
Reconstructing High-resolution Turbulent Flows
Using Physics-Guided Neural Networks

Shengyu Chen1, Shervin Sammak2, Peyman Givi2, Joseph P. Yurko1, Xiaowei Jia1
1Department of Computer Science, University of Pittsburgh

2Department of Mechanical Engineering and Materials Science, University of Pittsburgh
{shc160, shervin.sammak, peg10, jyurko, xiaowei}@pitt.edu

Abstract—Direct numerical simulation (DNS) of turbulent
flows is computationally expensive and cannot be applied to flows
with large Reynolds numbers. Large eddy simulation (LES) is an
alternative that is computationally less demanding, but is unable
to capture all of the scales of turbulent transport accurately. Our
goal in this work is to build a new data-driven methodology based
on super-resolution techniques to reconstruct DNS data from LES
predictions. We leverage the underlying physical relationships to
regularize the relationships amongst different physical variables.
We also introduce a hierarchical generative process and a reverse
degradation process to fully explore the correspondence between
DNS and LES data. We demonstrate the effectiveness of our
method through a single-snapshot experiment and a cross-time
experiment. The results confirm that our method can better
reconstruct high-resolution DNS data over space and over time in
terms of pixel-wise reconstruction error and structural similarity.
Visual comparisons show that our method performs much better
in capturing fine-level flow dynamics.

I. INTRODUCTION

Computational fluid dynamics (CFD) has proven to be
a very effective research tool in a very wide variety of
disciplines, including engineering, science, medicine and more
[1]. For its applications in turbulent flows, however, the range
of the temporal & spatial scales is too broad to be captured
by brute force direct numerical simulations (DNS) [2]. Large
eddy simulation (LES) provides an alternative, by filtering the
small-scale scales of transport and concentrating on the larger
scale energy containing eddies [3]. By this filtering, LES can
be conducted on coarser grids as compared to those required
by DNS. The penalty, understandably, is that LES generated
data are of lower accuracy compared to DNS. Appraisal of
LES predictions and assessments of its fidelity as compared
to DNS, have been of interest in the turbulence research
community for the past several decades [4], [5]. The objective
of the present work is to build a new data-driven methodology
to reconstruct DNS from LES data, which facilitates a more
robust means of LES appraisal.

Machine learning, including super-resolution methods [6],
have shown great success in reconstructing high-resolution
data in a variety of commercial applications. For example,
convolutional neural networks (CNNs) and their extensions,
e.g., SRCNN [7], RCAN [8], and SRGAN [9], have proven
very effective in directly mapping low-resolution images to
high-resolution images. The effectiveness of these methods
mainly come from the power of CNNs in automatically
extracting representative spatial features through deep layers.

(a) LES (b) DNS

Fig. 1. An example slice of Large Eddy Simulation (LES) and its correspond-
ing Direct Numerical Simulation (DNS). This example is used to show the
the difference between LES and DNS at certain spatial locations and certain
time steps.

An alternative solution is to consider super-resolution as an
inverse modeling problem [10], [11] with the constraints that
the down-sampled version of the underlying high-resolution
data should be consistent to the observed low-resolution data.

Super-resolution techniques are starting to be used in tur-
bulence research [12]–[14]. However, there are several major
challenges that must be overcome, before they can be em-
ployed for routine applications. First, turbulent flow data often
exhibit significant variability. In the absence of underlying
physical processes, machine learning models are prone to
learning spurious patterns that fit statistical characteristics of
available training data collected from a specific time period,
but cannot generalize to other time intervals. This can be
further exacerbated by limited training data. Second, existing
super-resolution algorithms could have degraded performance
in CFD because of the huge information loss caused by the
large resolution gap. For example, LES data can be of more
than 8 times lower resolution compared to DNS data along
each axis. Hence, standard statistical interpolation methods
may fail to capture fine-level flow dynamics resulting from
underlying physical relationships and constraints. Third, exist-
ing machine learning models are not designed to deal with the
discrepancy between different simulation strategies (i.e. LES,
DNS and/or others). In general, the available simulations at a
coarser resolution are not simply a down-sampled version of
high-resolution simulations. Consider the examples in Fig. 1.
It is obvious that the LES predictions on the coarser grids do
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not capture the flow patterns as compared to high-resolution
DNS.

