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Abstract— The pervasiveness of GPS-enabled mobile devices 
and the widespread use of location-based services have resulted in 
the generation of massive amounts of geo-tagged data. In recent 
times, the data analysis now has access to more sources, including 
reviews, news, and images, which also raises questions about the 
reliability of Point-of-Interest (POI) data sources. While previous 
research attempted to detect fake POI data through various 
security mechanisms, the current work attempts to capture the 
fake POI data in a much simpler way. The proposed work is 
focused on supervised learning methods and their capability to 
find hidden patterns in location-based data. The ground truth 
labels are obtained through real-world data, and the fake data is 
generated using an API, so we get a dataset with both the real and 
fake labels on the location data. The objective is to predict the 
truth about a POI using the Multi-Layer Perceptron (MLP) 
method. In the proposed work, MLP based on data classification 
technique is used to classify location data accurately. The 
proposed method is compared with traditional classification and 
robust and recent deep neural methods. The results show that the 
proposed method is better than the baseline methods. 

Keywords—detection, location, point-of-interest, classification, 
deep learning, multilayer perceptron 

I. INTRODUCTION  

Geolocation uses location technologies such as Global 
Positioning System (GPS) or IP addresses to identify and track 
the location of connected electronic devices [1], [2]. 
Geolocation is useful for tracking the movements of a mobile 
phone user. Today, every mobile device can save its exact GPS 
position in a few metres with high precision. This useful 
information is often used to prove or refute evidence in criminal 
cases. Furthermore, a variety of apps, including gaming and 
social networking and government-developed apps, assist in 
tracking infected COVID-19 users by interacting with a 
centralized server using their GPS location. The goal of tracking 
geolocations is to prevent dissemination of fake information or 
to protect sensitive locations [3]. Despite so many 
advancements, we find a few issues with the current geolocation 
technology in smart devices, which are: 

1. These apps may not detect the real information that is saved 
in a suspect’s or infected person’s devices (e.g., 

 
1 https://www.statista.com/statistics/865413/most-popular-us-mapping-apps-
ranked-by-audience/  

smartphone) and thus allow the device to store fabricated 
false positions on remote locations (i.e., Google timeline). 
When an individual’s phone transmits its location to 
centralized servers, the data is not accurate and is essentially 
useless. 

2. These apps allow the users to change location to anywhere, 
plan a map trajectory with customized movement speeds 
and thus manipulate location-based apps such as games, 
social platforms, etc. 

Geolocation can also be easily manipulated in the cloud and 
edge servers [4]. Usually, an application requests a geolocation 
value from a GPS device driver. In this process, there are many 
vulnerable points to forge the current geolocation of the devices. 
Related studies have proposed various levels of Trusted 
Computing Base (TCB) [5], which refers to the combination of 
security mechanisms within a computer system, including 
hardware, firmware, and software, responsible for enforcing a 
security policy. While TCB is particularly useful for establishing 
system-wide information and security policies, implementing it 
is a time-consuming and costly process. It necessitates the 
installation of numerous security-related files on a system. The 
system must then ensure that the file system tree does not 
contain any files that clearly violate system security. It also 
requires regular updates, additions, and deletions of trusted files. 

In this work, we take a straightforward approach to the 
geolocation vulnerability issue. We propose to detect vulnerable 
as well as false geolocations before they become part of the 
geolocation-based lifecycle. Our work in this study is motivated 
by the observations as discussed in the following example. 

According to a Statistica1 report in April 2018, Google Maps 
alone has approximately 154.4 million monthly users in the 
United States. Waze, Apple Maps, Mapquest, Google Earth, 
Yahoo Maps are other popular choices. Despite so much 
investment and advanced Google Maps infrastructure, it has 
become apparent that Google Maps contains many false 
business contacts created by companies claiming to be close by 
[6]. According to the advertisers, research experts, existing and 
former Google employees, Google Maps is overwhelmed with 
millions of bogus addresses and false names triggered by Google 



queries [6]. If the issues mentioned above are not solved on time, 
there could be an exponential number of fake addresses on 
Google Maps. Google has responded [6] by removing thousands 
of such counterfeit addresses. For example, they remove the 
business listings from Google Maps2 . But even though many of 
the bogus geolocations are eliminated, the damage they have 
already caused is irreversible. 

Furthermore, the tactics of the producers of fake 
geolocations change over time, which we can refer to as data 
drifts and concept drifts [7]. In concept drifts, the values of target 
variables change over time. For example, the geolocation that is 
labelled as true becomes fake. In data drifts, the statistical 
properties of the data change, which may affect the model’s 
predictions, and their correlation with other variables. Fake 
geolocations may also be caused by system negligence, which is 
likewise not taken into account. 

