Communication efficient distributed learning of
neural networks in Big Data environments using
Spark

1% Fouad Alkhoury
University of Bonn
Germany
alkhoury @cs.uni-bonn.de

Fraunhofer IAIS
Germany

Abstract—Distributed (or federated) training of neural net-
works is an important approach to reduce the training time
significantly. Previous experiments on communication efficient
distributed learning have shown that model averaging, even if
provably correct only in case of convex loss functions, is also
working for the training of neural networks in some cases,
however restricted to simple examples with relatively small
standard data sets. In this paper, we investigate to what extent
distributed communication efficient learning scales to huge data
sets and complex, deep neural networks. We show how to
integrate communication efficient distributed learning into the
big data environment Spark and apply it to a complex real-
world scenario, namely image segmentation on a large automotive
data set (A2D2). We present evidence based results that the
distributed approach scales successfully with increasing number
of computing nodes in the case of fully convolutional networks.

Index Terms—Federated Learning, Distributed Learning of
Deep Neural Networks, Big Data Systems, Spark, Data Science
Systems, Horizontal Scalability.

I. INTRODUCTION

Neural networks turned out to be a key driver for a lot of
use cases and applications in the area of machine learning
and artificial intelligence. However, the training of neural net-
works is a complex and time consuming task. Approaches to
distributed training have been developed to reduce the training
time and to enable scenarios where the training process does
not fit into a single computer, with federated learning being a
subset of this with the special characteristic that the training
data is not moved but only the weights of the models.

The process of distributed learning is mainly based on train-
ing local models on the distributed nodes and then averaging
these models periodically to obtain a global model. However,
for this kind of static averaging, a communication overhead is
induced during the training, as it is needed to transfer the local
models periodically over the network in order to compute the
actual average.

In [1] it has been proposed to replace the static, periodic
averaging with a dynamic averaging scheme, that synchronizes
the local models during the training process only when needed.

This research has been funded by the Federal Ministry of Education and
Research of Germany (project number 01IS19067).

2"d Dennis Wegener

4™ Michael Mock
Fraunhofer IAIS
Germany

3" Karl-Heinz Sylla
Fraunhofer IAIS
Germany

dennis.wegener @iais.fraunhofer.de

For linear models it has been shown that the prediction loss
and communication can be minimized at the same time by
dynamically synchronizing models in a way that the commu-
nication between the learners does not happen in the stable
phases of a learning task. This approach was extended to
kernelized online learners in [2]. By theoretical analysis and
by an empirical experiment based on financial data it has been
shown that this approach is successful. The approach was also
extended to pattern learning based on Markov chains [3].

In [4] an approach for efficient decentralized learning of
neural networks has been proposed which is also based on
dynamic model averaging. Neural networks do not necessarily
have a globally convex loss function. However, it has been
empirically shown that the dynamical averaging does not only
work for convex loss functions but also for non-convex cases.
In detail, for the mnist dataset [5] the averaging showed to be
successful.

In this work, we show how to integrate the approach
for communication efficient distributed learning of neural
networks into the big data framework Spark. We apply the
approach to a complex real-world scenario based on a large
scale real world dataset (A2D2) [6] and present results for suc-
cessfully scaling the training of fully convolutional networks.
We investigate empirically to which extent the communica-
tion overhead induced by the model synchronization actually
contributes to the overall computation time and compute and
evaluate a realistic speed-up factor. In a nutshell, it turned out
that the distributed learning scaled well in Spark, with both,
static and dynamic averaging. In a cluster of n GPU nodes,
we achieved a speedup-factor that is proportional to %, e.g. in
using 9 nodes, we reduced training time by the factor of 7.15.

II. BACKGROUND AND RELATED WORK

As we aim at integrating the dynamic averaging method into
a real Big Data system, we now first introduce the approach
of applying model averaging in distributed learning. Then,
we present the dynamic averaging method that we want to
adapt to a the Big Data environment Spark. After that, we
discuss related big data frameworks used for training deep
neural networks.

A. Prior work in model averaging

Next, we first introduce the periodically averaging of mod-
els. After that, we present the main method used in this
paper, namely the Communication efficient dynamic averaging
method.

Sharing gradients between cluster nodes can take precious
time and resources. This communication can be reduced by
calculating gradients locally and communicating the sum of
gradients periodically [7]. The method of averaging models
periodically after computing local updates has positive effects.
It keeps the privacy-sensitive data in local devices and trains a
joint model. With this method, only the model parameters are
sent without the need to exchange or centralize data samples
or to communicate the learning algorithm.

