
Session-aware Item-combination Recommendation
with Transformer Network

Tzu-Heng Lin
Xiaomi AI Lab

Xiaomi Inc.
lzhbrian@gmail.com

Chen Gao
Department of Electronic Engineering

Tsinghua University
chgao96@gmail.com

Abstract—In this paper, we detailedly describe our solution for
the IEEE BigData Cup 2021: RL-based RecSys (Track 1: Item
Combination Prediction)1. We first conduct an exploratory data
analysis on the dataset and then utilize the findings to design
our framework. Specifically, we use a two-headed transformer-
based network to predict user feedback and unlocked sessions,
along with the proposed session-aware reweighted loss, multi-
tasking with click behavior prediction, and randomness-in-session
augmentation. In the final private leaderboard on Kaggle, our
method ranked 2nd with a categorization accuracy of 0.39224.2

Index Terms—recommender system, item combination predic-
tion, transformer, loss reweighting

I. INTRODUCTION

The task of the IEEE BigData Cup 2021: RL-based RecSys
(Track 1: Item Combination Prediction) [1], [2] is to predict
each user’s purchasing feedback to nine exposed items, given
this user’s click history, portrait features, and items’ features,
which is similar to bundle recommendation [3]. The special
setting in this task is that the nine items are grouped into three
sessions. The user can only unlock the subsequent session after
he/she buys all three items in the current session.

More formally, given a user u (along with his/her
clicking history cu,1, cu,2, ..., and some portrait features
fu,1, fu,2, ..., fu,10), and his/her nine exposed items
iu,1, iu,2, ..., iu,9 (along with some item features
fi,1, fi,2, ..., fi,6 for each item i), the objective is to
predict nine interactions yu,1, yu,2, ..., yu,9 ∈ {0, 1}. Each
one of the interactions indicates whether this user would buy
the corresponding item or not. In addition, in this scenario,
the middle three items iu,4, iu,5, iu,6 are not unlocked until
the user has bought all of the first three items iu,1, iu,2, iu,3,
and similarly, the last three items iu,7, iu,8, iu,9 are not
unlocked until the user has bought all of the first six items
iu,1, iu,2, ..., iu,6 (c.f. Figure 1). The evaluation metric for
this task is the Categorization Accuracy measure, which is
defined as follows,

accuracy =
1

M

M∑
u=1

9∏
j=1

[yu,j = ŷu,j ], (1)

1https://www.kaggle.com/c/bigdata2021-rl-recsys/
2Our code is available at https://github.com/lzhbrian/bigdatacup2021
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Fig. 1: Problem Setup. Each user is exposed to nine items
simultaneously. However, the items are divided into three 3-
length sessions. The user can only unlock the subsequent three
items after he/she buys all three items in the current session.
We want to predict whether a user would buy the nine exposed
items or not.

where M denotes the number of users, yu,j and ŷu,j are the
predicted and ground-truth interactions, and [yu,j = ŷu,j ] is
the Iverson bracket.

Overall speaking, this task is challenging in two aspects.
• Firstly, the nine exposed items are correlated and treated

differently by the users. We cannot simply apply a
single traditional recommendation method to predict each
interaction independently.

• Secondly, with the given evaluation metric, it is required
to correctly predict all of the nine interactions of a user,
while partially correct predictions contribute nothing to
the final score.

To overcome the above challenges, we propose a deli-
cate two-headed transformer-based framework to predict both
users’ buying behavior and unlocked sessions. The unlocked
session prediction can be used to refine unreasonable buy
predictions. We further propose a randomness-in-session aug-
mentation technique and a novel session-aware reweighted loss
to address the unique characteristics in this scenario. Finally,
a multi-tasking training procedure with click prediction is
utilized to assist the learning of embedding layers. Extensive
experiments and ablation studies have demonstrated the effec-
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TABLE I: Overall data statistics

# buying entries (users) # clicks # items# train # test # train # test
260,087 206,254 10,435,798 8,357,719 381

tiveness of our method.
In what follows, we will discuss related works in Section II,

conduct an exploratory data analysis in Section III, describe
our proposed method in Section IV, and finally conclude the
paper with discussion and future works in Section V.