In this paper, we propose a fake location-aware detection 
method that can detect the fake locations which are either 
generated from the users’ devices or stored in a centralized 
server. We propose a supervised learning and classification 
algorithm based on a feedforward artificial neural network using 
a Multi-Layer Perceptron (MLP) network. Our proposed method 
uses a feature combination that has the advantage of being 
computationally simple compared to previous methods while 
still being robust in fake location detection. The overall system 
accuracy of the method is improved by optimizing the number 
of feature vectors per sample, checking the sensitivity of the 
hyperparameters in MLP and the total training samples. We 
summarize our contributions as: 

1. We crawled a dataset that consists of geolocations with 
known GPS-precise locations. We also added the fake 
geolocations in the dataset. The dataset provides the ground 
truth labels for the geolocation accuracy. 

2. We build a deep neural network-based prediction model that 
can classify the geolocations into real or fake. The 
experimental results on the dataset show the accuracy of our 
model over the baseline methods for the fake geolocation 
classification problem. 

The rest of the paper is organized as follows: Section II 
describes related work. Section III presents the proposed 
methodology and Section IV describes the experimental setup. 
Section V discusses the results and analysis and Section VI is 
about the limitations. Finally, Section VII concludes the paper. 

II. RELATED WORK 

Points of Interest (POI) are being applied to address so many 
problems it’s hard to keep track of them all. People and 
businesses use POIs on a daily basis for a variety of reasons. The 
POI data can be used in a variety of industries, but their true 
value lies in their accuracy. When it comes to making mission-
critical decisions, POIs must be precise and accurate. 

POI datasets3 are multi-sourced to provide accurate location 
and company information for businesses, leisure, and 
geographic features in many countries and territories around the 
world. To ensure global consistency and ease of use, each 
dataset is cross-referenced to identify relationships and insights, 
and a hierarchical classification scheme is used to ensure global 
consistency and ease of use. Despite the usefulness of these 
datasets, data labelling to these POIs is a time-consuming 
process, limiting the applicability of these datasets in research. 

Google 4  scans millions of contributions with automated 
detection systems and machine learning models. If the content 
is found to violate the platform’s policies, it is automatically 
removed. Despite such a robust design, the generality of Google 
detection systems is limited by the availability of a large amount 
of data, despite their robust design. The effect of fake POI has 
already spread too far by the time such data becomes available. 

The sources (humans, bots, agencies) that generate fake local 
listings use the information found in emails, social-networks, 
and other online platforms. Previous research [6], [8] has looked 
into how these sources obtained email addresses and account 
passwords through bulk registration to create fake geolocations. 
Among these approaches are obtaining VoIP phone numbers 
from telephony companies, obtaining mailing addresses from 
postal offices to use as re-shipping hubs, and scamming people 
into work-from-home scams and similar schemes to receive 
their emails and addresses. 

In some works [5], the Trusted Computing Base (TCB) 
enforces system-wide information security regulations. TCB 
allows user access to the trusted communication path by 
installing and using the TCB functions. This approach requires 
installing the TCB protocol on the host. 

Black Hat App Search Optimization (ASO)5 is fraudulent 
reviews and fake accounts in peer-opinion platforms, such as 
app stores. The goal of Black Hat ASO is to improve the 
visibility of apps to get more downloads quickly. It is found that 
fraudulent posting activities are also connected to fake 
geolocations [8], [9]. These works [8], [9] provide insights into 
various aspects of fraudulent activities, such as automated 
queries to Google, links manipulation, sneaky redirects, to detect 
fake listing. However, such assumptions about the working 
procedures of fraudsters are only based on empirical analysis 
and lack an automated process. Manual processing to detect and 
identify such listings is a time-consuming task. 

Some works [10] also provide an overview of the range of 
geolocation detection techniques, such as IP-based geolocation 
techniques, which could potentially estimate the location of a 
visiting user and perform geolocation cloaking attacks. In 
contrast, we implement a simple and automatic method that can 
detect fake geolocation in an automated fashion without too 
much prior knowledge about the system and software 
infrastructures. We present an algorithmic approach to detecting 
fake geolocations. Our model can perform detection even in the 
absence of manual analysis as in the previous works. 

 
2 How we fight fake business profiles on Google Maps (blog.google) 
3 https://www.precisely.com/product/precisely-points-of-interest/precisely-  
points-of-interest  

4 https://www.blog.google/products/maps/google-maps-101-how-contributed-
content-makes-maps-helpful/  
5 https://thetool.io/2018/black-hat-aso  



 

 
Fig. 1: General framework of Fake Point. 