However, this approach has some disadvantages. Either the
nodes communicate so rarely that the models adapt too slowly
to the changes or they communicate so frequently that they
consume a big amount of unnecessary communication. Even
if all models have already converged to an optimum, periodic
averaging will require unnecessary communication.

The goal of communication efficient dynamic averaging
is to reduce communication without losing predictive perfor-
mance by investing the communication efficiently [4]. When
local learners do not suffer loss, communication can be re-
duced; when they suffer large losses, an increased amount of
communication is invested to improve their performances. This
approach was achieved in several stages. First, the initial idea
of communication efficient learning with linear models started
with the first protocol for the distributed online prediction that
aims to minimize online prediction loss and network commu-
nication at the same time [1]. The concept of this approach is
to dynamically adjust the amount of communication performed
depending on the hardness of the prediction problem.

The underlying idea is to perform model synchronizations
only in system states that show a high variance among the local
models, which indicates that synchronization would be most
effective in terms of correcting the effect on future predictions.
In addition to balancing the joint predictive performance,
while not letting communication overhead deteriorate the
responsiveness of the service. Then in 2016, this approach
was extended to kernelized online learners that represent their
models by a support vector expansion [2]. As a result, the
protocol achieves similar service quality as any periodical
communication protocol while communicating less by a factor
depending on its loss.

After that, another extension of the approach to pattern
learning was made in 2018 [3]. The main idea of extension is
to design and implement an online, distributed and scalable
pattern prediction system over massive streams of events,
related to trajectories of moving objects. The approach com-
bined a distributed online prediction protocol with an event
forecasting method based on Markov chains. In this paper,
we present the integration of communication efficient dynamic
averaging method in real Big Data architecture using Spark.

B. Related work in distributed deep learning frameworks

There exists a variety of distributed deep learning frame-
works (see [8] for an overview). Here, we focus on those
which are most relevant for our work.

Spark is a unified analytics engine for large-scale data
processing. It was developed at UC Berkeley in 2009 and has
become the largest open source engine in Big Data [9]. It runs
on memory (RAM) that makes the processing faster than on
disk and faster than previous approaches to work with Big
Data like MapReduce [10]. Spark provides high-level APIs in
Java, Scala, Python and R. These APIs include a collection of
operators for transforming data.

Sparknet is a framework for training deep networks in Spark
[11]. In each iteration, the Spark master broadcasts the model
parameters to the workers, then each worker runs Stochastic
Gradient Descent on the model with its partition of data.
Federated learning is done by data parallelism on partitioned
data and the parameters are broadcast periodically. To test
the scalability, an experiment was done to train the default
Caffe model of AlexNet [12] on the ImageNet dataset [13].
The experiment ran on a cluster of 3,5, and 10 nodes. For
comparison, another experiment ran Caffe on a single GPU
and no communication overhead. The results showed that one
GPU takes 55.6 hours to obtain an accuracy of 45%. While
with 3,5, and 10 GPUs, SparkNet takes 22.9, 14.5, and 12.8
hours, giving speedups of 2.4, 3.8, and 4.4.

Intel Corporation BigDL is a distributed deep learning
library for Apache Spark [14]. To study the scalability of
the distributed training of BigDL, an ImageNet Inception-v1
model was trained using BigDL with various node counts. The
results showed that the synchronization overheads represent a
small fraction compared to the model computation time.

Horovod [15] is a distributed deep learning training frame-
work for TensorFlow [16], Keras [17], PyTorch [18], and
Apache MXNet [19]. In addition, it aims to scale a single-
GPU training script to train across many GPUs in parallel
[20]. Horovod uses the Message Passing Interface (MPI) to or-
chestrate single/multi-worker training in a High-Performance
computing setup. In Horovod, each worker passes parameter
updates to a neighboring worker in a ring topology.

The Federated learning approach of [21] is a collaborative
machine learning method without centralized training data.
This approach enables mobile phones to collaboratively learn
a shared prediction model while keeping all the training data
on the device. In fact, the device downloads the current model,
improves it by learning from data on the same device. After
that, it summarizes the changes as a small update. Then, this
update is averaged with other user updates to improve the
shared model.

To sum up, the referenced examples of learning algorithms
update the parameters periodically either in a centralized
approach, or continuously in a ring topology. This is the main
difference to the algorithmic approach of efficient distributed
training [4] we apply, where the parameters are synchronized
conditionally if a threshold on divergence is passed.