II. RELATED WORK

Recommender systems aim to filter information for users,
which has become one kind of fundamental service in today’s
information platforms [4]. Generally, from the perspective of
real-world application, the recommender systems contain two
stages, matching and ranking. Recently, deep learning has
become the state-of-the-art solution of recommender systems
in both two stages [5]–[7]. As for the matching stage, of which
the mainstream methods are collaborative filtering [8], which
learns user interests from historical behaviors, deep neural
networks methods [9], or even graph neural networks [10],
[11], achieve promising performance. As for the ranking stage,
which is also known as click-through rate (CTR) prediction,
deep learning-based models such as DeepFM with multi-
layer perceptron [12], xDeepFM with compressed interaction
network [13], DIN [14] with attention mechanisms, etc., are
demonstrated effective in learning from complex features of
users and items.

In this work, we develop a method based on transformer
network, a recent advance of neural network with extraordi-
nary achievements in many areas, for capturing the complex
behavior of users in the task of item combination recommen-
dation.

III. EXPLORATORY DATA ANALYSIS

Before diving into the model design, we conduct exploratory
data analysis firsthand to master the whole picture of the
dataset.

A. Data statistics

Table I shows the overall statistics of this dataset. In total,
there are 381 items. There are 260,087 buying entries for
training and 206,254 buying entries for testing. These entries
are also accompanied by 10,435,798 and 8,357,719 clicking
logs, respectively. We will then analyze more details about the
clicking and buying behavior of users in the following.

Table II shows how many clicks and buys do items in each
session possess. It’s worth noticing that an item would only
appear in its specific session. We can see that items in later
sessions are with more types, and items with earlier sessions
possess more clicks and buys. This is reasonable since users
need to buy early items in order to unlock items (with higher
prices) in the later sessions.

TABLE II: Click and buy statistics in different sessions.

session item IDs # items # clicks # buys
1 1∼39 39 4,606,977 616,952
2 40∼147 108 3,608,173 485,449
3 148∼381 234 2,220,648 287,482

Fig. 2: Histogram of the number of buys of each user.

B. Buying behavior analysis

Due to the dataset characteristics (c.f. Section I), we plot
the histogram of the number of items each user bought in Fig.
2, and classify users into four groups according to the number
of items they have bought as follows,

• Group-0: 30,912 users who have bought 0 item.
• Group-1: 50,267 users who have bought 1∼3 items.
• Group-2: 38,191 users who have bought 4∼6 items.
• Group-3: 140,717 users who have bought 7∼9 items.

We can see that a decent population (Group-0) didn’t buy
anything, the number of users who bought 4∼6 items (Group-
2) are the fewest, and a large portion of users (Group-3) chose
to buy no less than seven items. This indicates an hourglass
shape of user distribution. It’s also worth noticing that very
few people buy three or six items (c.f. Fig. 2). We hypothesize
that this is because the main reason why a user buys three or
six items is to unlock and buy items in the next session.

C. Clicking behavior analysis

We plot the histogram of the number of clicks of each user
in Fig. 3. There are 28,184 users who did not click anything.
However, we do see that the majority of users are with a decent
number of clicks, which motivates us to utilize the clicking
logs to assist the training.

D. User portrait features and item features

We further present user portrait features and item features
in Table III and Table IV. We can see that all user portraits are
discrete features, while two of the item features are continuous
features.

IV. METHOD & EXPERIMENTS

The overall structure of our method is shown in Fig. 4. In
what follows, we will introduce each part of our framework.
The ablation study results are shown in Table V.



TABLE III: User portrait features.

user features fu,1 fu,2 fu,3 fu,4 fu,5 fu,6 fu,7 fu,8 fu,9 fu,10
# unique values in train set 3 1363 20 10 195 49 3 11 2 2164
# unique values in test set 3 1319 19 10 191 47 3 13 2 2054

discrete or continuous (disc./cont.) disc. disc. disc. disc. disc. disc. disc. disc. disc. disc.