 
III. METHODOLOGY 

A. Problem Definition 

Given geolocation or POI, (In this paper, we use the term 
POI or geolocation interchangeably) the task of fake POI 
detection is to determine if a POI is fake or real. Formally, it can 
be defined as: 

 Input: Geolocation or POI 

 Output: One of two labels: “fake” or “real” 

B. Proposed Framework 

We propose a deep learning-based detection system to detect 
POIs (as fake or real) from a given dataset. In this section, we 
briefly describe our proposed framework, that we name as Fake 
Point (FP), which is shown in Fig. 1. The framework consists of 
the following parts: 

Data component takes as input the geolocation data. It has the 
following modules:  

 Preprocessing module takes input from the data storage 
and preprocesses the data in a structured format. 

 Data labelling module takes the structured data from 
the preprocessing module and performs the labelling 
task.  

 MLP training module takes the labelled data and 
prepare it for model training. 

Classifier takes the input from the training module and the 
testing data. The classifier, then fits the model on training data 
and evaluates on the test data. This module predicts if 
geolocation is fake or real, as its outcome. 

Next, we dive into more details of the functionality and 
operation of each part of Fig. 1. 
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     Data component: The component inputs the POI data from 
the data storage and prepares the data for the classification. We 
use a real-time POI data set of Regional Municipality of Peel6 

and added the synthetic information for the fake POI using 
Faker7. More details about the dataset are given in Section IV. It 
has preprocessing, data labeling and MLP training modules. 

Preprocessing: This module processes the POI data that 
involves converting raw data into a structured format. The goal 
is to process and clean the data, detect missing values, handle 
imbalanced data, and detect duplicate records. The whole 
process transforms the data into the format that is ready to be 
input into the proposed deep neural network-based model. We 
perform a couple of steps in this regard: a) data cleaning by 
handling the missing data either by ignoring the tuple or filling 
the missing values manually where possible; b) cleaning noisy 
(erroneous) data; c) handling imbalanced data. 

Data Labelling: The input to the data labelling module is the 
processed data, and output is the data that is labelled. We get the 
ground truth data from the Peel Region Data Center from the 
Government of Canada. The crawled data from this data centre 
is accurate and updated regularly, which is also available under 
an Open Data License. So, we consider the crawled data from 
the Peel Region Data Center as having true labels. The data 
using the Faker API is used to generate fake data. The usage of 
Faker to create fake data labels is also seem in the literature [11], 
so that portion of the data is considered to have ‘fake’ data 
labels. 

MLP Training: This module prepares the data for training 
for the classifier model. 

Classifier: The input to the classifier component is the 
labelled data with ground truth labels. This component consists 
of a deep neural network and is used to detect a POI as being 
‘true’ or ‘fake’. We use the MLP neural network in this module, 
discussed in Section III. This component takes the training part 

7 Faker · PyPI 



in that is used to fit the model, and it also takes as input the test 
part that is used to evaluate the model. This component provides 
training to the neural network. This component’s output is the 
POI labeled as ‘true’ or ‘fake’. 

C. Proposed Methodology 

In this section, we discuss the proposed method and our 
classifier in detail. First, we discuss the preliminaries and then 
we go into the details of the model. 

1) Preliminaries 
A Perceptron is a supervised learning algorithm for binary 

classifiers. The MLP is a deep neural network that extends the 
perceptron to perform classification or regression, depending on 
its activation function [12]. We choose to work with MLP in this 
research because of its ability to solve the classification problem. 
While other neural networks can also be used for classification, 
in this study, we are more interested in the simplicity of the 
solutions while achieving a higher accuracy goal. Our intuition 
is to avoid excessive model complexity while maintaining some 
control and interpretability in the modelling process. 

A MLP is a feedforward artificial neural network that 
produces outputs from a set of inputs. An MLP is described by 
several layers of input nodes connected as a directed graph 
between the input and output layers. MLP trains the network 
using backpropagation. Backpropagation is a standard algorithm 
for training feedforward neural networks that calculates the 
gradients of a loss function concerning all the weights in the 
network [13]. This paper uses the terms’ activation function’ and 
the ‘loss function’ a few times. The difference between the two 
functions is that the activation function activates the neuron 
required for the desired output and converts linear input to non-
linear output. On the other hand, the loss function figures out the 
model’s performance and finds how good the model can 
generalize; it computes the error for every training sample. 

A MLP consists of an input layer, one or more hidden layers, 
and an output layer. The nodes (neurons) in the input layer 
correspond to the number of input variables in the processed 
data. When the data passes through the input layer, the values 
are weighted and processed onto the hidden layer. The output of 
the hidden layer can now be fed directly as input to another 
hidden layer or taken as output. The number of neurons in the 
output layer equals the number of outputs associated with each 
input. 