In this work, we develop a new method, termed Physics-
Guided Super-Resolution Network (PGSRN)1, to improve the
reconstruction of high-resolution turbulent flow data. This
development is by leveraging known physical constraints and
explicitly exploring the discrepancy & the consistency between
different simulations. First, we generalize the loss function of
the super-resolution model by incorporating the divergence-
free velocity-field constraint as required in incompressible
flows. Second, we introduce a hierarchical generative architec-
ture by decomposing the data reconstruction into two steps:
(i) transform low-resolution flow data into a down-sampled
version of high-resolution data, and (ii) reconstruct high-
resolution flow data from the down-sampled version. Step
(i) allows explicitly modeling the data discrepancy due to
different simulation methods used to generate low-resolution
and high-resolution data. Step (ii) is to recover the fine-
level details of flow data. Finally, we introduce a degradation
process to further regularize reconstructed data by impos-
ing the consistency between different simulations. Here we
represent the degradation process by a forward model (by
framing super-resolution as an inverse problem) that maps
high-resolution data to low-resolution data. The forward model
output of reconstructed data can then be compared against low-
resolution simulations for consistency assessment. We further
extend the degradation process as a feature extractor and
introduce an adversarial loss on the extracted features from
high-resolution data, which helps improve the modeling of
fine-level fluid dynamics.

For the purpose of demonstration, we consider a variant
of the Taylor-Green vortex (TGV) [15]. This is a three-
dimensional incompressible flow and is simulated within a
box with periodic boundary conditions. The TGV provides
a suitable setting for our demonstration as it exhibits several
salient features of turbulent transport. In this flow, the original
vortex collapses into turbulent worm-like structures which
become progressively more turbulent until viscosity eventually
dissipates the large scale vortical structures. We compare
our proposed method against several existing super-resolution
algorithms to reconstruct DNS data of TGV. We also demon-
strate the effectiveness of each component in our proposed
method by showing the improvement both qualitatively and
quantitatively.

II. METHODOLOGY

The goal of our work is to achieve an end-to-end recon-
struction mechanism from low-resolution LES data, denoted
by XLR to high-resolution DNS data XHR. In Fig. 2, we
show the overall structure of the methodology. The model has
two components, the generative process and the degradation
process. These are described here, in order:

1The source code for the PGSRN model presented in this study
is available online at link: https://drive.google.com/drive/folders/
1w6j3pNzVqZ7Q9P7ZpnTsVNmvnfJXnxh ?usp=sharing

A. Hierarchical Generative Process

The generative process aims to map XLR to XHR. It
contains multiple residual blocks and each block consists of
convolutional layers [16], batch normalization layers [17],
and parametric ReLUs following previous literature [18].
The generative process outputs a reconstructed data XSR,
and then the model is optimized to reduce the difference
between obtained XSR and provided high resolution data
XHR. Such a difference is represented as a reconstruction
loss Lrecon(XSR,XHR), which can be implemented as mean
squared loss (MSE), perceptual loss or other loss functions
that measure the difference between two sets of data. In this
work, we use the mean squared loss as we do not observe
significant improvement using other loss functions.

1) Hierarchical Structure: We also build a hierarchical gen-
erative structure to decompose the information gap between
low-resolution and high-resolution data and explicitly capture
their difference. In particular, we consider two types of infor-
mation loss from high-resolution data to low-resolution data:
1) the discrepancy caused by different simulation methods
used to generate data of different scales, and 2) the loss of
fine-level information due to the reduced resolution.

Given the input low-resolution data XLR ∈ RH×W×C

(H and W are spatial dimensions while C is the number
of physical variables), we use a hierarchical structure to ex-
tract intermediate data representation before generating high-
resolution data of size KH ×KW × C. In particular, we
create multiple middle layers {h1,h2, ...hm}. Here the first
middle layer h1 is used to extract a down-sampled version
of the high-resolution data XHR, which is of size H × W
(same with input low-resolution data). By introducing this
layer, the model can explicitly capture the discrepancy between
simulation strategies used for generating the input data XLR

(i.e., LES) and target data XHR (i.e., DNS) on the same
resolution. We introduce another loss on this middle layer
to reduce the difference between extracted information from
h1 and the down-sampled XHR. Specifically, the model first
transforms the hidden layer h1 into a reconstructed flow data
of size H×W×C via a function g(·) and then compare g(h1)
against the down-sampled version of XHR. More formally, this
loss is expressed as:

Lh1 = MSE(g(h1),Xdown1
HR ), (1)

where Xdown1
HR represents the down-sampled version of XHR

of size H × W . We implement the function g(·) using
convolutional layers and fully connected layers.

We can define additional losses on other intermediate layers
h2, ...,hm by comparing down-sampled XHR using different
down-sampling rates. Specifically, we represent the loss of the
hierarchical generative process as follows:

Lhier = α1Lrecon(XSR,XHR) + α2

m∑
i=1

Lhi

Lhi =

m∑
i=1

MSE(g(hi),Xdowni
HR )/m,

(2)

https://drive.google.com/drive/folders/1w6j3pNzVqZ7Q9P7ZpnTsVNmvnfJXnxh_?usp=sharing
https://drive.google.com/drive/folders/1w6j3pNzVqZ7Q9P7ZpnTsVNmvnfJXnxh_?usp=sharing


Fig. 2. The architecture of the proposed PGSRN model and different components in the loss function. Since the degradation structure is used for computing
both the degradation loss and the GAN loss, we use the black arrows and grey arrows in the degradation process to show the flow for computing the degradation
loss and GAN loss, respectively.

where Xdowni
HR is the down-sampled XHR of size kiH × kiW ,

and 1 = k1 < k2 < ... < km < K, and α1 and α2 are hyper-
parameters to control the balance between the reconstruction
loss on the predicted XSR and the loss on the middle layers.

It is noteworthy that we only implement a two-dimensional
super-resolution process in our tests, i.e., to increase the spatial
dimensions from H × W to KH × KW . For 3-D flow
data, LES simulations often have coarser resolutions along
two directions while keeping the other dimension to be the
same. Hence, we can use the same method to reconstruct DNS
simulations of size KH×KW ×D (D for depths) using LES
simulations of size H×W ×D. The method presented herein
can also be easily extended to include a three-dimensional
convolutional filter if DNS simulations have higher resolution
along all the three directions.

2) Physical Loss: We further regularize the generative pro-
cess by leveraging the physical constraints. These constraints
can potentially reduce the size of the hypothesis space to be
physically consistent, which helps extract more generalizable
patterns and reduce the data required for training.

Specifically, we incorporate the inherent physical relation-
ship. Here we represent the velocity vector V(x, t) along 3-D
dimensions (x ≡ x, y, z), by u, v, and w, respectively. The
flow is incompressible; thus, the velocity field is divergence-

free:
∇ ·V =

∂u

∂x
+
∂v

∂y
+
∂w

∂z
= 0. (3)

Let (u, v, w) be included as three channels in XLR and XHR.
We use a second-order central finite difference approximation
to estimate the partial derivatives. We employ this divergent
free property as an additional physical loss in the training
process.

LPhy =
∑

(x,y,z)

[
∇ · V̂(x, t)

]2
/N, (4)

where N is the number of spatial locations in the high-
resolution data, and V̂ represents the reconstructed velocity
field at high resolution. By minimizing LPhy on the velocity
field, we penalize the reconstructed high-resolution flow data
that significantly violate the divergence-free property. Such
regularization can help reduce the search space for model
parameters such that the reconstructed high-resolution data
follow the divergence-free property which is enforced in
incompressible flows.

B. Degradation Process
Given a low-resolution flow data sample, there can be

multiple high-resolution samples that correspond to this low-
resolution input. The generative process aims to find the



mapping from low-resolution to high-resolution data that fit
all the training samples, but are also prone to overfitting due
to the large high-resolution data space. On the other hand,
given any high-resolution flow data samples, it would be
much easier to learn a forward mapping which produces a
unique correspondence at the coarser resolution. Here, we
introduce a reverse degradation process to further regularize
the model by considering the reconstruction as an inverse
problem. Note that the degradation process cannot address the
challenge of one-to-many correspondence from low-resolution
to high-resolution data, but it can help eliminate reconstructed
high-resolution flow data that are not consistent to the given
low-resolution simulations. Such a degradation process is
also helpful for capturing the discrepancy between simulation
strategies used to generate data of different scales.

We create a forward model (in reverse modeling) f(·)
that maps high-resolution XHR to low-resolution XLR. We
implement this forward model by using stacked convolutional
layers and batch normalization layers (see Fig. 2). Then we
introduce an additional degradation loss to ensure the consis-
tency between the given low-resolution data XLR, and the low
resolution data obtained from the reconstructed XSR through
the forward model, i.e., f(XSR; θdeg), where θdeg represents
model parameters in the forward model. In particular, we
implement the degradation loss as follows:

Ldeg = MSE(XLR, f(XSR; θdeg)) (5)

The parameters of the forward model in the degradation
process are estimated by minimizing the degradation loss.
Moreover, we introduce the additional GAN loss [19] by shar-
ing the architecture of the forward model and the discriminator
used in the GAN-based model. In particular, the GAN loss
is defined on the extracted features by further extending the
forward model, as shown in Fig. 2. The GAN-based loss has
been shown to improve the performance of extracting high-
resolution textures in super-resolution tasks [6].

Formally, the loss function of the degradation process is:

LD = β1Ldeg + β2LGAN,disc, (6)

where LGAN,disc is the discriminator loss used in SRGAN [9],
β1 and β2 are hyper-parameters.

The generative process needs to be optimized in conjunction
with the degradation process. In particular, it is optimized by
minimizing the combination of reconstruction loss (including
middle layers) in the hierarchical structure, the physical Loss,
degradation loss, and the GAN loss (the generator part). The
overall loss for the generative process is:

LG = α1Lrecon(XSR,XHR) + α2

m+1∑
i=1

Lhi + α3LPhy

+ α4Ldeg + α5LGAN,gen,

(7)

where LGAN,gen is the standard generator loss in GAN [9].
We have also explored other extensions of GAN-based loss
functions, such as Wasserstein GAN [20] and Wasserstein

GAN-GP [21] but did not observe significant improvement.
The hyper-parameters {α1:5} are used to control the weight of
each component. We discuss the selection of these parameters
in Section III.

III. EXPERIMENT

In this section, we first introduce the dataset and experimen-
tal settings. Then we evaluate the performance of our proposed
method in reconstructing DNS data.

A. Experiment Setting

We consider two experiments: single-snapshot and cross-
time. The former is designed to verify the ability of the
proposed method in reconstructing a new data portion over
space , and the latter is for evaluation of the methodology for
data reconstruction over time.

1) Dataset: The TGV is produced by solution of the
constant density Navier-Stokes equation:

∂V
∂t

+ (V.∇)V =
−1

ρ
∇p+ ν∆V, (8)

where ρ(x, t) and p(x, t) denote the fluid density and the
thermodynamic pressure, respectively. The evolution of the
TGV includes enhancement of vorticity stretching and the
consequent production of small-scale eddies. Initially, large
vortices are placed in a cubic periodic domain of [−π, π] (in
all three-directions), with initial conditions:

u(x, y, z, 0) = sin(x) cos(y) cos(z) (9)
v(x, y, z, t) = − cos(x) sin(y) cos(z) (10)
w(x, y, z, t) = 0. (11)

Then the value of the Reynolds number is set to Re = 1600.
We have LES and DNS results of TGV at several times steps.
For each time step, we consider the three-components of the
velocity along the x, y and z axis, denoted by u, v and w,
respectively. Our objective is to reconstruct the DNS results of
the velocity field (u, v, w) using LES data. In particular, XLR

represents the LES predicted values of the velocity field while
the target XHR represents the DNS results of the velocity
field. Here both LES and DNS data are generated along 65
grid points along the z axis under equal intervals. The LES and
DNS are conducted on 32-by-32 and 128-by-128 grid points,
respectively, along the xy directions. Hence, the DNS data is
of 4 times higher resolution compared to LES data.

2) Evaluation Metrics: We evaluate the performance of
DNS reconstruction using two different metrics, root mean
squared error (RMSE) and structural similarity index measure
(SSIM) [22]. We use RMSE to measure the difference (error)
between reconstructed data and target DNS data. The lower
value of RMSE indicates better reconstruction performance.
SSIM is used to appraise the similarity between reconstructed
data and target DNS on three aspects, luminance, contrast and
overall structure.



TABLE I
RECONSTRUCTION PERFORMANCE (MEASURED BY RMSE AND SSIM) ON
(u, v, w) CHANNELS BY DIFFERENT METHODS IN THE SINGLE-SNAPSHOT

EXPERIMENT.

Method RMSE SSIM
SRCNN (0.086, 0.089, 0.106) (0.833, 0.833, 0.764)
RCAN (0.096, 0.095, 0.109) (0.745, 0.741, 0.645)
DSC/MS (0.096, 0.095, 0.106) (0.828, 0.826, 0.729)
SRGAN (0.089, 0.078, 0.085) (0.837, 0.834, 0.751)
PGSRN-P (0.076, 0.075, 0.075) (0.845, 0.846, 0.781)
PGSRN-H (0.077, 0.074, 0.070) (0.844, 0.844, 0.800)
PGSRN (0.064, 0.061, 0.066) (0.875, 0.877, 0.838)

3) Baselines: We compare the performance of PGSRN
method against several existing methods that have been widely
used for image super-resolution and turbulent flow down-
scaling. Specifically, we implement SRCNN [7], RCAN [8],
SRGAN [9], and a popular dynamic fluid downscaling method:
DCS/MS [14] as baselines.

To better verify the effectiveness of each component in our
proposed method, we further compare PGSRN with two of its
variants: PGSRN-P and PGSRN-H as described below.

The variant with only physical Loss (PGSRN-P): To
show the effectiveness of the physical loss, we remove the
degradation Loss and hierarchical loss (in middle layers) from
the Hierarchical Generative Process. We name this method as
PGSRN-P.

The variant with physical loss + hierarchical generative
process (PGSRN-H): In this baseline, we remove only the
degradation loss from the PGSRN method, and we name this
baseline as PGSRN-H.

By comparing PGSRN-P and SRGAN, we hope to show
the improvement by incorporating the physical loss. We can
further verify the effectiveness of the hierarchical loss by
comparing PGSRN-P and PGSRN-H. Finally, the comparison
between PGSRN-H and the complete version of PGSRN can
show the effectiveness of using the degradation loss.

4) Experimental Design: We evaluate the performance of
our proposed method in two different scenarios. First, we
consider the case in which part of flow data is missing at
a specific time. For example, the high-resolution flow data is
available at certain points along the z axis but not available
at other points. We can use the model trained using available
data to reconstruct high-resolution DNS data for the remaining
locations. We refer to this test as a single-snapshot experiment
since the training and testing are conducted at the same time
step. In this test, we use the 5-fold cross validation method
to divide 65 data slices into five parts and each part has 13
slices. Each time we use four folds (i.e., 52 slides) for training
and use the remaining one fold (i.e., 13 slides) for testing.

Second, we conduct cross-time experiments to study how
the proposed method helps simulate flows in a dynamic
scenario. In particular, we use data from 20 consecutive time
steps as the training data, and then test the model in the next
20 time steps. This is a challenging task since dynamic fluid
is changing over time following complex non-linear patterns

TABLE II
RECONSTRUCTION PERFORMANCE ON (u, v, w) CHANNELS BY RMSE
AND SSIM IN THE CROSS-TIME EXPERIMENT. THE PERFORMANCE IS

MEASURED AT A TIME STEP WHICH IS 5 SECONDS APART FROM THE LAST
TIME STEP IN TRAINING DATA.

Method RMSE SSIM
SRCNN (0.089, 0.089, 0.122) (0.890, 0.889, 0.848)
RCAN (0.073, 0.073, 0.093) (0.875, 0.874, 0.837)
DSC/MS (0.095, 0.098, 0.131) 0.881, 0.879, 0.822)
SRGAN (0.086, 0.087, 0.096) (0.897, 0.901, 0.860)
PGSRN-P (0.086, 0.082, 0.095) (0.903, 0.909, 0.876)
PGSRN-H (0.083, 0.081, 0.093) (0.907, 0.908, 0.870)
PGSRN (0.076, 0.072, 0.086) (0.920, 0.922, 0.896)

(driven by Navier-Stokes equation [23]). Hence, the model
trained from available data may not be able to generalize to
future data that look very different with training data.

5) Training Settings: Data normalization is performed on
both training and testing datasets, to normalize input LES
variables to the range [0,1]. Then, the model is trained by
ADAM optimizer [24] with β1 = 0.5, β2 = 0.999. The initial
learning rate is set to 0.0002 and iterations are 500 epochs.
All the αi (i = 1 to 5) values are set to 1. We use Tensorflow
1.15 and Keras to implement our models with Titan Xp GPU.

B. Single-Snapshot Experiment

Quantitative Results. Table. I shows quantitative compar-
isons amongst all the methods. When comparing our proposed
PGSRN method with baseline methods, our proposed PGSRN
performs the best on both evaluation ways, obtaining lowest
RMSE value and highest SSIM values. According to this table,
the proposed method PGSRN in general outperforms other
baselines for velocity components {u, v, w} in terms of both
RMSE and SSIM.

By comparing SRGAN and SRCNN, we show the improve-
ment by using the GAN loss. Furthermore, the comparison
amongst SRGAN, PGSRN-P, PGSRN-H, and PGSRN shows
the effectiveness of incorporating each component (physical
loss, hierarchical loss, degradation) of the proposed method.
In particular, the incorporation of physical loss and degradation
loss brings the most significant performance improvement in
terms of RMSE and SSIM.

Although the baseline DSC/MS was developed in the con-
text of turbulent flow downscaling, it has been successful only
when tested towards reconstructing DNS data using down-
sampled DNS data. This method does not work well in our test
because it does not take into account the discrepancy between
LES and DNS results.

Visual Results. In Fig. 3, we show an example of high-
resolution flow data (128-by-128 on a specified z value)
reconstructed by each method. We observe that LES results
on this slice do not capture some fine-level details of DNS.
The DCS/MS, SRCNN, and RCAN methods also do not
capture such fine-level information. In contrast, SRGAN can
obtain higher SSIM value compared to these methods, and
it can be further improved by incorporating physical loss,



(a) LES. (b) Upsampling.\ 0.505 (c) DCS/MS.\ 0.640 (d) SRCNN.\ 0.643 (e) RCAN.\ 0.565

(f) SRGAN.\ 0.659 (g) PGSRN-P.\ 0.710 (h) PGSRN-H.\ 0.712 (i) PGSRN.\ 0.762 (j) Target DNS.

Fig. 3. Reconstructed u channel by each method on a sample testing slice along the z dimension in the single-snapshot experiment. We also show the SSIM
value for each reconstructed data.

hierarchical loss, and the degradation loss. By visually in-
specting reconstructed data over multiple slices, we find that
the incorporation of the physical in general helps eliminate
artifacts that are physically inconsistent (e.g., the red circled
areas in Fig. 3 (f)). The use of degradation loss generally helps
better match the magnitude of the reconstructed data to the
target DNS. For most slices for which LES exhibits obvious
differences with DNS data, the SSIM value of PGSRN is more
than 10% higher than all the other existing algorithms.

C. Cross-Time Experiment

Quantitative Results. In this experiment, we compare the
same set of existing methods as in the previous single-snapshot
experiment. In Table II, we show the quantitative results at the
5th time step in the testing set, which is five seconds apart from
the last time step in the training set. We select this time step to
show the performance in short-term prediction while we will
show more results at different time steps later in the temporal
analysis.

We can observe similar results that our proposed PGSRN
outperforms other methods by a considerable margin. We also
notice that RCAN method achieves good RMSE in this test,
e.g., RCAN has smaller RMSE than PGSRN in reconstructing
velocity components u and v. This shows that the machine
learning model with a more complex (and carefully designed)
forward process has a better chance at matching with the target
data. However, the success of RCAN is limited in capturing
the overall structure of flows as observed from its lower SSIM
values compared with other methods.

Temporal Analysis. In the temporal analysis, we show the
change of performance as we reconstruct DNS data over 20
time steps after the training data. We show the performance of
cross-time prediction in terms of RMSE and SSIM in Fig. 4
and Fig. 5, respectively. We have several observations from
these figures: (1) With larger time intervals between training

data and prediction data, the performance (in terms of both
RMSE and SSIM) becomes worse. In general, our method
still has better performance than other methods. (2) RCAN
has achieved better RMSE than the proposed method for
reconstructing u and v channels, especially during the first
10 time steps. However, our method has much better SSIM
compared to RCAN. (3) After 15 time steps, the performance
(SSIM/RMSE) tends to be stable; (4) Although our proposed
PGSRN method achieves better RMSE and SSIM than other
methods, the reconstructed data is of very low quality when
the time gap is large. We will show some examples in the
visual results.

Visual Results. In Fig. 6, we show the reconstructed data
at multiple time steps (1st time step, 5th time step, 10th time
step and 20th time step) after the training period. For each
time step, we only show the slice of the w component at
a specified z value. At the 1st step, both our method and
other methods can obtain ideal reconstruction results. This is
because the test data is similar to the training data at the last
time step. According to reported SSIM values, our proposed
method is slightly better than other baseline methods. At the
5th time step, our proposed PGSRN method performs much
better than other methods. This confirms that our method can
effectively eliminate the differences between input picture and
ground truth picture, accurately fine-level capture textures and
patterns (e.g., see red circled areas), reduce color amplitude
difference, and thus achieve much better performance. At the
10th and 20th time steps, since the testing data is very different
from training data, neither our method nor other methods can
provide good reconstruction results.

One potential limitation of our proposed method and other
methods is that they mainly focus on the reconstruction using
the spatial information, and pay less attention to temporal
dependencies. Hence, these models may not fully capture fluid



(a) u Channel. (b) v Channel. (c) w Channel.

Fig. 4. Change of RMSE values produced by different models from the 1st to 20th time steps in the cross-time experiment.

(a) u Channel. (b) v Channel. (c) w Channel.

Fig. 5. Change of SSIM values produced by different models from the 1st to 20th time steps in the cross-time experiment.

dynamics transport over time. After a sufficiently long time
gap, the dynamic flow data can become very different from the
data used in model training. Hence, it is difficult for either our
proposed methods or other state-of-the-art methods to obtain a
relative positive consequence. We will keep this as our future
work to further preserve long-term consistency to underlying
fluid dynamics (e.g., by following the Navier-Stokes equation).

Validation based on Physical Metrics. We also show the
performance of cross-time prediction in terms of Reynolds
stress [25], which is considered an important metric for
studying the property of turbulence. In particular, Reynolds
stress is computed as:

Rab = ab− āb̄ (12)

where a and b represent any velocity variables from (u, v, w),
and ā represents the mean value of variable a over the entire
field.

In Fig. 7, we show the Reynolds stress of target DNS and
Reynolds stress of reconstructed flow data by RCAN, SRGAN,
and our method over time. Ideally, high-quality reconstruction
should have Reynolds stress similar to that of the DNS data.
However, this may not be true in practice since different flow
data can have the similar Reynolds stress values and the super-
resolution model does not directly optimize the similarity of

Reynolds stress during the training process. In this figure, we
observe that SRGAN performs poorly since its Reynolds stress
values are far away from those of the DNS data. Our method
PGSRN performs similarly to RCAN on estimating the three
components of Reynolds stresses. However, there is still a
large discrepancy between our method and the real DNS data
in terms of Reynolds stresses. Sophisticated machine learning
models are prone to produce artificial factors in reconstructed
flow resulting in unreliable Reynolds stress. In the future, we
will pursue optimizing the super-resolution model by including
physical metrics in the training objective.

D. Parameter Sensitivity

We also test the performance of the proposed method using
different hyper-parameters in the loss function. In particular,
we report the RMSE achieved by our method in reconstructing
the three velocity components {u, v, w} when varying the
weights of physical loss (α3) and degradation loss(α4), as
shown in Fig. 8. When we change the value of one hyper-
parameter, we keep all the other αi values as 1.