TABLE IV: Item features.

item features fi,1 fi,2 fi,3 fi,4 fi,5 fi,6 (price)
# unique values 4 10 2 n/a n/a 248

values 1,2,3,4 0,1,2,3,4,5,6,7,8,9 1,2 0∼1, float 0∼1, float 150∼16621, int
discrete or continuous (disc./cont.) disc. disc. disc. cont. cont. cont.

TABLE V: Experimental results of different models (take G as an example, it is built on F with an additional design of
augmentation). The numbers in this table are ablation studies after the competition. * means the settings of the best submission
during competition. � means the settings are providing unstable yet higher scores.

Model validation test
A MLP basic model 0.29169 0.33817
B + randomness-in-session augmentation (train) 0.29965 0.35007
C + transformer backbone 0.31140 0.36210
D + two-headed (buy and group) prediction 0.31475 0.36258
E + session-aware loss reweighting 0.33090 0.38355
F + multi-tasking with click prediction * 0.33323 0.38805
G + randomness-in-session augmentation (inference) � 0.33335 0.39161

Fig. 3: Histogram of the number of clicks of each user.

A. Network design

MLP basic model (Config-A) We start with a very simple
basic network. The network takes the following inputs: user
profile features, user clicked items’ id and features, nine ex-
posed target items’ id and features. These inputs are processed
by their corresponding embedding layers, and further fed to an
MLP module. Then the network predicts whether the user will
buy the nine exposed target items. We propose this framework
since the nine items’ labels are correlated. For example, users
might buy all of the first six items, only to unlock and
buy subsequent items. Therefore, it is not suitable to predict
the nine feedback independently, and we need to ensure the
network is able to predict nine feedback simultaneously. The
training of the model is supervised by a vanilla binary cross
entropy (BCE) loss on each item respectively as follows,

Lbuy =
1

M

M∑
u=1

9∑
j=1

BCE(ŷu,j , yu,j), (2)

where ŷu,j and yu,j denote the ground-truth and predicted
feedback between user u and the exposed j-th item, respec-
tively, and

BCE(ŷu,j , yu,j) =− ŷu,j log yu,j

− (1− ŷu,j) log(1− yu,j)
(3)

is the binary cross entropy term for each one of the nine items.
We set the embedding size to 16 here, and the MLP-structure
is set to {1440, 256, 64, 9}. This very simple basic model can
achieve 0.29169 on validation set, and 0.33817 on test set.

Randomness-in-session augmentation (Config-B, G) To
prevent over-fitting and make training more robust, we ran-
domly shuffle items’ orders within the same sessions during
the training. Note that in this scenario, users are not sensitive
to the items’ order within the same session. However, our net-
work treats them with different parameters. So we propose to
use this augmentation technique to alleviate this shortcoming.
This strategy is also used for test time augmentation, where
original prediction and predictions produced by shuffled inputs
are averaged to produce the final results. In our experiments,
augmentation in training (Config-B) increases the score from
0.29169 to 0.29965 on validation set and from 0.33817 to
0.35007 on test set. However, this proposed augmentation
method in inference is not so stable and sometimes might
do some harm to the score. In Table V, we are just reporting
the result of one experiment (Config-G), which improves the
score.

Transformer backbone (Config-C) Instead of simple
MLPs [14], [15], we switch the backbone part into a trans-
former [16], as their self-attention mechanism is proved to
be effective on capturing inter-relations between different
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Fig. 4: Overall structure of our method.

features.

