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Abstract—Privacy-enhancing technologies (PETs) are becom-
ing increasingly crucial for addressing customer needs, security,
privacy (e. g., enhancing anonymity and confidentiality), and reg-
ulatory requirements. However, applying PETs in organizations
requires a precise understanding of use cases, technologies, and
limitations. This paper investigates several industrial use cases,
their characteristics, and the potential applicability of PETs to
these. We conduct expert interviews to identify and classify uses
cases, a gray literature review of relevant open-source PET tools,
and discuss how the use case characteristics can be addressed
using PETs’ capabilities. While we focus mainly on automotive
use cases, the results also apply to other use case domains.

Index Terms—Privacy-enhancing technologies (PETs),
anonymization, confidentiality, automotive, applications

I. INTRODUCTION

Data, analytics, and artificial intelligence (AI) are playing
an increasingly important role across the automotive value
chain [1]–[4]. The capabilities of AI are catalyzed by the
growing deployment and use of Internet-of-Things devices [5].
However, as the number of applications grows, the need to
utilize advanced privacy-enhancing technologies (PETs) to
improve data privacy, security, trust, and regulatory compli-
ance (e. g., the European General Data Protection Regulation
(GDPR [6] and the Consumer Privacy Act), is increasing [7].
Thus, PETs must and will become a foundational pillar of
modern data platforms [8].

In addition to mitigating privacy, reputational and financial
risks [9], [10], the usage of PETs has many benefits for
institutions: a careful deployment of PETs may increase not
only trust but also data usage and collection as PETs help
to overcome customer concerns [11]. By doing so, PETs
can accelerate existing processes and enable new business
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models [12], [13]. An example is the ability to support cross-
organizational collaboration and data exchanges using PETs
that provide the necessary trust and security for widespread
adoption.

The term PETs, initially coined in 1995 [14], encapsulates
technologies designed to protect personal and sensitive data
in-use by minimizing their exposure to potential malicious
entities. PETs are complementary to established data security
practices, e. g., in-transit and at-rest encryption. To reduce
exposure, PETs rely on different mechanisms (e. g., cryptog-
raphy) to conceal the information (confidentiality) or modify
data to perturb the link with the data owner (anonymity).
Prominent PETs that enhance anonymity are differential pri-
vacy (DP) [15] and k-anonymity [16], while secure multi-
party computation (SMC) [17] or homomorphic encryption
(HE) [18] focus on confidentiality. While each PET contributes
uniquely to enhancing privacy, employing them in combination
provides more holistic protection.

Many automotive use cases with complex requirements can
benefit from numerous privacy-enhancing technologies [19]–
[21]. However, understanding use cases characteristics and
requirements and the capabilities of PETs are often challeng-
ing [22]. While much research focuses on the capabilities
of specific PETs and use cases [23]–[25], there is a gap in
surveying and mapping use cases to the PETs landscape.

Contributions. We provide a comprehensive analysis of dif-
ferent application domains and use cases from the automotive
value chain and discuss what characteristics and aspects of
these use cases that can benefit from PETs. For this purpose,
we investigate eight application domains, ranging from rec-
ommender systems, computer vision to data analytics. Based
on a high-level overview, we provide an in-depth discussion
of selected use cases, investigating the suitability of specific
PETs. We identify important characteristics and patterns that
allow practitioners to categorize new use cases and aid in
identifying suitable PETs.978-1-6654-3902-2/21/$31.00 ©2021 IEEE
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The remaining of the paper is structured as follows: We
introduce our methodology in section II. We continue with an
analysis of use cases and PETs in sections III and IV. We
discuss related work in section V, and conclude in section VI.

II. METHODOLOGY

We investigate two research questions (RQs). We
interviewed several experts to identify and characterize
use cases in the domain of privacy (RQ1). Further, we
conducted a gray literature review to identify open-source
tools that implement privacy-enhancing technologies (RQ2).

RQ1. What are the relevant use cases for PETs in the
automotive industry? To answer this RQ, we provide use cases
to motivate practitioners to enhance privacy in their institutions
(see section III).