ITII. COMMUNICATION EFFICIENT DISTRIBUTED TRAINING
OF NEURAL NETWORKS IN SPARK

In this section we show how to integrate the approach
for communication efficient distributed learning of neural
networks into Spark. First, we briefly summarize how the
approach of Dynamic Model Averaging [4] works. Next, we
show how we managed the data distribution in Spark and
explain the local learning that is performed on the distributed
data partitions. Finally, we describe how the distributed train-
ing with dynamic model averaging works in Spark.

A. Communication Efficient Distributed Training

Our approach is based on the dynamic averaging method [4]
explained in section II-A. In the following, we present some
basics of this method that we utilize for our integration. We
first define the local training procedure on one node, then we
explain the entire distributed training on n nodes. The local
procedure trains a model on a data partition and outputs a local
model. Let us assume that a data point x is the input to the
neural network that plays the role of the function f;(x) where

€ [1,n]. The output of f;(x) is the predicted value y, and
we compute the loss by comparing it to the true value y. The
same learning procedure takes place on each node using a fixed
structure of the neural network, i.e. all f;(z) have the same
structure. However, the set of neural networks differentiate
from each other by the learned weights. As a result, the output
of the local training is a local model m; on the node <.

To perform the static distributed learning, all learners start
the training from the same model. To achieve that, the node
which manages the control flow and the global state of the
computation (master) broadcasts the initial global model to
computing nodes. The training process starts on each comput-
ing node (worker) using an identical model and operates on a
partition of data. After each iteration, these local models are
synchronized by collecting the local models from the worker
nodes and averaging them in the master node.

Synchronize if

2 :(me —m 1> 38) ;or
0 ! True

- (lmg —m'|=85))

Fig. 1. This figure shows the condition required to synchronize the models.
If one of the local models m; diverges from the global model m’ we need
to synchronize.

In the dynamic averaging method, we check the divergence
between the models trained locally and the global reference
model after each iteration. If the difference between any local
model m,; and the global model m’ surpasses the divergence
threshold 6 € R* we need to synchronize the local models

(see Fig. 1). The new averaged model will be distributed
again as a global model to the worker nodes. Thus, using
dynamic averaging reduces communication overhead needed,
as the model synchronization is no longer performed after each
iteration, but only when the models diverge significantly.

B. Conceptual Approach for Spark

In this section we present how we map the concept of dis-
tributed learning based on dynamic averaging onto the Spark
framework. We use PySpark as Python interface to Spark [9],
and PyTorch [18] to train the neural networks. Furthermore,
we used Jupyter Notebooks [22] for the execution of the code.
In order to apply the dynamic averaging method, we define
User Defined Functions (UDF) to implement some necessary
functions that do not exist in PySpark build-in functions. In the
following we present the concept and implementation of the
distributed learning process divided into 7 different steps. The
approach is illustrated in Fig. 2 based on an image processing
use case that we will later on use for the evaluation.

dataset data_df partitions_df sync_value
\ i 2 2 3 0
) —> —> | ¢ | =
read images MapPartitions | . UDE
Train CheckEorSync
Tonext /)
iteration 4 1Aggregat|on
(sum)
6 5
(;’"k‘;dszl : P h ' E [UY 'L]
if (v>1)
average custom MapPartitions
accumulator getModels

Fig. 2. This figure shows the workflow of the training process in 7 steps and
the roles of the different Spark aspects such as UDF, the Accumulator and
the Aggregation sum.

To start the learning experiment, we first configure Spark
settings such as the master URL, driver and executor memory,
number of workers and other important parameters. Then, we
define the experiment’s main variables such as the count of
iterations and batch size. After that, we store the data images
into a DataFrame as shown in Step 1 in Fig. 2. The whole
dataset is partitioned onto the worker nodes such that a single
partition of data is assigned to a single process on a node and
the nodes can process the data in parallel. Reading images
and dividing them into approximately equal-sized partitions is
managed by Spark. To initiate the training, the master node
broadcasts the initial global model to the worker nodes.

As we need to run the same training process on each
node, we use the function mapPartitionsWithIndex (Step 2),
which applies the training function to each partition of the
data. Also, we need to track the index of the partition in
order to continue the training from the same local model
when there is no need for synchronization. Once the training
iteration ends, the output model is saved on the local disk.
Then, we check in Step 3 whether the local models diverge
from the global model or not (see also Fig. 1). We define
a User Defined Function and call it checkForSync to check

the divergence condition for each partition. It calculates the
differences between the local and the global model and returns
1 if the difference surpasses the divergence threshold, or O
otherwise. The boolean variables in Fig. 1 are expressed here
as integers. The true variable is mapped to 1 and the false to 0.
Then, in Step 4 the returned values of the checkForSync UDF
are aggregated to decide whether we should synchronize the
models or continue the training without communication. We
used here the Aggregation sum function to compute the sum
of the returned integers from the previous step. Note that the
logical OR in Fig. 1 is expressed here by the sum operation.