z0 =
[
x1E;x2E; · · · ;xNE

]
+ Epos,

z` = MSA (LayerNorm (z`−1)) + z`−1, ` = 1 . . . L

z` = MLP (LayerNorm (z`)) + z`, ` = 1 . . . L

y = LayerNorm (zL) ,

(4)

where xn is the corresponding one-hot vector of features,
E ∈ RN×D,Epos ∈ RN×D, N is the number of features,
D is the embedding size, L is the number of transformer
layers, and MSA(·) is the multi-head self attention. We set the
embedding size to 128, number of layers to 3, number of self-
attention head to 4, and the sizes of q,k,v in the self-attention
module to 32, and MLP size to 64. Using the transformer
backbone (Config-C) can improve our score from 0.29965 to
0.31140, and from 0.35007 to 0.36210 on validation and test
set, respectively. However, we do note that this improvement
compared to Config-B might in part come from a larger
embedding and network size. We didn’t do that ablation study
due to limited time.
Two-headed (buy and group) prediction (Config-D) One
should notice that the above simple framework might introduce
some invalid buy predictions that are impossible to happen in
the real world. For example, the network might predict that
the user buys two items, the 1st one and the 9th one. However,
this is impossible since the user has to buy all of the first 6
items in order to buy the 9th item.

Thus, in addition to the buy prediction, we propose to also
predict the group (as defined in Section III-B) of each user,
which forms a two-headed prediction network, as shown in
Fig. 4(a). This group prediction part is supervised by a cross
entropy loss as follows,

Lgroup =
1

M

M∑
u=1

4∑
j=1

− ĝu,j log gu,j , (5)

where ĝu ∈ R4 is a one-hot ground-truth vector indicating
which group user u belongs to. Here gu ∈ R4 is the predicted

group vector (after a softmax layer). The loss is added with
previous ones and back-propagated together as follows,

L = λbuyLbuy + λgroupLgroup, (6)

where we set λbuy = 0.8, λgroup = 0.1. After training, the
predicted group vector gu will be used to refine and fix the
unreasonable predicted buying behavior of the nine exposed
items yu ∈ R9 as follows,

yu =



[0, 0, 0, 0, 0, 0, 0, 0, 0] arg max
j

gu = 0

[yu,1, yu,2, yu,3, 0, 0, 0, 0, 0, 0] arg max
j

gu = 1

[1, 1, 1, yu,4, yu,5, yu,6, yu,7, yu,8, yu,9] arg max
j

gu = 2

[1, 1, 1, 1, 1, 1, yu,7, yu,8, yu,9] arg max
j

gu = 3.

(7)
After refined using the group predictions, our score improves
from 0.31140 to 0.31475 on validation set and from 0.36210
to 0.36258 and test set.

Session-aware loss reweighting (Config-E) To better
model users’ buying behaviors, we classify the nine exposed
items into four types (weak positive, strong positive, strong
negative, weak negative) as shown in Fig. 5.

• For sessions before the last session user has unlocked,
items should be treated as weak positives, as the user
might buy these items only to unlock the later sessions.

• For the last session user has unlocked, items should be
treated as strong positives and strong negatives. As the
user unlocked and stopped in this session, items bought
or not bought should be classified as strong signals.

• For later locked sessions, items should be treated as weak
negatives, as users haven’t unlocked these sessions, we
should not assume too strong preferences on these items.

In practice, we assign different weights λ1, λ2, λ3, λ4 for the
above 4 types of items. The formally defined loss can be
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Fig. 5: Session-aware loss reweighting

written as follows,

Lbuy-reweight =
1

M

M∑
u=1

9∑
j=1

λ4Γu,j ĝu = [1, 0, 0, 0]

3∑
j=1

Λλ2,λ3,u,j +
9∑
j=4

λ4Γu,j ĝu = [0, 1, 0, 0]

3∑
j=1

λ1Γu,j +
6∑
j=4

Λλ2,λ3,u,j +
9∑
j=7

λ4Γu,j ĝu = [0, 0, 1, 0]

6∑
j=1

λ1Γu,j +
9∑
j=7

Λλ2,λ3,u,j ĝu = [0, 0, 0, 1]

,

(8)
where Γu,j and Λλ2,λ3,u,j denote losses for weak posi-
tive/negative items and strong positive/negative items, respec-
tively, which are formulated as follows,

Γu,j = BCE(ŷu,j , yu,j)

Λλ2,λ3,u,j = λ2 ŷu,j BCE(ŷu,j , yu,j)+

λ3 (1 − ŷu,j) BCE(ŷu,j , yu,j).

(9)

In our experiments, we replace the original Lbuy with
Lbuy-reweight, and set λ1 = 0.5, λ2 = 1, λ3 = 1, λ4 = 0.5. This
design can greatly boost our score from 0.31475 to 0.33090
on validation set, and from 0.36258 to 0.38355 on test set.
Multi-tasking with click prediction (Config-F) Apart
from the buy prediction network described in Fig. 4(a), we
propose to use another click prediction auxiliary network
(Fig. 4(b)) to assist the learning procedure. Note that the
two networks share the same embedding layers. The click
prediction network takes the following inputs: user profile
features, the previously clicked items’ id and features, target
items’ id, and features. It is trained to predict whether the user
will click the target item or not. The loss function is defined
as follows,

Lclick =
1

M

M∑
u=1

BCE(ĉu, cu), (10)

where ĉu, cu are groundtruth and predicted feedback from user
u to his/her target item, and

BCE(ĉu, cu) =− ĉu log cu

− (1− ĉu) log(1− cu).
(11)

is the binary cross entropy term. The loss is added with
previous ones and back-propagated together as follows,

L = λbuyLbuy-reweight + λgroupLgroup + λclickLclick, (12)

where we set λbuy = 0.8, λgroup = 0.1, λclick = 0.1, and use the
same network hyper-parameters as the buy prediction network
here. With the auxiliary click prediction network multi-tasking,
our score is improved from 0.33090 to 0.33323 and 0.38355
to 0.38805 on the validation set and test set, respectively.
Final submission Our final best submission during the
competition (0.33687 on validation set, 0.39224 on test set) is
achieved by Config-F, as shown in in Table V. That training
instance shows much better performance than our ablation
studies conducted after the competition. However, these meth-
ods are still suffering from the performance variances with
different random seeds, which may be caused by the scale
of the dataset. We leave the efforts to address the issue of
unstable performances as future work.

B. Train/validation split by user portrait

Although the competition guidelines want us to recognize
each buying entry as an individual user, we notice that there
are entries with identical clicking histories and user portrait
features (which means the same user produces two entries).
Thus, it is more proper to split train and validation sets while
taking the above observation into consideration. We propose
to view all entries with identical user portrait features as the
same user and use 85% users as train set and the rest 15%
users as the validation set. This results in 243,775 and 16,312
entries for the train set and validation set, respectively.

C. Other settings

We use Adam [17] with default hyper-parameters in Py-
Torch [18]. The batch size is set to 32, and the learning rate
is set to 1e-2 for ten epochs. Colab with one P100 GPU is
used as our training platform, and each model takes about
2∼3 hours to train. Clicking data in the test set of both track-
1 and track-2 are used during our training. Checkpoint with
the best score on the validation set is used for evaluation. All
continuous features are discretized into bins.

V. CONCLUSION

In this paper, we propose a framework for item combination
prediction. Specifically, we propose several delicate designs
to improve the performance, namely randomness-in-session
augmentation, transformer backbone, two-headed prediction,
session-aware loss reweighting, and multi-tasking with click
prediction. Extensive experiments have proved the effective-
ness of our framework.

We have also tried several things that conceptually make
sense but did not improve the score. Firstly, we tried an
attention-like deep interest network [14] to reweight user
clicked items, however, it didn’t improve the final score. Given
that we do not know how click data is collected, we think that
users might present different preferences in the scenario where
click data is collected. And thus, making the model more



complex in this aspect doesn’t help. Secondly, we tried to add
user embedding into the network yet encountered severe over-
fitting in training. Adding mini-batch aware regularization
[14] can reduce over-fitting, however, it still cannot make
improvements to the final score. Due to the fact that most users
only have one training entry, this result is not very surprising.
In addition, we tried adding timestamp as a feature, however,
it also didn’t help. We originally thought that weekends or
holidays might affect user behaviors.

Future works shall include in-depth analysis and utilization
with the actual meaning of user features, item features, and
clicking data. It would also be interesting to investigate other
network architectures that could address the multi-feedback
item combination prediction scenario. Since our work does not
introduce the model ensemble technique, it is also a promising
direction for future works.
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