To plan and conduct the interviews to answer this RQ,
we followed guidelines from P. Runeson and M. Höst [31].
Specifically, throughout the end of 2020 and during the first
half of 2021, we interviewed 17 interested practitioners who
worked directly or indirectly in the automotive industry; all the
participants focused on data or privacy management. Seven of
the interviews were conducted verbally, while the remaining
ten were through email correspondence. The confidentiality
of their identities and answers were communicated before
initiating the interviews, as well as the goal of this study
and how their answer will be used. The interviews were
semi-structured [31], i. e., while we initiated the conversation
with a set of preliminary questions about their background
and followed up with RQ1 to collect a list of use cases,
we promoted further exploration of their ideas revolving
around their use cases list. We countered potential bias by
ensuring that the experts came from different organizational
units and institutions and summarized the findings before
the conclusion of the interview to get feedback and avoid
misinterpretation [31].

Afterward, we aggregated application domains and over
20 use cases (see Table I). Based on the identified use cases,
we identified characteristics that can be addressed by specific
capabilities of available PETs to guide their implementation
in a production setting: privacy, function types, data volume,
data authenticity, query type, and the number of interacting
parties. Furthermore, we designed the framework of Fig. 1
to help us map in Table IV selected reference use cases to
privacy-enhancing technologies.

RQ2. What are relevant privacy-enhancing tools available?
During June and November 2021, we searched for tools
practitioners can use to implement PETs in their use cases (see
section IV). We define a tool as a reusable implementation
of an algorithm that abstracts the deployment of a specific
technology, i.e., the user does not need to have expertise in
the underlying technology for its use.

We chose PETs included in seminal surveys or implemen-
tations in the domain of privacy [19]–[21]. We list the tools
in Table II. Furthermore, each tool had to be open-source so

that the scientific and engineering community could audit and
freely access them. However, systematically collecting peer-
reviewed publications would not capture all the novel tools
available [32]. Thus, for our purposes, S. Hopewell and M.
Clarke and S. Mallett [32], and J. Vom Brocke et. al [33]
indicated that a gray literature review would be a more optimal
strategy. Consequently, we included tools that appeared within
the first 100 Google search results for the search string
“PET name AND open-source AND tool AND GitHub”. Two
researchers searched independently (one identified 67 tools
while the other 63), and merged the results into 76 after
removing duplicates (52).

III. APPLICATIONS IN THE AUTOMOTIVE VALUE CHAIN

Table I describes the eigth identified application domains
and the use cases in these domain. In this section, we discuss
selected application domains in detail, focusing on challenges
and opportunities for deploying PETs.

Recommender systems (#1 in Table I) can enhance customer
experience by suggesting location or automatically activating
capabilities, such as the seat heating. However, the data
required for such use cases is often highly sensitive. PETs may
help reduce the amount of data that needs to be transmitted
to centralized clouds while retaining the utility of data-driven
recommendations.

Computer vision (#3 in Table I) utilizes complex machine
learning (ML) models to extract information from images
and video. However, the unstructured nature of the input
data increases the risk of unknowingly capturing sensitive
information, e. g., people, and drives the need for the usage of
PETs, e. g., for anonymization data using blurring techniques
and synthetic data. The use of federated learning can reduce
the need to centralize data and can thus further reduce risks.

Sensitive data management (#4 in Table I) describes the
process of preparing data for secondary purposes. For this
purpose, complex and automated data transformation pipelines
are required for data anonymization. These pipelines should
require only a minimal amount of human intervention. PETs,
such as k-anonymity and differential privacy, are essential to
provide the required privacy guarantees.

Data analytics describes the process of using data to support
decisions in the business (#5 in Table I). For this purpose, it is
required to aggregate data and connect various data sources.
Analytics can be categorized in exploratory, i. e., the objective
and business question of the analysis is not completely defined
yet, and operational analytics, i. e., the KPI and business
decision is well-specified. As for both types of analytics,
it is often unnecessary to expose individual records and all
attributes. PETs like k-anonymity and differential privacy can
limit the amount of information exposed to analysts. However,
there is an important trade-off between utility of the data
and privacy to be considered, in particular, for exploratory
analytics.

While there is sensitive information that corporations would
prefer to maintain private, such as business secrets, perfor-
mance metrics, or suppliers, cross-organizational data sharing



TABLE I
SELECTED APPLICATION DOMAINS AND USE CASES.

# Application
Domain

Use Case Description

1 Recommender
systems

Vehicle personalization, eco-friendly driving Personalizing in-vehicle experiences and features based on data from in-vehicle sensors using
analytics and machine learning, e. g., recommendations for music and locations, seat heating
activation and supporting gamification features (such as eco-friendly driving) [26].

2 Geoservices Charging, traffic prediction, frequent routes, park-
ing, charging, refuelling, points-of-interest

Geoservices enhance the travel experience based on highly-sensitive location data.