If there is no need to perform a synchronization, we move
directly from Step 4 to Step 7. Otherwise, we accumulate the
models’ weights in Step 5 using the Accumulator variables in
PySpark. The Accumulators are used to gather information and
update counters across different executors. We used a primitive
type accumulator to track the differences between local models
and the global model. Also, we used a custom accumulator
defined by the AccumulatorParam class to aggregate the
network parameters in order to average them afterwards. In
the driver program, we created an accumulator variable with
an initial value of zero weights network. Then, the weights
are aggregated on the driver side. To compute the average,
each weight of the accumulated model is simply divided by
the number of partitions, so we get the averaged global model
(Step 6). The resulting model will be the new global model
which is sent again to all worker nodes. Since our research is
conducted to learn the model in a communication efficient
way, each node will receive only one copy of the global
model even if it contains several partitions. Thus, we also save
communication while transferring models.

In the next rounds, we repeat the training process. The initial
model on each node is either the global model, if the previous
round ended with synchronization, or the training continues
with the local model saved from the previous round. After the
final round of training, a synchronization is done - even if the
difference of the models does not surpass the threshold - to
obtain the final global model for the experiment.

IV. EXPERIMENTAL EVALUATION

In this section, we investigate the effectiveness of applying
the approach of Communication Efficient Distributed Training
of Neural Networks in Spark. We want to answer two basic
questions: how effective is the communication saving of the
approach, and does the approach scale horizontally in a
complex scenario.

In order to apply our method to a real-world dataset, we
used the Audi Autonomous Driving Dataset (A2D2) [6]. This
dataset was published to support academic researchers working
on autonomous driving. The dataset features 2D semantic seg-
mentation and consists of 23 different driving scenes recorded
from different views such as front center camera, side left
camera, rear center camera,... etc. Each scene holding a series
of frames. In our experiments, we took the subset of frames
taken from front center camera. The total number of frames

in this subset is 26591. Each pixel in a frame is given a label
describing the type of element it represents, such as car or sky.

In the following we describe our procedure to evaluate the
dynamic averaging method when training a Fully Convolu-
tional Network (FCN) [23], which predicts the pixels’ labels.

A. Effectiveness of the communication saving

First, we apply the static and dynamic method in a cluster
of 9 nodes and check whether we achieve the same level
of accuracy as in a reference training. Then we examine the
amount of communication we could save using the dynamic
approach and finally we investigate the improvement of the
computation time.

1) Predictive Performance: For a reference of an acceptable
predictive performance, we first ran the training of an FCN
implementation [24] on a single node without using Spark
with a split ratio (80%, 20%) of training and testing data. The
experiment total time was 106h:35min and it took 28 epochs to
get acceptable predictive performance measured by accuracy
and mean Intersection over Union (mloU). Then, we ran the
distributed experiment on 9 nodes with data parallelism based
on Spark. We trained for the same number of epochs and used
the same split ratio as for the reference experiment. In this
experiment, we applied static synchronization and averaged the
local models after each epoch and updated the global model on
each of the 9 nodes. The application of this method showed
a performance close to the reference experiment. The pixel
accuracy of the distributed experiment was 0.940 and the mean
Intersection over Union (mloU) was 0.455, compared to 0.945
and 0.483 for the local experiment. This distributed experiment
took 15h: 06 min and thus executed 7.06 times faster than the
single node reference experiment. Finally, we ran the dynamic
version of our distributed experiment. In this experiment, the
algorithm compares the each local model after each epoch of
training with the last global model. If the difference between
any of these local models and the global model surpasses
the threshold §, the synchronization takes place and the new
global model is distributed to all cluster nodes. The difference
between the two models is the sum of the absolute differences
between the corresponding parameters. Based on a small series
of experiments we set the value of the threshold, namely
20000, as a guessed medium value between a lower bound of
values that always cause synchronization and an upper bound
too high to cause synchronizations. This threshold is used
in all experiments that perform the dynamic method for our
scenario. Compared to the static method, the dynamic method
performs with almost the same accuracy and mloU using only
6 synchronizations during the entire training process with 28
epochs. Fig. 3 shows the comparison between the static and
the dynamic synchronization.

