Seq2Seq model that combines a Bidirectional
Encoder (i.e. BERT) with an Autoregressive Decoder (i.e. GPT).

0.00

0.20

0.40

0.60

0.0E+00 1.0E-02 1.0E-03
1.0E-04

1.0E-05

R
M

SE

Value of L1

0.00

0.20

0.40

0.60

0.E+00 1.E-02 1.E-03 1.E-04
1.E-05

R
M

SE

Value of L2

RoBERTa (Robustly Optimized BERT Pretraining
Approach) [23]: RoBERTa model uses the original BERT
model and improves BERT for training the model longer, with
bigger batches, over more data.

Naive Bayes [24]: Naive Bayes is a probabilistic machine
learning algorithm based on the Bayes algorithm and used for
classification tasks.

SVM (Support Vector Machine) [25]: SVM is a supervised
machine learning algorithm that can be used to solve
classification and regression problems. We use the Linear
Kernel SVM.

LDA (Linear Discriminant Analysis) [26]: LDA is a tool for
data visualization, classification, and dimension reduction.

Logistic Regression [27]: Logistic Regression is a statistical
analysis method for predicting a data value based on previous
data set observations.

Decision Tree Classifier [28] : A simple representation for
classifying examples is a Decision Tree. It’s a type of
Supervised Machine Learning in which data is continuously
split according to a parameter.

Extra Trees Classifier [29]: Extra Trees Classifier it is an
ensemble learning method that uses decision trees as its
foundation.

Random Forest Classifier [30]: Random Forest Classifier is
an ensemble tree-based learning algorithm. It is a set of decision
trees derived from a subset of the training set chosen at random.

AdaBoost Classifier (Adaptive Boosting) [31]: AdaBoost is
an iterative ensemble method. The AdaBoost classifier creates a
strong classifier by combining several low-performing
classifiers, resulting in a high-accuracy classifier.

Gradient Boosting Classifier [32]: Gradient Boosting
Classifier is a set of machine learning algorithms that combine a
number of weak learning models to produce a powerful
predictive model.

Light GBM (Light Gradient Boosting Machine) [33]: Light
GBM is an open-source library that implements the gradient
boosting algorithm efficiently and effectively.

QDA (Quadratic Discriminant Analysis) [34]: QDA is a well
known supervised classification methods in statistical and
probabilistic learning.

k-NN Classifier (k-Nearest Neighbors) [35]: k-NN Classifier
is a machine learning algorithm that is very simple, easy to
understand, and versatile. It is based on the feature similarity
approach.

We optimize the hyperparameters settings for each baseline
and report the results using optimal hyperparameters.

V. RESULTS AND ANALYSIS

A. Model Performance

We show the learning curve for training loss and validation
loss during the model training as shown in Fig. 5.

Fig. 5: Learning Curve for Training Loss and Validation Loss.

As shown in Fig. 5, the validation loss is quite close to the
training loss. This shows a good fit for model training, defined
as a training and validation loss that gradually decreases to the
point of stability with a small gap between the two final loss
values [36]. Overall, the result in this experiment explains how
well it matches a set of observations. In most cases, such
goodness of fit indicator summarizes the difference between
observed and model-predicted values.

We also show the model performance on the test set and the
confusion matrix is shown below in Table IV.

TABLE IV. CONFUSION MATRIX ON TEST SET.

 Actual Fake Actual Real

Predicted Fake 365 23

Predicted Real 11 168

The results in Table IV shows that our model has 94%
precision, 97% recall and 95% F1-score. The model’s accuracy
is also 94%, which shows that 94% of the predictions are
correct. The precision of 94% means that we have fewer false
positives (POI is real but predicted as fake) and we can predict
a large number of true positives (POI is fake and predicted as
fake). The recall of 97% means we have many true positives
compared to the false negatives. Generally, a false negative (POI
is fake but predicted as real) is a worse error than a false positive
in the POI detection problem. Overall, we get fewer false
negatives than false positives (which are also fewer), that’s why
we get quite a high F1-score.

B. Overall Model Performance

The results and analysis of the proposed model against the
baselines are shown in Table V.

Overall, we can see that our proposed model has the highest
accuracy (95%), precision (94%), recall (95%), F1-score (92%)
and the average precision (69%) among all the baselines. The
superiority of our model in detecting the fake POI is attributed
to its design that is built upon a simple but carefully optimized
neural network model.

The Naive Bayes, SVM - Linear Kernel, Linear
Discriminant Analysis, Logistic Regression are machine
learning models that perform the second-best in terms of
accuracy, precision, and recall F1-score. This group of baselines

usually shows better performance when there is a clear margin
of separation between classes, which we can see in our data.

TABLE V. PROPOSED METHOD AND BASELINES RESULTS.