3 Computer
vision

Attentiveness detection, visual quality inspection
during manufacturing [3]

Driver attention monitoring using camera-based systems and other sensor for improving safety.
Data collected from cameras in-vehicle and in manufacturing plants is highly sensitive and may
contain personal data, requiring PETs to ensure privacy.

4 Sensitive data
management

Automation of anonymization pipelines, prolonga-
tion of data storage/access

Creating, streamlining, or automating anonymization pipelines to implement regulatory com-
plicance, increase data security and reduces human-error.

5 Data analytics Group statistics include business KPIs, sales statis-
tics, demographics

Analytics is essential to understand all aspects of the business, e. g., customer preferences, sales,
and manufacturing performance [27]. However, such statistics released publicly or confidentially
for research or collaborative projects between institutions can lead an adversary to re-identify
individuals [28].

6 Asset search Tracking components across value chains Support tracking, search and reconciliation of assets across organizations, e. g., locating vehicle
components in a supply chain [29]. To mitigate the risks of sharing data, data needs to be
carefully curated and secured, preventing the sharing of sensitive information.

7 IoT Connected vehicles IoT deployments (vehicle, machines, etc.) produce vast amounts of data from on-board sensors
and traffic infrastructure [30]. Data can be highly sensitive (e. g., behavioral data). PETs can
reduce the need to centralize data in clouds.

8 Cross-
organizational
data sharing

Logistics & supply chain data, data markets, KPI
comparisons (industry benchmarks)

Sharing data across organizations to improve analytics and machine learning models (e. g.,
supply chain management and automated driving). PETs remove risk of sharing and the
disclosure of sensitive and personal information to non-intended recipients.

TABLE II
TECHNOLOGIES AND THEIR MOST RELEVANT OPEN-SOURCE TOOLS.

Technology Description Tool
Differential
privacy (DP)

Mathematically guarantees that the output of a dataset analysis
is “essentially” identical, despite the presence or absence of an
individual in the dataset [15], [34].

Google-DP (Python wrapper: PyDP), SmartNoise, diffprivlib, DiffPriv,
OpenDP, DPComp Core and Chorus (behind Uber’s DP SQL). Focused
on DP and deep learning: TensorFlow privacy and PyTorch Opacus.

K-anonymity K-anonymity guarantees the indistinguishability of a record with
k-1 number of others in a dataset [16]. K-anonymity is useful to
anonymize datasets before usage.

ARX, Amnesia, and Anonimatron.

Synthetic data Populate a synthetic dataset with the learned distribution of the real
data by means of ML [35], [36].

SDV, ZPY, Gretel, Synth, Ydata, DataSynthesizer, Synthea, and Tru-
mania.

Zero-knowledge
proof (ZKP)

Enables proof of authenticity of information without revealing or
sharing the underlying data [37], [38].

emmy, dizk, zkMega, libsnark, libiop, ZKRollups, ZKRP, ckb-zkp,
ginger-lib, OpenZKP, and gnark.

Secure multi-party
computation (SMC)

Parties can jointly compute a function without disclosing their inputs
by employing secret sharing or garbled circuits [17].

Multi-Protocol SPDZ, LIBSCAPI, MPyC, CrypTen, EMP-Toolkit, Mul-
tiparty, ZoKrates and MPC-SoK.

Homomorphic
encryption (HE)

Allows computing functions on ciphertext without prior decryp-
tion [18], [39].

TFHE, fhe-toolkit-linux, Google FHE SEAL, Concrete, eclib, HElib,
and PALISADE.

Trusted execution
environments (TEE)

Hardware and software that provide computation security against the
unwarranted retrieval of sensitive information [40].

mTower, Open Enclave SDK, Trusty, TrustZone, Mystikos, Open-TEE
and Intel’s Trusted Execution Technology.

Federated
Learning (FL)

Distributes ML models across data sources for training and averages
the weights into one model [41], [42].

Fate, sherpa.ai, PaddleFL, PySft, Xaynet, fedn, FedML-AI, Flower,
PyVertical, TensorFlow Federated, and federated-learning-lib.

Blockchain
(no PET)

Tamper-proof, distributed database, whose state is replicated and
stored across P2P network nodes using a consensus algorithm [43].