As a cross check, we also ran an experiment that performed
a synchronization only once after 28 epochs. This case is
equivalent to choosing a high value of the divergence thresh-
old. Postponing the synchronization to the end gives worse
results compared to dynamic or static averaging, as displayed

TABLE I
THE TABLE SHOWS A COMPARISON BETWEEN THE SINGLE NODE EXPERIMENT AND THE THREE VARIANTS OF THE DISTRIBUTED EXPERIMENT.

Single-node experiment | Static Sync. | Dynamic Sync. | Sync. once at the end
Count of syncs - 28 6 1
Accuracy 0.945 0.940 0.942 0.924
mloU 0.483 0.455 0.447 0.292
Total time 106 h: 35 min 15 h: 6 min 14 h: 55 min 14 h: 52 min

—— static sync 0.45 e~

e dynamic sync V]
a0 /\/
035 ;

0.30 T

-

0 5 10 15 20 25 30 0 5 10 15 20 25 30
Epochs Epochs

Accuracy
mioU

Fig. 3. This figure shows the accuracy comparison between the static and
dynamic synchronization. The 6 red points represent the 6 synchronization
events during training.

in Table I. By this, we show that intermediate synchronisations
are necessary to obtain an acceptable predictive performance.

Summing up, the dynamic approach reduces the number of
synchronizations compared to the static method, but still offers
the same high quality of the predictive performance.

2) Network communication: In a distributed experiment
using n nodes, we need to transmit n — 1 local models per
synchronization because in our setup the master node also
acts as a worker and does the training on one partition. In
the dynamic experiment, synchronization happened 6 times
out of 28 epochs. Each synchronisation causes 3688 MB of
network traffic. Thus, compared to the static synchronization
experiment, the dynamic synchronisation avoids 81136 MB
network traffic within the whole training.

This confirms the original hypothesis that we save on
network communication and do not lose predictive power even
with a complex large task. Fig. 4 shows the difference in
network traffic between the static and the dynamic approach.

100 l

—— static
dynamic

80

60

J T
e

o 5 10 15 20 25
Epoch

Fig. 4. The plot shows the difference in network communication between
static and dynamic averaging methods.

Communication (GB)

3) Communication time: Considering the efficiency of the
training process in terms of communication time, our exper-
iments showed that the total time for the static averaging is
15h:06min, while it’s 14h:55min for the dynamic averaging
(see Table I). Contrary to our expectations, these results have

not shown a significant difference (just 11 minutes) concerning
the training time between the two averaging approaches.

As shown in Fig. 5, the synchronization time is minimal
compared to training time. The process of model aggregation
and averaging towards a new global model took only 32
seconds per round, which is around 1.7% of the training time
itself. A synchronization happened 6 times in the dynamic
experiment. Thus, the time saved is: (28 — 6) x 32 sec =
11 min 44 sec. In terms of communication time, there is
only a very low benefit of the dynamic approach.

Percentage of total time parts

training (95.1%) —

. training: 14 h: 11 min
initialization: 13 min
mm re-partition: 15 min
mmm synchronization: 15 min
N\ [synchvonization (1.7%)|
\‘re—pamtion (1.7%)‘
initialization (1.5%)
Fig. 5. The figure shows how the total time of the distributed learning

experiment is divided. The synchronization part is minimal compared to the
training.

A more detailed look at the synchronization times for exper-
iments with 3 to 9 nodes shows that the synchronization has a
base load of approx. 27 seconds. Model transmission from a
worker to the master causes a network traffic of about S0O0MB.
As the number of nodes increases, the synchronization time
increases by less than a second per additional model. This
is closely the transmission time of S00MB per model in the
10GBit network configured in our cluster.

B. Horizontal Scalability

In order to evaluate if our approach scales horizontally in a
complex scenario, we run the distributed learning experiment
on different numbers n of nodes (3 to 9). We calculate the
speedup factor S(n) by dividing the experiment time on a
single node by the time needed using n nodes. Table II
shows time and performance details of these experiments. Note
that the column ’Distribution’ represents the time needed to
partition and distribute the data before starting of the training
’Computation’ over a series of 28 epochs.

Amdahl’s Law [25] states that if we apply n processes to a
task that has a serial fraction o, then the task will approach a
speedup limit that is given by the following formula:

n

S = T em =D

(D

TABLE II
THE TABLE SHOWS THE RESULTS OF APPLYING THE DYNAMIC AVERAGING METHOD ON MULTIPLE NUMBER OF WORKER NODES.