The problem discussed in this work is to detect if a POI is 
real or fake. Next, we discuss the steps used in the classification 
algorithm in detail. 

2) Algorithm 
Step 1: Feed the input data to the input layer. The input layer 

consists of the neurons that receive inputs and pass them on to 
the other layers. The number of neurons in the input layer are 
equal to the attributes or features in the dataset. We represent our 
input by the explanatory variables (predictors) as 
(𝑥ଵ ,𝑥ଶ , … , 𝑥௡ ) ∈ 𝑋  . The input is multiplied by the assigned 
weight values, and a bias value is added with each product, 
which is shown in Equation (1):  

      𝛼 = ෍ 𝑤௜

௡

௜ୀଵ
𝑥௜ + 𝑏 (1) 

Here 𝛼 represents the weighted combination of inputs being 
aggregated, 𝑤௜  refers to the weight with the input variable 𝑥௜ 
and b represents the bias associated with weight. The weights 
are the strength or amplitude of a connection between two 
neurons, frequently initialized to small random values, such as 
0.0 to 1.0.  

Step 2: The input 𝛼 is mapped to the output by an activation 
function f, as shown in Fig. 2. 

 
Fig. 2: Activation Function. 

In Fig. 2,  (𝑥ଵ, . . . , 𝑥୬)  is the signal vector that gets 
multiplied with the weights, (𝑤ଵ , 𝑤ଶ, . . . , 𝑤୬). This is followed 
by accumulation (summation + addition of bias 𝑏 ). Finally, an 
activation function 𝑓  is applied to this sum. Note that the 
weights (𝑤ଵ, 𝑤ଶ, . . . , 𝑤୬)  and the bias 𝑏  transform the input 
signal linearly. Finally, the weighted sum obtained is turned into 
an output signal y by feeding the weighted sum into a non-linear 
activation function f (also called transfer function).  

There are several activation functions for different use cases. 
In this work, we apply the Rectified Linear Unit (ReLU) 
activation function, which if the input is positive, outputs the 
input directly; otherwise, it outputs zero. ReLU is also easier to 
train and often achieves better performance [14] compared to 
other activation functions, such as sigmoid, logistic, tanh, erf, 
and similar. ReLu are also simple, faster to compute, and do not 
suffer from vanishing gradients, so we choose to work with this 
activation function in this work. 

Step 3: We choose to work with cross-entropy [15], which is 
commonly used in classification tasks. Cross entropy loss 
function is an optimization function used for training 
classification models that classify the data by predicting the 
probability (value between 0 and 1) of whether the data belong 
to one class or another class. Cross-entropy loss is commonly 
used as the loss function for the models which has SoftMax 
output (a generalization of logistic regression to multiple 
dimensions) [15]. 

      Cross Entropy Classification: 
Considering 𝑡(௝)  and 𝑂(௝)  as the predicted (also known as 

target) output and actual output, respectively, for training 
example j; and y represent the output units and O the output 
layer, we define the loss function as shown in Equation (2): 

𝐿(𝑊, 𝐵|𝑗) = ∑ ቀ𝑙𝑛(𝑂𝑦
(𝑗)

). 𝑡𝑦
(𝑗)

+ 𝑙𝑛(1 − 𝑂𝑦
(𝑗)

). (1 − 𝑡
𝑦
(𝑗))ቁ  𝑦∈𝛰    (2) 



Step 4: In the next step, we minimize the loss function 
𝐿(𝑊, 𝐵|𝑗) during the model training. Usually, the Stochastic 
Gradient Descent (SGD) is used to minimize the loss function 
and optimize the model’s hyperparameters [16] . Although 
stochastic gradient descent is quick and memory-efficient, it is 
difficult to parallelize without becoming slow. So, we use 
Hogwild [17], which is a lock-free parallelization scheme to 
address this issue of SGD. The Hogwild optimization algorithm 
is given below in Algorithm 1. 

Algorithm 1 

1. Initialize global model parameters 𝑊, 𝐵 

2. Distribute training data 𝒯 across nodes (can be disjoint or 
replicated) 

3. Iterate until convergence criterion reached: 
3.1. For nodes 𝑛 with training subset 𝒯௡, do in parallel: 

a. Obtain copy of the global model parameters 𝑊௡, 𝐵௡ 
b. Select active subset 𝒯௡௔ ⊂ 𝒯௡ (user-given number of 

samples per iteration) 
c. Partition 𝒯௡௔  into 𝒯௡௔௖  by cores 𝑛௖ 
d. For cores  𝑛௖ on node 𝑛  , do in parallel: 

i.    Get training example  𝑖 ∈ 𝒯௡௔௖ 
ii. Update all weights 𝑤௝௞  ∈ 𝑊௡, biases 𝑏௝௞ ∈ 𝐵௡ 