Corda, Hyperledger, Go Ethereum, BigchainDB, Chainlink, Ganache,
XRPLF, Graphene, Polygon, Vechain, and Tezos.

increasingly becomes a necessity to optimize entire value
chains and business networks, e. g., to support asset search
(#6) and cross-organizational sharing (#8 in Table I). Asset
search addresses the need to locate and track components
and products across organizations. Cross-organizational data
sharing envisions the sharing of more comprehensive data sets.
PETs can address the need to expose the minimal amount
of data and the ability to verify data and results. Emergent
platforms, such as GAIA-X [44], heavily rely on PETs to
establish secure data exchange mechanisms and controls.

IV. PRIVACY-ENHANCING TECHNOLOGIES: CAPABILITIES
AND APPLICATIONS

PETs comprise technologies designed to protect the pri-
vacy of data owners. PETs accomplish this by enhanc-
ing anonymity with technologies such as differential pri-

vacy (DP), k-anonymity, or synthetic data, or confidentiality
with secure and outsourced computation technologies such as
zero-knowledge proof (ZKP), secure multi-party computation
(SMC), homomorphic encryption (HE), trusted execution en-
vironments (TEE), or federated learning (FL). Furthermore,
PETs can provide capabilities for supporting the use cases
described in Table I. Table II provides an overview of impor-
tant PETs and the most relevant open-source tools, which we
resulted from our gray literature review.

While blockchain is not strictly a PET, we included it
because it is an instrumental building block for establishing
trust and support for data verification use cases. Additionally,
blockchain can anchor trust of zero-knowledge proof protocols
that prove a claim without engaging in sequential messag-
ing [45].
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TABLE III
TECHNOLOGY CAPABILITIES FULFILLING USE CASE CHARACTERISTICS

Technology Privacy Function type Data volume Data
authenticity

Query type Number of
interacting
parties

DP Anonymity Noise added to data processing TB Noisy outputs Known / Unknown One
K-anonymity Anonymity Dataset anonymization GB Generalized Known / Unknown One
Synthetic data Anonymity Dataset generation TB Noisy Known / Unknown One
ZKP Confidentiality Authenticity proofs MB Yes Known Two
SMC Confidentiality Arbitrary MB Yes Known Multiple
HE Confidentiality Arbitrary MB Yes Known Two
TEE Confidentiality Arbitrary GB Yes Known / Unknown Multiple
FL Confidentiality ML TB Yes Known Multiple
Blockchain (no PET) Not applicable Arbitrary MB Yes Known Multiple
Legend: DP = Differential privacy; ZKP = Zero-knowledge proof; SMC = Secure multiparty computation; HE = Homomorphic encryption; TEE = Trusted
execution environments; FL = Federated learning

A. Characteristics and Capabilities

Based on an in-depth analysis of the use cases, we define six
important characteristics for selecting PETs and architecting
privacy-preserving systems.

Privacy. This characteristic describes the sensitivity of
the data, e. g., the need to anonymize personally identifiable
information (PII) and confidential information. Anonymization
removes the link between data and individuals. Confidentiality
requirements may also exist for non-personal data, e. g., due
to business reasons.

Function type. Use cases may require the use of analytics
queries, ML models, or proofs for the authenticity of data.
Depending on the function, PETs, such as basic queries to
verify the existence of an asset in a dataset (SMC), aggregation
queries (DP), or ML (FL), can be chosen.

Data volume. Some technologies are more suitable than
others, depending on the data volume the use case is pro-
cessing. The noise added by DP is independent of the data
volume, while SMC cannot process large data volumes given
the encryption and communication overhead.

Data authenticity. For high-value data, blockchain-based
data verification might be necessary to ensure authenticity.
Some PETs reduce the authenticity, e. g., anonymization per-
turbs the exact value of data points to disjoint attributes from
the users who generated the data.

Query type. Some use cases require exploratory queries
(unknown), while others repetitively execute well-defined
queries and ML models. For example, to train an ML model
with FL, one must know what the model will predict or
classify. A TEE can execute arbitrary user-defined functions
(including ML), and transforming a dataset into k-anonymous
or synthetic data does not necessarily require knowing in
advance the query types.

Number of interacting parties. Some use cases require
data and interactions from more than one entity to interact. For
example, FL can train a model distributed across potentially
different data owners. SMC jointly computes a function based
on the inputs of multiple parties, and DP allows an analyst to
query a dataset.
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Fig. 1. Framework to map use cases and privacy-enhancing technologies.

PETs provide different capabilities to address use cases
requirements and characteristics. Table III summarizes the
capabilities provided by the defined PETs.