Baselines Accuracy Recall Precision F1

Fake Detection
Model (FDM)

0.94 0.97 0.94 0.95

BERT (uncased) 0.78 0.75 0.64 0.68

BERT (cased) 0.65 0.61 0.53 0.57

Funnel Transformer 0.50 0.68 0.52 0.59

BART 0.45 0.53 0.45 0.49

RoBERTa 0.45 0.51 0.46 0.48

Naive Bayes 0.83 0.73 0.69 0.71

SVM - Linear Kernel 0.82 0.82 0.85 0.84

LDA 0.81 0.81 0.85 0.83

Logistic Regression 0.80 0.80 0.84 0.82

Extra Trees
Classifier

0.79 0.79 0.85 0.82

Decision Tree
Classifier

0.79 0.78 0.85 0.81

Random Forest
Classifier

0.79 0.78 0.85 0.81

AdaBoost Classifier 0.78 0.78 0.84 0.81

Gradient Boosting
Classifier

0.77 0.76 0.85 0.80

Light GBM 0.76 0.79 0.81 0.80

QDA 0.75 0.77 0.80 0.79

k-NN Classifier 0.72 0.70 0.84 0.76

The Extra Trees, Decision Tree, Random Forest, AdaBoost,
Gradient Boosting, Light Gradient Boosting Machine, Quadratic
Discriminant Analysis and K Neighbors classifiers are the third
best performing models, which are also machine learning
models. The random forest and decision tree-based models build
multiple decision trees and merges them together to get a more
accurate and stable prediction. This exactly shows why some of
these tree-based models perform better. The gradient boosting
based algorithms also perform well when there is not much noise
in the data (as in our dataset). Our data is already clean and there
are not any outliers, so these models demonstrate their best.

The BERT (uncased), BERT (cased), Funnel Transformer,
BART and RoBERTa have demonstrated modest performance
among the neural baselines. This is probably because these
models are pre-trained on huge corpora that lack location-aware
or POI data. Typically, these transformer-based models perform
well in tasks where there is lot of textual data and when the test
data matches with the vocabulary of the pre-trained data. In our
setup, the data is unique (Peel region location data), much of
which is not possible to get from the pre-trained checkpoints like
Wikipedia corpus (as in BERT) or similar datasets.

C. Ablation Study

In this work, we try to show the feature importance for
different attributes through an ablation study. The significance
of each feature is a score based on how much a specific feature

has improved a model’s accuracy. We perform an ablation study
on our model by removing different features from the data one
at a time or in a group to see how it affects the model’s
performance.

The default model name is FDM, while model variants
during the ablation study are labelled using the following
convention. When we remove a part or feature of data, we
describe it with the feature name, followed by a minus sign. For
example, FDM(LM-) means FDM without LM_Name (see
Table I for attribute names). We have tested the model by
removing select features as well as select pairs of features, and
the results are shown in Table VI:

TABLE VI. ABLATION STUDY ON MODEL VARIANTS.

Model Variant RMSE

FDM 0.012

FDM (LM_ID -) 0.104

FDM (X -, Y -) 0.191

FDM (LM_NAME -) 0.176

FDM (CATE -) 0.144

FDM (STR_ADD -) 0.143

FDM (MUN -) 0.176

FDM (PR -) 0.185

FDM (PC-) 0.190

FDM (STR_ADD -, U -) 0.115

FDM (MUN -, PC -) 0.312

FDM (MUN -, PR -, PC -) 0.416

FDM (STR_ADD -, U -, MUN -) 0.465

FDM (STR_ADD -, U -, MUN -, PR -) 0.612

FDM (STR_ADD -, U -, MUN -, PR -, PC -) 0.714

The results in Table VI show that the default FDM model

has the lowest RMSE score, which shows that the model
performs best when we consider all the data features. The
model’s performance is degraded when we remove the x and y-
axis that indicates the location axis. Model performance is also
more negatively impacted when we remove the postal code. This
is understandable as the fake POI are primarily generated using
fake postal codes.

 As shown in Table VI, the model’s performance is most
impacted when we remove many features from the data. This is
understandable because when we give fewer features to the
model, the model will not have enough information to generalize
and to make accurate predictions.

The results also show when we remove the landmark name
(LM), the model performance is not much impacted. This is
probably because the location name is trivial. The location axis
(x, y) is a more important location indicator and can be used to
determine the truth about a location.

We also see that when we individually remove the street
address, municipal and province information, the model
performance is not much effected. This is because when we
remove these pieces of data individually, the other related
features have enough information to predict the location truth.
However, suppose we remove a combination of these pieces of
information, such as street address, province, municipality. In

that case, the model’s performance is impacted negatively (as
seen in FDM (STR_ADD -, U -, MUN -, PR -, PC -)) . This is
because removing too much of this information altogether tends
to weaken the model’s predictive power.

The dependencies of the attributes on each other also impact
the model performance. For example, street address,
municipality, the unit number are related attributes that depend
on each other to predict an outcome. These results probably
indicate that when two features are combined, they are more
significant in explaining relationships in the data than the same
two attributes separately.

Overall, the result suggests we should consider more
location-related features to detect the truth about a location. That
is why the default FDM model shows the best performance.

VI. LIMITATIONS

This work shows an attempt in finding a suitable
classification system for POI detection. There are some
limitations of data and methods that are important to note here.

First, we use regional data based on the criteria that we want
to model this problem on real-world data. While this solves the
problem, the dataset does not represent the fake POI detection at
a vast scale. It is critical to building diverse and challenging
datasets to inform better detectors against all types of fake POIs.
We recommend expanding our dataset approach and developing
a benchmark representing the veracity of location-based content
in various applications.

Second, this detection method is limited by the features
available at the time. This method does not take into account
scenarios in which there are user reviews, comments, or
concerns about the location’s veracity. Future work will include
analyzing textual content from various forums on real-time
events, keywords/hashtags, opinions/reviews, hyperlinks, and
similar on location-based data.

VII. CONCLUSION

In this paper, we study detecting fake geolocations for
various Points of Interest (POI). We get the real-world data for
ground truth labels, and we used the Faker API to generate
synthetic fake data. Our model is based on MLP neural network,
and we treat the problem of fake POI as binary classification.
Through detailed experiments, we show the superiority of our
model over several baseline models. Through ablation study, we
show the importance of various features to be included in the
model. In future, we plan to extend the model to include more
real-world data, and we also plan to expand our model to other
deep neural networks or towards an ensemble approach.

VIII. REFERENCES
[1] G. M. Djuknic and R. E. Richton, “Geolocation and assisted GPS,”
Computer, vol. 34, no. 2, pp. 123–125, 2001.
[2] M. Gondree and Z. N. J. Peterson, “Geolocation of data in the
cloud,” in CODASPY 2013 - Proceedings of the 3rd ACM Conference on Data
and Application Security and Privacy, 2013, pp. 25–36, doi:
10.1145/2435349.2435353.
[3] P. S. Peixoto, D. Marcondes, C. Peixoto, and S. M. Oliva,
“Modeling future spread of infections via mobile geolocation data and
population dynamics. An application to COVID-19 in Brazil,” PloS one, vol.
15, no. 7, p. e0235732, 2020.