𝑤௝௞  ≔  𝑤௝௞ − 𝛼
∂𝐿(𝑊, 𝐵|𝑗)

∂𝑤௝௞

 

𝑏௝௞  ≔  𝑏௝௞ − 𝛼
𝜕𝐿(𝑊, 𝐵|𝑗)

𝜕𝑏௝௞

 

3.2. Set 𝑊, 𝐵 := 𝐴𝑣𝑔௡ 𝑊௡, 𝐴𝑣𝑔௡  𝐵௡ 
3.3. Optionally score the model on a (potentially sampled) 

train/validation scoring sets 

In Algorithm 1, the weights and bias updates follow the 
asynchronous algorithm to adjust each node’s parameters 
incrementally 𝑊௡ , 𝐵௡ on example i. The 𝐴𝑣𝑔  notation 
represents the final averaging of these local parameters across 
all nodes to obtain the global model parameters and complete 
training. 

IV. EXPERIMENTAL SETUP 

A. Data Set 

We scraped the geolocation dataset from Regional 
Municipality of Peel Open Data8. It contains around 1300 entries 
in different categories that range from institutional to public 
housing to early years centres.  Some examples of the categories 
contained within the dataset are: 

 Arts, museum, and cultural spaces 
 Emergency responder stations: fire, police, and 

paramedics 
 Institutional buildings: city/town halls, court houses, 

libraries 
 Hospitals, medical centres, and walk-in clinics 
 Housing: public housing, co-operative housing, shelters 
 Food banks 
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 Long term care homes and retirement homes 
 Post office 
 Recreation centres and other municipal meeting places: 

arenas, pools, community centres, meeting halls 
 Settlement services and other related services for 

immigrants and newcomers 
 Shopping centres: plazas, big box centres, and malls 
 Transportation: airports, major bus stations, and 

passenger rail stations 
 

In the original dataset, there are 19 attributes, out of which 
we choose to work with some shown in Table I: 

TABLE I.  ATTRIBUTES USED. 

Attributes Description 

LM_ID Landmark ID 

X Latitude  

Y Longitude 

LM_NAME Landmark Name 

CATE Category (type) of place 

STR_ADD Street Address 

U Unit number 

MUN Municipality 

PR Province 

PC Postal Code 

PHONE Phone number 

WEBSITE Website address 

We use the Faker9 API to generate around 500 fake entries, 
on the top of original data. We classified the real POI as ‘1’ and 
fake as ‘0’. 

B. Evaluation Metrics 

Fake POI detection task is a binary decision problem, where 
the detection result is either fake or real geolocation. To assess 
the performance of our proposed model, we use the accuracy, 
precision, recall and F1-score as the evaluation metrics. The 
information about actual and predicted classifications is 
determined by the confusion matrix as shown in Table II. True 
Positive (TP) indicates that predicted fake samples are fake. 
False Positive (FP) indicates that predicted real samples are fake. 
False Negative (FN) indicates that predicted news samples are 
real. True Negatives (TN) indicates that predicted real samples 
are real. 

TABLE II.  CONFUSION MATRIX. 

 Actual Fake  Actual Real  

Predicted Fake TP FP 

Predicted Real FN TN 

 
For the precision, recall, F1-score and accuracy, we perform 

the specific calculation as:  

Accuracy is the overall performance of the model and can be 
defined as in Equation (3): 

9 https://pypi.org/project/Faker/ 



                    Accuracy = 
்௉ ା ்ே

்௉ ା ்ே ା ி௉ ା ிே
                              (3) 

Recall is the coverage of actual positive samples and can be 
defined as in Equation (4): 

                      Recall = 
்௉ 

்௉ ା  ிே
                                       (4) 

Precision indicates how accurate are the positive predictions 
in Equation (5): 

            Precision = 
்௉

்௉ ା ி௉ 
                                            (5) 

F1 score indicates the hybrid metric useful for unbalanced 
classes in Equation (6): 

                     F1 score = 
ଶ்௉

ଶ்௉ ା ி௉ ା ிே
                                         (6)                          

We also test our model using Root Mean Square Error 
(RMSE) is a standard method of calculating a model’s error in 
predicting quantitative data. It measures the difference between 
values predicted by a model and the actual values observed from 
the environment that is being modelled. 

We divide the dataset into three different parts: training set 
(70%), validation set (15%) and testing set (15%). We use the k-
fold cross-validation to select the model parameters. We take 5 
k folds. To handle the data imbalance problem, we use the 
Synthetic Minority Oversampling Technique (SMOTE) [18], 
where the synthetic samples are generated for the minority class. 
We have used the adaptive learning rate algorithm ADADELTA 
[19] that combines the benefits of learning rate and momentum 
training to avoid slow convergence. 