Nodes count 3 4 5 6 7 8 9
Distribution 1h:25m 1h:2m S51m 42m 36m 32m 29m
Computation 42h:16m | 30h:56m | 25h:18m | 21h:21m | 18h:05m | 16h:0lm | 14h:11m
Serial Time 12m:4s 12m:6s 12m:26s 13m:7s 13m:12s 14m:6s 15m:20s
Total time 43h:53m | 32h:10m | 26h:2Im | 22h:16m | 18h:55m | 16h:46m | 14h:55m
Accuracy 0.952 0.949 0.948 0.946 0.943 0.942 0.942
mloU 0.477 0.471 0.467 0.461 0.458 0.452 0.447
Syncs count 8 8 8 7 7 6 6
Speedup factor 243 3.31 4.04 4.79 5.63 6.36 7.15

In our case, o is the fraction of the time of the serial algo-
rithmic parts performed by the master, e.g. the accumulating
and averaging the model parameters, or of algorithmic sections
that are equally performed on each worker node independent
of the scale of distribution, e.g. the initialization of the local
models and the execution of the checkForSync function. The
value (1 —o) is the fraction of training time performed by the
data-parallel execution on the worker nodes.

An extension of Amdahl’s Law, called the Universal Scal-
ability Law [26] (USL), introduces an additional coefficient
of performance that reflects delays due to communication
between nodes. The USL is given by the following equation:

n
Sl wrapey e g ey @
The coefficient v represents the slope in the case of ideal
parallelism, « defines the serial coefficient, and 3 represents
additional delays. We fit the USL coefficients to our Speedup
values from Table II using [27] and get the following equation:

S(n) 0.8266n
n)=

1+40.00525(n — 1) + 3.78 x 10~ 6n(n — 1)
The extreme small value of [corresponds to the marginal
fraction of synchronization time as shown in Fig. 5. The

single-node experiment took 106h:35min. Therefore, the time
required on n nodes is given by the following equation:

T(n) = 106.58 x S(n)~!

3)

4)

As can be seen in Fig. 6, our results for nodes count n € [3, 9]
fit the Universal Scalability Law almost exactly.

40
35

* USLvalues
o Actual values

Experiment time (hours)
BN N w
G 3 & 8
I

4
[
4
[

w

8 10
Nodes count

Fig. 6. The plot shows the relation between the total time and the number
of nodes. The blue curve represents the time values computed by the
Universal Scalability Law while the red points represent the actual time of
our experiments.

C. Experiment Wrapup

We have investigated the two main questions about the
effectiveness of the dynamic averaging method and the scala-
bility. Our evidence-based results indicate that the distributed
approach of Communication Efficient Distributed Learning
performs successfully even on a large realistic task of training
a fully convolutional network (FCN) [23]. Moreover, our
results highlight the importance of doing dynamic averaging
on intermediate steps. According to our expectations, we
demonstrated empirically that we achieved high predictive
performance with reduced network communication. Regarding
communication time, it turned out that the synchronization
time is minimal compared to the training time when we use
a complex network and large dataset, even if we speed up
training by data parallelism. Finally, we presented evidence-
based results that the distributed approach scales successfully
with an increasing number of computing nodes. Further results
and detailed evaluations can be found in [28].

V. CONCLUSION

In this paper we have shown how to integrate communi-
cation efficient distributed learning of neural networks into
the big data framework Spark. The integration is based on
an existing method of dynamic model averaging which only
synchronizes local models if they significantly diverge from
the global model. Thus, it is a viable alternative with reduced
communication compared to distributed learning frameworks,
which are based on periodic averaging. By our approach, we
were able for the first time to perform distributed learning
of neural networks in a big data environment using Spark
in a communication efficient way. In detail, we showed that
the approach based on dynamic model averaging can achieve
the same accuracy as with static periodic averaging. Com-
munication is reduced, but for large models, the time needed
for the synchronization of the models is very low compared
to the duration of the whole training process. Lastly, we
investigated to what extent the approach scales to huge datasets
and complex deep neural networks. Our experiments on the
real-world dataset A2D2 showed that our approach scales out
successfully for fully convolutional networks. In detail, the
speedup factor achieved for static and dynamic averaging on
9 nodes reduced the training time by a factor of 7.15. We
believe that further work needs to be done to investigate on
which deep networks we could apply the averaging method.

[1]

[2]

[3]

[4]

[5]

[6]

[7]

[9]

[10]

(11]

[12]

(13]

[14]

[15]

[16]

REFERENCES

M. Kamp, M. Boley, D. Keren, A. Schuster, and I. Sharfman,
“Communication-efficient distributed online prediction by dynamic
model synchronization,” in European Conference on Machine Learning
and Principles and Practice of Knowledge Discovery (ECMLPKDD).
Springer, 2014.