B. PETs and automotive use cases

Understanding use case characteristics and the capabilities
of PETs is essential to architect privacy-preserving and prac-
tical systems. Figure 1 illustrates our framework for mapping
use cases to suitable PETs based on the six defining character-
istics and capabilities. Table IV investigates eight automotive
use cases and illustrates how a specific PET can address the
privacy requirements of each use case.

The mapping is intended to be illustrative, not complete.
It emphasizes the strengths and weaknesses of the PETs,
helping practitioners align PETs and use case requirements.
Thus, we have selected reference use cases to highlight the
unique benefits of a specific PET. In practice, a combination
of PETs is often required to implement a use case end-to-end.
We continue with an in-depth discussion of three use cases.

Computer vision: attentiveness detection (#3 in Ta-
ble IV). Alerting drivers of their lack of attention behind the



TABLE IV
REFERENCE AUTOMOTIVE USE CASES MAPPED TO PRIVACY-ENHANCING TECHNOLOGIES

# Domain: Use Case Description Suitable Capabilities PETs
1 Recommender systems:

eco-friendly driving
Traing of ML models from complex distributed datasets contain-
ing numerous vehicle signals to predict what patterns improve
eco-friendly driving.

Anonymity, ML over anonymous data, TB of
data, noisy data, unknown queries, one party

Synthetic
data

2 Geoservices:
charging

Discovering most frequent locations on an aggregated dataset
where electric vehicles have low batteries.

Anonymity, aggregation query functions over
(anonymous) dataset, GB of data, noisy out-
puts or generalized data, unknown queries,
one party

DP,
k-anonymity

3 Computer vision:
attentiveness detection

Training ML models across multiple vehicles and devices. Confidentiality, ML functions, TB of data,
authentic data, known queries, multiple par-
ties

FL

4 Sensitive data management:
automating anonymization

A practitioner automates the anonymization of ingested customer
vehicle data.

Anonymity, anonymization, GB of data, gen-
eralized data, unknown queries, one party

K-anonymity

5 Data analytics:
group statistics

Computing aggregate business KPIs for dashboards by querying
various datasets without downloading the underlying data.

Anonymity, aggregation query functions, up
to TB of data, noisy outputs, unknown
queries, one party

DP

6 Asset search:
tracking components

Tracking components and parts across the value chain to optimize
supply chain management (e. g., management of stock levels).

Confidentiality, arbitrary function, MB of
data, authentic data, known query, multiple
parties

SMC

7 IoT:
Connected car

Management of vast amounts of sensor data from vehicles and
traffic infrastructure across the edge and cloud.

Confidentiality, arbitrary functions, MB of
data, authentic data, known query, two parties

HE

8 Cross-organizational data
sharing: Logistics & supply
chain

Track and share data across organizations to optimize business
processes, e. g., for improved supply chain visibility [29].

Confidentiality, arbitrary functions, GB of
data, authentic data, known queries, multiple
parties

TEE,
blockchain
(anchors trust)

Legend: DP = Differential privacy; SMC = Secure multiparty computation; ZKP = Zero-knowledge proof; HE = Homomorphic encryption; TEE = Trusted execution
environments; FL = Federated learning; ML = Machine learning

wheel can prevent road accidents and save lives. The training
of ML models typically requires large volumes of potentially
sensitive training data. Thus, an important building block is
anonymized and synthetic data, particularly for bootstrapping
the ML model. However, due to the safety-critical nature,
anonymization approaches are not sufficient alone. Federated
learning allows the training of models across multiple vehicles
without the need of centralizing data, and thus, preserving
confidentiality.

Data analytics: group statistics (#5 in Table IV). Data
warehouses and data lakes are essential enablers for analytics.
Data anonymization is an important practice for enabling
secondary data usage. Once datasets are anonymized, an
analyst can execute a potentially manifold set of queries, e. g.,
joining and exploring many attributes of vehicles. The use
of differential privacy (DP) can prevent the de-identification
of data while retaining the utility of the analysis. Using a
well-calibrated noise mode a good query accuracy is ensured
while preserving each individual’s anonymity. DP is also an
important enabler for more democratized data access and
analytics. Differential privacy can also be applied on the fly,
e. g., using a DP-aware SQL engine and a privacy budget that
controls the number of queries allowed.

Asset search: tracking components (#6 in Table IV).
The automotive value chain is highly complex, involving
many partners in an international network. As a result, supply
chains are highly complex. They often lack visibility and trust,
in particular concerning tier-n suppliers, i. e., suppliers that
are not directly in contact with an automotive company. A
critical capability is the tracking of components and parts in
this cross-organizational network. Blockchains provide a mean
to orchestrate a decentral business network [29]. However,
additional PETs are essential to facilitate secure data exchange,
e. g., secure multi-party computation (SMC) enables the secure

computation, e. g., to reconcile stock levels, avoiding the
exposure of confidential business information. However, SMC
is only suitable for specific, well-defined use cases, small data
volumes, and certain types of computation.

An important characteristic of many use cases is data veri-
fication and the establishment of trust in distributed and cross-
organizational environments. Blockchains and zero-knowledge
proofs (ZKP) are an important enablers for these requirements.
They allow the sharing of proofs without revealing the under-
lying data. For example, individuals can reveal identity-related
attributes (e. g., the possession of a driver’s license [46]) using
ZKP.

V. RELATED WORK

Most research focuses on applying or optimizing a single
PET to tackle one particular use case, or investigate the
use cases that a single PET can address. Examples include
applying SMC to privacy-preserving deep learning [23], im-
plementing DP in the context of sensitive health data [24], or
identifying applications for which practitioners can employ
TEEs [25]. However, these publications do not provide an
overview of privacy use cases for different PETs.

Other publications have surveyed how PETs fulfill privacy
requirements in general [47] or from a particular context such
as data exchanges [48]. Alternatively, publications highlight
market opportunities for PETs to solve business problems, e.g.,
build trust or establish a competitive advantage [9]). However,
mapping PETs with requirements or business opportunities
does not provide immediate insights regarding privacy use
cases. Another set of publications proposes industry use cases
without explicitly mapping them to a list of PETs. Exam-
ples range from outlining privacy use cases in the supply
chain [49], the role of PETs in predictive maintenance in the



automotive industry [50], or the use of PETs in the context of
IoT [51] or smart cities [52].

We identified a few publications that survey applications of
PETs. There is a repository of implemented PET use cases [53]
from different sectors (e. g., health, transport, finance) and a
list of case studies that used PETs to reach their objectives [54]
in the financial sector. However, these surveys do not focus on
production and industry use cases.

While the publications covering the domain of privacy and
use cases are varied, to the best of our knowledge, they do
not (i) identify suitable capabilities required by use cases to
map them to PETs, (ii) present actionable use cases in the
automotive industry, (iii) include a list of reference use case
that succinctly demonstrate the value of each PET.

VI. DISCUSSION AND CONCLUSION

While PETs have matured and are increasingly available,
developing privacy-preserving architectures is challenging, re-
quiring an in-depth understanding of PETs and use cases.
This paper addresses this challenge and provides guidelines
synthesized from expert interviews and a literature review.

PETs provide the ability to increase the protection of
data while in-use and can be considered complementary to
established security practices, e. g., security monitoring, data
encryption at rest and in-transit, data governance. There is
no “one-size-fits-all” privacy-enhancing technology (PET).
The selection and deployment of PETs require a careful
understanding of use cases characteristics, the capabilities of
a PET and its limitation. We demonstrated how use case
characteristics can be used to assess the suitability for PETs.
While this paper focuses on automotive use cases, the iden-
tified characteristics and capabilities generalize well to other
application domains.

The usage of PETs is associated with increased archi-
tectural and operational complexity, and performance-related
constraints that must be carefully considered when choosing
a PET. Further, the limitations of PETs must be carefully
considered. For example, homomorphic encryption and secure
multi-party computation cannot handle large volumes of data
and do not address anonymization requirements, e. g., for
secondary data processing. K-anonymity does not provide a
formal guarantee of privacy like differential privacy.

The importance of PETs will increase. In particular, the need
to collaborate across organizational boundaries will intensify
the need for PETs. In the future, we will refine and extend
our classification to other application categories and domains.
Further, we implement and experiment with concrete PETs
and use cases, e. g., differential privacy and secure multi-party
computing.
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[41] J. Konečný, B. McMahan, and D. Ramage, “Federated
optimization:distributed optimization beyond the data-
center,” en, arXiv:1511.03575 [cs, math], Nov. 2015,
arXiv: 1511.03575. [Online]. Available: http : / / arxiv.
org/abs/1511.03575 (visited on 04/07/2021).

[42] T. Li, A. K. Sahu, A. Talwalkar, and V. Smith, “Fed-
erated learning: Challenges, methods, and future direc-
tions,” IEEE Signal Processing Magazine, vol. 37, no. 3,
pp. 50–60, 2020. DOI: 10.1109/MSP.2020.2975749.

[43] B.-J. Butijn, D. A. Tamburri, and W.-J. v. d. Heuvel,
“Blockchains: A systematic multivocal literature re-
view,” ACM Computing Surveys (CSUR), vol. 53, no. 3,
pp. 1–37, 2020. [Online]. Available: https://dl.acm.org/
doi/abs/10.1145/3369052.

[44] G. Eggers, B. Fondermann, B. Maier, K. Ottradovetz,
J. Pformmer, R. Reinhardt, H. Rollin, A. Schmieg,
S. Steinbuß, P. Trinius, A. Weis, C. Weiss, and S.
Wilfling, “GAIA-X: Technical Architecture,” en, [On-
line]. Available: https : / / www. data - infrastructure . eu /
GAIAX/Redaktion/EN/Publications/gaia-x- technical-
architecture.pdf?__blob=publicationFile&v=5 (visited
on 05/26/2021).

[45] S. A. Brands, Rethinking Public Key Infrastructures and
Digital Certificates: Building in Privacy. Cambridge,
MA, USA: MIT Press, 2000, ISBN: 0262024918. [On-
line]. Available: https://direct.mit.edu/books/book/1912/
Rethinking-Public-Key-Infrastructures-and-Digital.

[46] I. Gudymenko, A. Khalid, H. Siddiqui, M. Idrees,
S. Clauß, A. Luckow, M. Bolsinger, and D. Miehle,
“Privacy-preserving blockchain-based systems for car
sharing leveraging zero-knowledge protocols,” in 2020
IEEE International Conference on Decentralized Appli-
cations and Infrastructures (DAPPS), 2020, pp. 114–
119. DOI: 10.1109/DAPPS49028.2020.00014.

[47] J. Heurix, P. Zimmermann, T. Neubauer, and S. Fenz,
“A taxonomy for privacy enhancing technologies,”
Computers & Security, vol. 53, pp. 1–17, 2015, ISSN:
0167-4048. DOI: 10.1016/j.cose.2015.05.002.

[48] J. Pennekamp, M. Henze, S. Schmidt, P. Niemietz, M.
Fey, D. Trauth, T. Bergs, C. Brecher, and K. Wehrle,
“Dataflow challenges in an internet of production: A
aecurity & privacy perspective,” in Proceedings of the
ACM Workshop on Cyber-Physical Systems Security &
Privacy, ser. CPS-SPC’19, Association for Computing
Machinery, 2019, 27–38, ISBN: 9781450368315. DOI:
10.1145/3338499.3357357.

[49] P. Gonczol, P. Katsikouli, L. Herskind, and N. Dragoni,
“Blockchain implementations and use cases for supply
chains – a survey,” IEEE Access, vol. 8, pp. 11 856–
11 871, 2020. DOI: 10.1109/ACCESS.2020.2964880.

[50] A. Theissler, J. Pérez-Velázquez, M. Kettelgerdes, and
G. Elger, “Predictive maintenance enabled by machine
learning: Use cases and challenges in the automo-
tive industry,” Reliability Engineering & System Safety,
p. 107 864, 2021, ISSN: 0951-8320. DOI: https : / /doi .
org/10.1016/j.ress.2021.107864.

[51] J. Pennekamp, M. Henze, S. Schmidt, P. Niemietz, M.
Fey, D. Trauth, T. Bergs, C. Brecher, and K. Wehrle,
“Dataflow challenges in an internet of production,”
in ACMWorkshop on Cyber-Physical Systems Security
& Privacy (CPS-SPC’19), November 11, 2019, Lon-
don, United Kingdom. ACM, 2019, pp. 27–38, ISBN:
9781450368315. DOI: 10.1145/3338499.3357357.

[52] J. Curzon, A. Almehmadi, and K. El-Khatib, “A survey
of privacy enhancing technologies for smart cities,”
Pervasive and Mobile Computing, vol. 55, pp. 76–95,
2019, ISSN: 1574-1192. DOI: 10.1016/j.pmcj.2019.03.
001.