[4] D. W. Chadwick et al., “A cloud-edge based data security
architecture for sharing and analysing cyber threat information,” Future
Generation Computer Systems, vol. 102, pp. 710–722, 2020.
[5] M. Firdhous, O. Ghazali, and S. Hassan, “A trust computing
mechanism for cloud computing with multilevel thresholding,” in 2011 6th
International Conference on Industrial and Information Systems, 2011, pp.
457–461.
[6] R. Copeland and K. Bindley, “Millions of Business Listings on
Google Maps Are Fake and Google Profits,” Wall Street Journal, 2019.
[7] J. Gama, I. e Žliobait\.e, A. Bifet, M. Pechenizkiy, and A.
Bouchachia, “A survey on concept drift adaptation,” ACM computing surveys
(CSUR), vol. 46, no. 4, pp. 1–37, 2014.
[8] D. Y. Huang et al., “Pinning down abuse on Google maps,” in 26th
International World Wide Web Conference, WWW 2017, 2017, pp. 1471–1479,
doi: 10.1145/3038912.3052590.
[9] M. Rahman, N. Hernandez, R. Recabarren, S. I. Ahmed, and B.
Carbunar, “The art and craft of fraudulent app promotion in google play,”
Proceedings of the ACM Conference on Computer and Communications
Security, pp. 2437–2454, 2019, doi: 10.1145/3319535.3345658.
[10] M. Mansoori and I. Welch, “How do they find us? A study of
geolocation tracking techniques of malicious web sites,” Computers \&
Security, vol. 97, p. 101948, 2020.
[11] T. H.-C. Hsu, Practical security automation and testing: tools and
techniques for automated security scanning and testing in devsecops. Packt
Publishing Ltd, 2019.
[12] T. Kim, “Communicated by Simon Haykin Approximation by Fully
Complex Multilayer Perceptrons,” 2003.
[13] M. W. Gardner and S. R. Dorling, “ARTIFICIAL NEURAL
NETWORKS (THE MULTILAYER PERCEPTRON)-A REVIEW OF
APPLICATIONS IN THE ATMOSPHERIC SCIENCES,” 1998. Accessed:
Apr. 27, 2021. [Online].
[14] M. Hein, M. Andriushchenko, and J. Bitterwolf, “Why relu
networks yield high-confidence predictions far away from the training data and
how to mitigate the problem,” in Proceedings of the IEEE/CVF Conference on
Computer Vision and Pattern Recognition, 2019, pp. 41–50.
[15] Z. Zhang and M. R. Sabuncu, “Generalized cross entropy loss for
training deep neural networks with noisy labels,” 2018.
[16] L. Bottou, “Stochastic gradient descent tricks,” in Neural networks:
Tricks of the trade, Springer, 2012, pp. 421–436.
[17] F. Niu, B. Recht, C. Ré, and S. J. Wright, “Hogwild!: A lock-free
approach to parallelizing stochastic gradient descent,” arXiv preprint
arXiv:1106.5730, 2011.
[18] N. V Chawla, K. W. Bowyer, L. O. Hall, and W. P. Kegelmeyer,
“SMOTE: synthetic minority over-sampling technique,” Journal of artificial
intelligence research, vol. 16, pp. 321–357, 2002.
[19] M. D. Zeiler, “Adadelta: an adaptive learning rate method,” arXiv
preprint arXiv:1212.5701, 2012.
[20] J. Devlin, M.-W. Chang, K. Lee, and K. Toutanova, “Bert: Pre-
training of deep bidirectional transformers for language understanding,” arXiv
preprint arXiv:1810.04805, 2018.
[21] Z. Dai, G. Lai, Y. Yang, and Q. V Le, “Funnel-transformer: Filtering
out sequential redundancy for efficient language processing,” arXiv preprint
arXiv:2006.03236, 2020.
[22] M. Lewis et al., “BART: Denoising Sequence-to-Sequence Pre-
training for Natural Language Generation, Translation, and Comprehension,”
2020, pp. 7871–7880, doi: 10.18653/v1/2020.acl-main.703.
[23] Y. Liu et al., “RoBERTa: A Robustly Optimized BERT Pretraining
Approach,” 2019.
[24] I. Rish, “An Empirical Study of the Naïve Bayes Classifier An
empirical study of the naive Bayes classifier,” Cc.Gatech.Edu, no. January
2001, pp. 41–46, 2014.
[25] T. S. Furey et al., “Support vector machine classification and
validation of cancer tissue samples using microarray expression data,” 2000.
[26] S. Balakrishnama and A. Ganapathiraju, “Linear discriminant
analysis-a brief tutorial,” Institute for Signal and information Processing, vol.
18, no. 1998, pp. 1–8, 1998.
[27] S. Dreiseitl and L. Ohno-Machado, “Logistic regression and
artificial neural network classification models: A methodology review,”
Journal of Biomedical Informatics, vol. 35, no. 5–6, pp. 352–359, 2002, doi:
10.1016/S1532-0464(03)00034-0.
[28] S. R. Safavian and D. Landgrebe, “A Survey of Decision Tree
Classifier Methodology,” IEEE Transactions on Systems, Man and
Cybernetics, vol. 21, no. 3, pp. 660–674, 1991, doi: 10.1109/21.97458.

[29] M. Goetz, C. Weber, J. Bloecher, B. Stieltjes, H.-P. Meinzer, and K.
Maier-Hein, “Extremely randomized trees based brain tumor segmentation,”
Proceeding of BRATS challenge-MICCAI, pp. 6–11, 2014.
[30] M. Pal, “Random forest classifier for remote sensing classification,”
International Journal of Remote Sensing, vol. 26, no. 1, pp. 217–222, 2005,
doi: 10.1080/01431160412331269698.
[31] A. Vezhnevets and V. Vezhnevets, “‘Modest AdaBoost’ - Teaching
adaboost to generalize better,” 2005.
[32] A. Natekin, A. Knoll, and O. Michel, “Gradient boosting machines,
a tutorial,” 2013, doi: 10.3389/fnbot.2013.00021.
[33] J. Fan, X. Ma, L. Wu, F. Zhang, X. Yu, and W. Zeng, “Light
Gradient Boosting Machine: An efficient soft computing model for estimating
daily reference evapotranspiration with local and external meteorological data,”
Agricultural Water Management, vol. 225, p. 105758, 2019.
[34] S. Srivastava, M. R. Gupta, and B. A. Frigyik, “Bayesian quadratic
discriminant analysis.,” Journal of Machine Learning Research, vol. 8, no. 6,
2007.
[35] Y. Liao and V. R. Vemuri, “Use of k-nearest neighbor classifier for
intrusion detection,” Computers \& security, vol. 21, no. 5, pp. 439–448, 2002.
[36] M. J. Anzanello and F. S. Fogliatto, “Learning curve models and
applications: Literature review and research directions,” International Journal
of Industrial Ergonomics, vol. 41, no. 5, pp. 573–583, 2011.