For the value of α3, when it increases from 0 to 1, the model
gets better performance due to the contribution of physical
regularization. However, as we keep increasing the value of
α3, especially when it is greater than 3, the model starts to



(a) DCS/MS.\ 0.749 (b) SRCNN.\ 0.839 (c) SRGAN.\ 0.858 (d) PGSRN.\ 0.886 (e) Target DNS.

(f) DCS/MS.\ 0.715 (g) SRCNN.\ 0.724 (h) SRGAN.\ 0.802 (i) PGSRN.\ 0.857 (j) Target DNS.

(k) DCS/MS.\ 0.597 (l) SRCNN.\ 0.642 (m) SRGAN.\ 0.658 (n) PGSRN.\ 0.688 (o) Target DNS.

(p) DCS/MS.\ 0.656 (q) SRCNN.\ 0.670 (r) SRGAN.\ 0.728 (s) PGSRN.\ 0.756 (t) Target DNS.

Fig. 6. Reconstructed w channel by each method on a sample testing slice along the z dimension in the cross-time experiment. We show the reconstruction
results at the 1st time step, 5th time step, 10th time step and 20th time step in (a)-(e), (f)-(j), (k)-(o) and (p)-(t), respectively. We also show the SSIM value
for each reconstructed data.

produce worse performance. In the physical loss, we use the
finite difference approximation for the divergence and thus the
simulations may not strictly follow this regularization. When
we set a larger α3 value, the training process is dominated
by the physical loss while paying less attention to other loss
terms, which leads to a degraded reconstruction performance.

For the weight of the degradation loss, we can observe
similar patterns that the model performs better when α4

increases from 0 to 1. Unlike the physical loss, when we
further increase the value of α4, the performance is relatively
stable. The performance becomes worse when we increase α4

from 1 to 5, but becomes better from 5 to 10.

IV. RELATED WORK

In this section, we introduce related literature on several
topics. We start with existing super-resolution methods that
are widely used in computer vision, which is followed by

their adaptations to the problem of turbulent flow simulations.
Finally, we discuss existing works on incorporating physical
relationships into the loss function of machine learning mod-
els.

A. Machine Learning for Super-resolution in Computer Vision

Researchers have developed many deep learning-based
methods for single image super resolution (SISR) in computer
vision. The neural network structures, such as convolutional
network layers, are known to be able to extract spatial contex-
tual information that is needed for recovering high-resolution
data. The recent advances in GAN-based methods also enables
better extracting high-resolution textures that are similar to
target data.

One of the earliest models that uses deep convolutional
networks for SISR problem is SRCNN [7]. SRCNN can di-
rectly learn the end-to-end mapping between coarse-resolution



(a) Ruv . (b) Ruw (c) Rvw .

Fig. 7. Change of Reynolds Stress values produced by the reference DNS and different models from the 1st to 20th time steps in the cross-time experiment.

(a) The value of α3. (b) The value of α4.

Fig. 8. Change of RMSE as we adjust the hyper-parameters in the loss function. (a) The variation of performance (RMSE) with different values of α3, i.e.,
the weight for the physical loss. (b) The variation of performance (RMSE) with different values of α4, i.e., the weight for the degradation loss.

and high-resolution images using a series of convolutional
layers. Compared to SRCNN, Residual Channel Attention
Network (RCAN) [8] uses a very deep trainable structure with
additional skip-connection layers. The intuition of RCAN is
to bypass the abundant low-frequency information and focus
more on the relevant information. The skip-connections are
also known to improve the stability of the optimization process
for deep neural networks. Moreover, RCAN rescales features
of each channel to fully explore the interdependencies among
channels. Recently, there are also other popular methods
based on residual structures such as HDRN [26], SAN [27],
RDN [28], CARN [29], and DRRN [30].

Another popular super-resolution model is the SRGAN
model [9], which employs generative adversarial network
(GAN) for the SISR problem. SRGAN model not only stacks
the deep residual network to build a deeper generative network
for image super resolution, but also introduces a discriminator
network to distinguish reconstructed images and real images
using an adversarial loss function. The ultimate goal is to
train the generative network such that the reconstructed images
cannot be easily distinguished by the discriminator. Compared
with other models, one major advantage of the SRGAN
model is that the discriminator can help extract representative
features from high-resolution data and enforce such features
in the reconstructed images. Recently, there are also other

extensions to the SRGAN method that further improve the
performance [31]–[37].

These super-resolution methods have shown success in
benchmark image datasets, but they are not designed for cap-
turing complex patterns amongst multiple physical variables
and the discrepancy between different simulation methods.
Hence, they may lead to unsatisfactory performance in re-
constructing flow data, especially when the resolution ratio
between input data and target data is large.

B. Machine Learning for Reconstructing Flow Data

Given the importance of simulating high-resolution flows,
there is a surge of interest in using super-resolution techniques
for reconstructing high-resolution flow data. Fukami et al. [14]
propose an improved CNN-based hybrid DSC/MS model by
extracting patterns from multiple scales. This method has been
shown to produce good performance on reconstructing the
turbulent velocity and vorticity fields from extremely low-
resolution input data. This model has also shown success to
handle spatio-temporal super resolution analysis in turbulent
flow [38].

Similarly, Liu et al. [12] also propose another CNN-based
model MTPC to simultaneously handle spatial and temporal
information in turbulent flow simultaneously to fully capture
features in different time ranges. There are also other ap-



proaches that are inspired by GAN. For example, Xie et al.
[13] introduce tempoGAN, which augments a general adver-
sarial network with an additional discriminator network along
with additional loss function terms that preserve temporal
coherence in the generation of physics-based simulations of
fluid flow. Deng et al. [39] demonstrate that both SRGAN
and ESRGAN [33] can produce good reconstruction of high-
resolution turbulent flow in their datasets.

Most of these existing methods on reconstructing flow
data still rely on simple CNN-based structure and do not
leveraging recent advances in the super-resolution. Hence, they
are limited in their capacity to extract complex non-linear
relationships. Moreover, most of these approaches have only
shown success in data reconstruction using a down-sampled
version of the target data. These methods do not take into
account the discrepancy of different simulations (e.g., LES
and DNS) and thus may have degraded performance in our
problem.

C. Physics-based Loss Function

When applied to scientific problems, standard machine
learning models can fail to capture complex relationships
amongst physical variables, especially when provided with
limited observation data. This is one reason for their fail-
ure to generalize to scenarios not encountered in training
data. Hence, researchers are beginning to incorporate phys-
ical knowledge into loss functions to help machine learning
models capture generalizable dynamic patterns consistent with
established physical relationships.

The use of physical-based loss functions have already shown
promising results in a variety of scientific disciplines. In a
recent survey [40], Willard et al. summarize existing literature
and approaches for incorporating scientific knowledge into ma-
chine learning models. For example, in lake water temperature
modeling, Karpatne et al. [41] propose an additional physics-
based penalty based on known monotonic physical relationship
to guarantee that the density of water at lower depth is always
greater than the density of water in any depths above. Then,
Jia et al. [42] and Read et al. [43] further extended this work
by including an additional penalty term on violating the law of
energy conservation. In the problem related to vortex induced
vibrations, Kahana et al. [44] apply an additional loss function
to ensure the physical consistency in the time evolution of
waves, which has been used in an inverse problem about
distinguishing an underwater obstacle’s location from acoustic
measurements. This additional physical-based loss function
has been shown to improve the prediction results and makes
the model more robust.

Another application is to solve the PDEs of dynamical sys-
tems. Researchers commonly use physical-based loss functions
for the mandatory compliance with the governing equation
in the loss function. Raissi et al. [45] develop data-efficient
spatial-temporal function approximators to solve PDEs and
estimate PDE parameters. Similarly,an encoder-decoder is pro-
posed by Zhu et al. [46] to predict transient PDE by controlling
PDE constraints.

V. DISCUSSION AND FUTURE WORKS

In this paper, we develop a new data-driven method PGSRN
that leverages physical relationships to fully explore the recon-
struction gaps between coarse-resolution and high-resolution
simulations of fluid dynamics. Specifically, we leverage the un-
derlying physical relationships to regularize the relationships
amongst velocity components in flow data. To further explore
the correspondence and discrepancy between DNS and LES
data, we also build the hierarchical generative process and
introduce the degradation process. We have demonstrated the
effectiveness of our proposed method in reconstructing DNS
of flow data from coarse-resolution LES data through both
single-snapshot and cross-time experiments. Compared with
existing methods, the proposed method can better recover fine-
level fluid patterns that are missing from coarse-resolution LES
data, and thus produce better performance in both tests. We
have also shown that all the components introduced in our
proposed method are helpful in the reconstruction process.

Although our method has been developed in the context
of simulating fluid dynamics, the involved techniques can
be widely used for other important scientific problems. For
example, simulations of cloud-resolving models (CRM) at sub-
kilometer horizontal resolution are critical for effectively rep-
resenting boundary-layer eddies and low clouds. However, it is
not feasible to generate simulations at such fine resolution even
with the most powerful commuters expected to be available
in the near future. Hence, the method developed in this paper
can provide a great potential for reconstructing high-resolution
simulations.

Additionally, as shown in the cross-time experiment, our
method remains limited in reconstructing long-term data.
This requires new mechanisms to enforce underlying physical
processes on fluid dynamics (e.g., Navier-Stokes equation).
Furthermore, we plan to introduce other related parameters
besides velocity (e.g., mass and pressure) to supplement and
further optimize our model. Last, we also will introduce
other domain’s metrics (e.g., Reynolds Stress and Kinetic
Energy [25]) as the training loss to enhance the trustworthiness
of the model when it is deployed for long-term and large-scale
simulations. We will purse these directions in our future work.
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