M. Kamp, S. Bothe, M. Boley, and M. Mock, “Communication-
efficient distributed online learning with kernels,” in Machine Learning
and Knowledge Discovery in Databases, P. Frasconi, N. Landwehr,
G. Manco, and J. Vreeken, Eds. Springer International Publishing,
2016, pp. 805-819. [Online]. Available: http://michaelkamp.org/wp-
content/uploads/2020/03/Paper467.pdf

E. Qadah, M. Mock, E. Alevizos, and G. Fuchs, “A distributed online
learning approach for pattern prediction over movement event streams
with apache flink,” in Proceedings of the Workshops of the EDBT/ICDT
2018 Joint Conference (EDBT/ICDT 2018), Vienna, Austria, March
26, 2018, ser. CEUR Workshop Proceedings, N. Augsten, Ed.,
vol. 2083. CEUR-WS.org, 2018, pp. 109-116. [Online]. Available:
http://ceur-ws.org/Vol-2083/paper-17.pdf

M. Kamp, L. Adilova, J. Sicking, F. Hiiger, P. Schlicht, T. Wirtz, and
S. Wrobel, “Efficient decentralized deep learning by dynamic model av-
eraging,” in Machine Learning and Knowledge Discovery in Databases.
Springer, 2018. [Online]. Available: http://michaelkamp.org/wp-
content/uploads/2018/07/commEffDeepLearning_extended.pdf

Y. Lecun, L. Bottou, Y. Bengio, and P. Haffner, “Gradient-based learning
applied to document recognition,” Proceedings of the IEEE, vol. 86,
no. 11, pp. 2278-2324, 1998.

J. Geyer, Y. Kassahun, M. Mahmudi, X. Ricou, R. Durgesh,
A. S. Chung, L. Hauswald, V. H. Pham, M. Miihlegg, S. Dorn,
T. Fernandez, M. Jénicke, S. Mirashi, C. Savani, M. Sturm, O. Vorobiov,
M. Oelker, S. Garreis, and P. Schuberth, “A2D2: audi autonomous
driving dataset,” CoRR, vol. abs/2004.06320, 2020. [Online]. Available:
https://arxiv.org/abs/2004.06320

J. Chen, R. Monga, S. Bengio, and R. Jézefowicz, “Revisiting
distributed synchronous SGD,” CoRR, vol. abs/1604.00981, 2016.
[Online]. Available: http://arxiv.org/abs/1604.00981

T. Ben-Nun and T. Hoefler, “Demystifying parallel and
distributed deep learning: An in-depth concurrency analy-
sis;” CoRR, vol. abs/1802.09941, 2018. [Online]. Available:

http://arxiv.org/abs/1802.09941

M. Zaharia, M. Chowdhury, M. J. Franklin, S. Shenker, and I. Stoica,
“Spark: Cluster computing with working sets,” in Proceedings of the
2nd USENIX Conference on Hot Topics in Cloud Computing, ser.
HotCloud’10. USA: USENIX Association, 2010, p. 10.

J. Dean and S. Ghemawat, “Mapreduce: Simplified data processing on
large clusters,” Commun. ACM, vol. 51, no. 1, p. 107-113, Jan. 2008.
[Online]. Available: https://doi.org/10.1145/1327452.1327492

P. Moritz, R. Nishihara, I. Stoica, and M. I. Jordan, “Sparknet: Training
deep networks in spark,” 2016.

A. Krizhevsky, 1. Sutskever, and G. E. Hinton, “Imagenet classification
with deep convolutional neural networks,” in Advances in Neural
Information Processing Systems 25, F. Pereira, C. J. C. Burges,
L. Bottou, and K. Q. Weinberger, Eds. Curran Associates, Inc., 2012,
pp. 1097-1105. [Online]. Available: http://papers.nips.cc/paper/4824-
imagenet-classification-with-deep-convolutional-neural-networks.pdf

O. Russakovsky, J. Deng, H. Su, J. Krause, S. Satheesh, S. Ma,
Z. Huang, A. Karpathy, A. Khosla, M. S. Bernstein, A. C. Berg, and
F. Li, “Imagenet large scale visual recognition challenge,” CoRR, vol.
abs/1409.0575, 2014. [Online]. Available: http://arxiv.org/abs/1409.0575
J. J. Dai, Y. Wang, X. Qiu, D. Ding, Y. Zhang, Y. Wang, X. Jia, C. L.
Zhang, Y. Wan, Z. Li, J. Wang, S. Huang, Z. Wu, Y. Wang, Y. Yang,
B. She, D. Shi, Q. Lu, K. Huang, and G. Song, “Bigdl: A distributed
deep learning framework for big data,” CoRR, vol. abs/1804.05839,
2018. [Online]. Available: http://arxiv.org/abs/1804.05839

A. Sergeev and M. D. Balso, “Horovod: fast and easy distributed deep
learning in TensorFlow,” arXiv preprint arXiv:1802.05799, 2018.