https://doi.org/10.1561/0400000042
https://doi.org/10.1561/0400000042
http://www.nowpublishers.com/articles/foundations-and-trends-in-theoretical-computer-science/TCS-042
http://www.nowpublishers.com/articles/foundations-and-trends-in-theoretical-computer-science/TCS-042
http://www.nowpublishers.com/articles/foundations-and-trends-in-theoretical-computer-science/TCS-042
https://arxiv.org/abs/2003.00086
https://www.researchgate.net/publication/339642358_Constrained_Generative_Adversarial_Network_Ensembles_for_Sharable_Synthetic_Data_Generation
https://www.researchgate.net/publication/339642358_Constrained_Generative_Adversarial_Network_Ensembles_for_Sharable_Synthetic_Data_Generation
https://www.researchgate.net/publication/339642358_Constrained_Generative_Adversarial_Network_Ensembles_for_Sharable_Synthetic_Data_Generation
https://www.researchgate.net/publication/339642358_Constrained_Generative_Adversarial_Network_Ensembles_for_Sharable_Synthetic_Data_Generation
https://doi.org/10.1109/BigData.2014.7004228
https://doi.org/10.1137/0218012
https://doi.org/10.1137/0218012
https://doi.org/10.1007/BF00195207
http://link.springer.com/10.1007/BF00195207
http://link.springer.com/10.1007/BF00195207
http://www.gsma.com/newsroom/wp-content/uploads/2012/03/omtpadvancedtrustedenvironmentomtptr1v11.pdf
http://www.gsma.com/newsroom/wp-content/uploads/2012/03/omtpadvancedtrustedenvironmentomtptr1v11.pdf
http://www.gsma.com/newsroom/wp-content/uploads/2012/03/omtpadvancedtrustedenvironmentomtptr1v11.pdf
http://arxiv.org/abs/1511.03575
http://arxiv.org/abs/1511.03575
https://doi.org/10.1109/MSP.2020.2975749
https://dl.acm.org/doi/abs/10.1145/3369052
https://dl.acm.org/doi/abs/10.1145/3369052
https://www.data-infrastructure.eu/GAIAX/Redaktion/EN/Publications/gaia-x-technical-architecture.pdf?__blob=publicationFile&v=5
https://www.data-infrastructure.eu/GAIAX/Redaktion/EN/Publications/gaia-x-technical-architecture.pdf?__blob=publicationFile&v=5
https://www.data-infrastructure.eu/GAIAX/Redaktion/EN/Publications/gaia-x-technical-architecture.pdf?__blob=publicationFile&v=5
https://direct.mit.edu/books/book/1912/Rethinking-Public-Key-Infrastructures-and-Digital
https://direct.mit.edu/books/book/1912/Rethinking-Public-Key-Infrastructures-and-Digital
https://doi.org/10.1109/DAPPS49028.2020.00014
https://doi.org/10.1016/j.cose.2015.05.002
https://doi.org/10.1145/3338499.3357357
https://doi.org/10.1109/ACCESS.2020.2964880
https://doi.org/https://doi.org/10.1016/j.ress.2021.107864
https://doi.org/https://doi.org/10.1016/j.ress.2021.107864
https://doi.org/10.1145/3338499.3357357
https://doi.org/10.1016/j.pmcj.2019.03.001
https://doi.org/10.1016/j.pmcj.2019.03.001


[53] CDEI, “Privacy enhancing technologies adoption
guide,” 2021. [Online]. Available: https://cdeiuk.github.
io/pets-adoption-guide/ (visited on 07/15/2021).

[54] FFIS, “Case studies of the use of privacy preserving
analysis to tackle financial crime,” 2020. [Online].
Available: https://www.gcffc.org/wp-content/uploads/
2020/06/FFIS-Innovation-and-discussion-paper-Case-
studies-of- the-use-of-privacy-preserving-analysis.pdf
(visited on 11/06/2021).

https://cdeiuk.github.io/pets-adoption-guide/
https://cdeiuk.github.io/pets-adoption-guide/
https://www.gcffc.org/wp-content/uploads/2020/06/FFIS-Innovation-and-discussion-paper-Case-studies-of-the-use-of-privacy-preserving-analysis.pdf
https://www.gcffc.org/wp-content/uploads/2020/06/FFIS-Innovation-and-discussion-paper-Case-studies-of-the-use-of-privacy-preserving-analysis.pdf
https://www.gcffc.org/wp-content/uploads/2020/06/FFIS-Innovation-and-discussion-paper-Case-studies-of-the-use-of-privacy-preserving-analysis.pdf

	I Introduction
	II Methodology
	III Applications in the Automotive Value Chain
	IV Privacy-Enhancing Technologies: Capabilities and Applications
	IV-A Characteristics and Capabilities
	IV-B PETs and automotive use cases

	V Related work
	VI Discussion and Conclusion