C. Hyperparameters 

The hyperparameters used in this model are in Table III. 

TABLE III.  HYPERPARAMETERS WITH VALUES. 

Hyperparameter Value 

Hidden layer size 200 

Epochs 10 

Seed  -1 

Adaptive learning rate Enabled  

Adaptive learning rate time decay factor 0.99 

Epsilon for adaptive_rate  1e-08 

Dropout ratio 0.5 

L1 regularization  1e-5 

L2 regularization  1e-5 

Activation function ReLu 

Optimizer  Adadelta  

Adaptive learning:𝝆(rho) for Adadelta 0.99 

Adaptive learning:𝝐(epsilon), for Adadelta 0.99 

 
We tested different L1 and L2 regularization values on the 

RMSE and reported the result with the best performing values. 
The performance of the model with varying values of L1-
regularization is shown below in Fig. 3. While using one value 
for regularization, the other is fixed. We conduct experiments in 
parallel with many values of the regularization terms. To explain 
the significance of each of these values and their importance in 
the sensitivity analysis, we are showing these results 
sequentially in Fig. 3 and Fig. 4.  

The result in Fig. 3 shows the best performance of our model 
when the strength of L1 regularization is 1.0E-05, so we choose 
to work with this value of L1-regularization in our experiments.  

 
Fig. 3: RMSE as function of the value of L1. 

We also test the performance of our model with l2-
regularization and show the results in Fig. 4: 

 

 
Fig. 4: RMSE as function of the value of L2. 

 
We see the best performance of the model with L2-

regularization value at 1.E-02, so we use this value in for our 
model. We also test various hyperparameters like dropout rate, 
adaptive learning rate and different number of epochs and report 
the best performing hyperparameters in Table III. 

D. Baselines 

We have used a mix of machine learning and deep neural 
network-based baselines. Our chosen baselines are listed below: 

BERT (Bidirectional Encoder Representations from 
Transformers) [20]: BERT is a Google-developed transformer-
based machine learning technique for pre-training in natural 
language processing (NLP). We use the cased and uncased 
versions of BERT. 

Funnel Transformer [21]: Funnel Transformer is a 
bidirectional transformer model similar to BERT, but with a 
pooling operation after each block of layers, similar to how 
traditional convolutional neural networks (CNN) in computer 
vision work. 

BART (Bidirectional and Auto-Regressive Transformer) 
[22]: BART is a Seq2Seq model that combines a Bidirectional 
Encoder (i.e. BERT) with an Autoregressive Decoder (i.e. GPT).  
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RoBERTa (Robustly Optimized BERT Pretraining 
Approach) [23]: RoBERTa model uses the original BERT 
model and improves BERT for training the model longer, with 
bigger batches, over more data. 

Naive Bayes [24]: Naive Bayes is a probabilistic machine 
learning algorithm based on the Bayes algorithm and used for 
classification tasks. 

SVM (Support Vector Machine) [25]: SVM is a supervised 
machine learning algorithm that can be used to solve 
classification and regression problems. We use the Linear 
Kernel SVM. 

LDA (Linear Discriminant Analysis) [26]: LDA is a tool for 
data visualization, classification, and dimension reduction. 

Logistic Regression [27]: Logistic Regression is a statistical 
analysis method for predicting a data value based on previous 
data set observations. 

Decision Tree Classifier [28] : A simple representation for 
classifying examples is a Decision Tree. It’s a type of 
Supervised Machine Learning in which data is continuously 
split according to a parameter. 

Extra Trees Classifier [29]: Extra Trees Classifier it is an 
ensemble learning method that uses decision trees as its 
foundation. 

Random Forest Classifier [30]: Random Forest Classifier is 
an ensemble tree-based learning algorithm. It is a set of decision 
trees derived from a subset of the training set chosen at random. 

AdaBoost Classifier (Adaptive Boosting) [31]: AdaBoost is 
an iterative ensemble method. The AdaBoost classifier creates a 
strong classifier by combining several low-performing 
classifiers, resulting in a high-accuracy classifier. 

Gradient Boosting Classifier [32]: Gradient Boosting 
Classifier is a set of machine learning algorithms that combine a 
number of weak learning models to produce a powerful 
predictive model. 

Light GBM (Light Gradient Boosting Machine) [33]: Light 
GBM is an open-source library that implements the gradient 
boosting algorithm efficiently and effectively. 

QDA (Quadratic Discriminant Analysis) [34]: QDA is a well 
known supervised classification methods in statistical and 
probabilistic learning. 

k-NN Classifier (k-Nearest Neighbors) [35]: k-NN Classifier 
is a machine learning algorithm that is very simple, easy to 
understand, and versatile. It is based on the feature similarity 
approach. 

We optimize the hyperparameters settings for each baseline 
and report the results using optimal hyperparameters. 

V. RESULTS AND ANALYSIS 

A. Model Performance 

We show the learning curve for training loss and validation 
loss during the model training as shown in Fig. 5. 

 
Fig. 5: Learning Curve for Training Loss and Validation Loss. 

As shown in Fig. 5, the validation loss is quite close to the 
training loss.  This shows a good fit for model training, defined 
as a training and validation loss that gradually decreases to the 
point of stability with a small gap between the two final loss 
values [36]. Overall, the result in this experiment explains how 
well it matches a set of observations. In most cases, such 
goodness of fit indicator summarizes the difference between 
observed and model-predicted values. 

We also show the model performance on the test set and the 
confusion matrix is shown below in Table IV. 

TABLE IV.  CONFUSION MATRIX ON TEST SET. 

  Actual Fake Actual Real 

Predicted Fake 365 23 

Predicted Real 11 168 

The results in Table IV shows that our model has 94% 
precision, 97% recall and 95% F1-score. The model’s accuracy 
is also 94%, which shows that 94% of the predictions are 
correct. The precision of 94% means that we have fewer false 
positives (POI is real but predicted as fake) and we can predict 
a large number of true positives (POI is fake and predicted as 
fake). The recall of 97% means we have many true positives 
compared to the false negatives. Generally, a false negative (POI 
is fake but predicted as real) is a worse error than a false positive 
in the POI detection problem. Overall, we get fewer false 
negatives than false positives (which are also fewer), that’s why 
we get quite a high F1-score. 

B. Overall Model Performance 

The results and analysis of the proposed model against the 
baselines are shown in Table V. 

Overall, we can see that our proposed model has the highest 
accuracy (95%), precision (94%), recall (95%), F1-score (92%) 
and the average precision (69%) among all the baselines. The 
superiority of our model in detecting the fake POI is attributed 
to its design that is built upon a simple but carefully optimized 
neural network model. 

The Naive Bayes, SVM - Linear Kernel, Linear 
Discriminant Analysis, Logistic Regression are machine 
learning models that perform the second-best in terms of 
accuracy, precision, and recall F1-score. This group of baselines 



usually shows better performance when there is a clear margin 
of separation between classes, which we can see in our data. 

TABLE V.  PROPOSED METHOD AND BASELINES RESULTS. 

Baselines  Accuracy Recall Precision F1 

Fake Detection 
Model (FDM) 

0.94 0.97 0.94 0.95 

BERT (uncased) 0.78  0.75  0.64  0.68 

BERT (cased) 0.65 0.61 0.53 0.57 

Funnel Transformer  0.50 0.68 0.52 0.59 

BART 0.45 0.53 0.45 0.49 

RoBERTa 0.45 0.51 0.46 0.48 

Naive Bayes 0.83 0.73 0.69 0.71 

SVM - Linear Kernel 0.82 0.82 0.85 0.84 

LDA 0.81 0.81 0.85 0.83 

Logistic Regression 0.80 0.80 0.84 0.82 

Extra Trees 
Classifier 

0.79 0.79 0.85 0.82 

Decision Tree 
Classifier 

0.79 0.78 0.85 0.81 

Random Forest 
Classifier 

0.79 0.78 0.85 0.81 

AdaBoost Classifier 0.78 0.78 0.84 0.81 

Gradient Boosting 
Classifier 

0.77 0.76 0.85 0.80 

Light GBM 0.76 0.79 0.81 0.80 

QDA 0.75 0.77 0.80 0.79 

k-NN Classifier 0.72 0.70 0.84 0.76 

The Extra Trees, Decision Tree, Random Forest, AdaBoost, 
Gradient Boosting, Light Gradient Boosting Machine, Quadratic 
Discriminant Analysis and K Neighbors classifiers are the third 
best performing models, which are also machine learning 
models. The random forest and decision tree-based models build 
multiple decision trees and merges them together to get a more 
accurate and stable prediction. This exactly shows why some of 
these tree-based models perform better. The gradient boosting 
based algorithms also perform well when there is not much noise 
in the data (as in our dataset). Our data is already clean and there 
are not any outliers, so these models demonstrate their best. 

The BERT (uncased), BERT (cased), Funnel Transformer, 
BART and RoBERTa have demonstrated modest performance 
among the neural baselines.  This is probably because these 
models are pre-trained on huge corpora that lack location-aware 
or POI data. Typically, these transformer-based models perform 
well in tasks where there is lot of textual data and when the test 
data matches with the vocabulary of the pre-trained data. In our 
setup, the data is unique (Peel region location data), much of 
which is not possible to get from the pre-trained checkpoints like 
Wikipedia corpus (as in BERT) or similar datasets. 

C. Ablation Study 

In this work, we try to show the feature importance for 
different attributes through an ablation study. The significance 
of each feature is a score based on how much a specific feature 

has improved a model’s accuracy. We perform an ablation study 
on our model by removing different features from the data one 
at a time or in a group to see how it affects the model’s 
performance.  

The default model name is FDM, while model variants 
during the ablation study are labelled using the following 
convention. When we remove a part or feature of data, we 
describe it with the feature name, followed by a minus sign. For 
example, FDM(LM-) means FDM without LM_Name (see 
Table I for attribute names). We have tested the model by 
removing select features as well as select pairs of features, and 
the results are shown in Table VI: 

TABLE VI.  ABLATION STUDY ON MODEL VARIANTS. 

Model Variant RMSE 

FDM 0.012 

FDM (LM_ID -) 0.104 

FDM (X -, Y -) 0.191 

FDM (LM_NAME -) 0.176 

FDM (CATE -) 0.144 

FDM (STR_ADD -) 0.143 

FDM (MUN -) 0.176 

FDM (PR -) 0.185 

FDM (PC-) 0.190 

FDM (STR_ADD -, U -) 0.115 

FDM (MUN -, PC -) 0.312 

FDM (MUN -, PR -, PC -) 0.416 

FDM (STR_ADD -, U -, MUN -) 0.465 

FDM (STR_ADD -, U -, MUN -, PR -) 0.612 

FDM (STR_ADD -, U -, MUN -, PR -, PC -) 0.714 

 
The results in Table VI show that the default FDM model 

has the lowest RMSE score, which shows that the model 
performs best when we consider all the data features. The 
model’s performance is degraded when we remove the x and y-
axis that indicates the location axis. Model performance is also 
more negatively impacted when we remove the postal code. This 
is understandable as the fake POI are primarily generated using 
fake postal codes. 

 As shown in Table VI, the model’s performance is most 
impacted when we remove many features from the data. This is 
understandable because when we give fewer features to the 
model, the model will not have enough information to generalize 
and to make accurate predictions. 

The results also show when we remove the landmark name 
(LM), the model performance is not much impacted. This is 
probably because the location name is trivial. The location axis 
(x, y) is a more important location indicator and can be used to 
determine the truth about a location.  

We also see that when we individually remove the street 
address, municipal and province information, the model 
performance is not much effected. This is because when we 
remove these pieces of data individually, the other related 
features have enough information to predict the location truth. 
However, suppose we remove a combination of these pieces of 
information, such as street address, province, municipality. In 



that case, the model’s performance is impacted negatively (as 
seen in FDM (STR_ADD -, U -, MUN -, PR -, PC -)) . This is 
because removing too much of this information altogether tends 
to weaken the model’s predictive power.  

The dependencies of the attributes on each other also impact 
the model performance. For example, street address, 
municipality, the unit number are related attributes that depend 
on each other to predict an outcome. These results probably 
indicate that when two features are combined, they are more 
significant in explaining relationships in the data than the same 
two attributes separately. 

Overall, the result suggests we should consider more 
location-related features to detect the truth about a location. That 
is why the default FDM model shows the best performance. 

VI. LIMITATIONS  

This work shows an attempt in finding a suitable 
classification system for POI detection. There are some 
limitations of data and methods that are important to note here. 

First, we use regional data based on the criteria that we want 
to model this problem on real-world data. While this solves the 
problem, the dataset does not represent the fake POI detection at 
a vast scale. It is critical to building diverse and challenging 
datasets to inform better detectors against all types of fake POIs. 
We recommend expanding our dataset approach and developing 
a benchmark representing the veracity of location-based content 
in various applications.  

Second, this detection method is limited by the features 
available at the time. This method does not take into account 
scenarios in which there are user reviews, comments, or 
concerns about the location’s veracity. Future work will include 
analyzing textual content from various forums on real-time 
events, keywords/hashtags, opinions/reviews, hyperlinks, and 
similar on location-based data. 

VII. CONCLUSION 

In this paper, we study detecting fake geolocations for 
various Points of Interest (POI). We get the real-world data for 
ground truth labels, and we used the Faker API to generate 
synthetic fake data. Our model is based on MLP neural network, 
and we treat the problem of fake POI as binary classification. 
Through detailed experiments, we show the superiority of our 
model over several baseline models. Through ablation study, we 
show the importance of various features to be included in the 
model. In future, we plan to extend the model to include more 
real-world data, and we also plan to expand our model to other 
deep neural networks or towards an ensemble approach. 
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