M. Abadi, A. Agarwal, P. Barham, E. Brevdo, Z. Chen, C. Citro, G. S.
Corrado, A. Davis, J. Dean, M. Devin, S. Ghemawat, 1. Goodfellow,
A. Harp, G. Irving, M. Isard, Y. Jia, R. Jozefowicz, L. Kaiser,
M. Kudlur, J. Levenberg, D. Mané, R. Monga, S. Moore, D. Murray,
C. Olah, M. Schuster, J. Shlens, B. Steiner, I. Sutskever, K. Talwar,
P. Tucker, V. Vanhoucke, V. Vasudevan, F. Viégas, O. Vinyals,
P. Warden, M. Wattenberg, M. Wicke, Y. Yu, and X. Zheng,

[17]
[18]

[19]

[20]

[21]

[22]

(23]

[24]

[25]

[26]

[27]

(28]

“TensorFlow: Large-scale machine learning on heterogeneous systems,”
2015, software available from tensorflow.org. [Online]. Available:
https://www.tensorflow.org/

F. Chollet et al., “Keras,” https://keras.io, 2015.

A. Paszke, S. Gross, F. Massa, A. Lerer, J. Bradbury, G. Chanan,
T. Killeen, Z. Lin, N. Gimelshein, L. Antiga, A. Desmaison, A. Kopf,
E. Yang, Z. DeVito, M. Raison, A. Tejani, S. Chilamkurthy, B. Steiner,
L. Fang, J. Bai, and S. Chintala, “Pytorch: An imperative style,
high-performance deep learning library,” in Advances in Neural
Information Processing Systems 32. Curran Associates, Inc., 2019,
pp. 8024-8035. [Online]. Available: http://papers.neurips.cc/paper/9015-
pytorch-an-imperative-style-high-performance-deep-learning-library.pdf
T. Chen, M. Li, Y. Li, M. Lin, N. Wang, M. Wang, T. Xiao, B. Xu,
C. Zhang, and Z. Zhang, “Mxnet: A flexible and efficient machine
learning library for heterogeneous distributed systems,” 2015.

A. Sergeev and M. D. Balso, “Horovod: fast and easy distributed deep
learning in TensorFlow,” arXiv preprint arXiv:1802.05799, 2018.

B. McMahan and D. Ramage, “Federated learning: Collaborative
machine learning without centralized training data,” 2017. [On-
line]. Available: https://ai.googleblog.com/2017/04/federated-learning-
collaborative.html

T. Kluyver, B. Ragan-Kelley, F. Pérez, B. Granger, M. Bussonnier,
J. Frederic, K. Kelley, J. Hamrick, J. Grout, S. Corlay, P. Ivanov,
D. Avila, S. Abdalla, C. Willing, and J. development team, “Jupyter
notebooks ? a publishing format for reproducible computational
workflows,” in Positioning and Power in Academic Publishing: Players,
Agents and Agendas, F. Loizides and B. Scmidt, Eds. I0S Press, 2016,
pp- 87-90. [Online]. Available: https://eprints.soton.ac.uk/403913/

E. Shelhamer, J. Long, and T. Darrell, “Fully convolutional networks for
semantic segmentation,” CoRR, vol. abs/1605.06211, 2016. [Online].
Available: http://arxiv.org/abs/1605.06211

K. Wada, “pytorch-fen: Pytorch
fully convolutional networks,” 2017.
https://github.com/wkentaro/pytorch-fcn

G. M. Amdahl, “Validity of the single processor approach to achieving
large scale computing capabilities,” in Proceedings of the April 18-20,
1967, Spring Joint Computer Conference, ser. AFIPS °67 (Spring).
New York, NY, USA: Association for Computing Machinery, 1967, p.
483-485. [Online]. Available: https://doi.org/10.1145/1465482.1465560
N. J. Gunther, Guerrilla Capacity Planning: A Tactical Approach
to Planning for Highly Scalable Applications and Services, lst ed.
Springer Publishing Company, Incorporated, 2010.

W. Wang, “pyusl: Universal scalability law in python,” 2021. [Online].
Available: https://github.com/wip727/PyUSL

F. Alkhoury, “Communication efficient distributed learning using spark,”
Master’s thesis, University of Bonn, 2021.

implementation of
[Online]. Available:

