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Abstract—Ensembles of Deep Neural Networks (DNNs) has
achieved qualitative predictions but they are computing and
memory intensive. Therefore, the demand is growing to make
them answer a heavy workload of requests with available
computational resources. Unlike recent initiatives on inference
servers and inference frameworks, which focus on the prediction
of single DNNs, we propose a new software layer to serve with
flexibility and efficiency ensembles of DNNs.

Our inference system is designed with several technical inno-
vations. First, we propose a novel procedure to found a good
allocation matrix between devices (CPUs or GPUs) and DNN
instances. It runs successively a worst-fit to allocate DNNs into
the memory devices and a greedy algorithm to optimize allocation
settings and speed up the ensemble. Second, we design the infer-
ence system based on multiple processes to run asynchronously:
batching, prediction, and the combination rule with an efficient
internal communication scheme to avoid overhead.

Experiments show the flexibility and efficiency under extreme
scenarios: It successes to serve an ensemble of 12 heavy DNNs
into 4 GPUs and at the opposite, one single DNN multi-threaded
into 16 GPUs. It also outperforms the simple baseline consisting
of optimizing the batch size of DNNs by a speedup up to 2.7X
on the image classification task.

Index Terms—Neural network, ensemble learning, inference
system

Ensembles of deep neural networks are now well-known
for producing qualitative predictions. First, ensembles of deep
neural networks significantly improve generalization accuracy
compared to one single model [1]. Second, they generally
produce well-calibrated uncertainty estimates [2].

Today, multiple researchers and practitioners have well
understood the benefit of ensembling DNNs. For example, in
cyber-attack detection [3]], time series classification [4], medical
image analysis [S]], semi-supervision [6] and unbalanced text
classification [7]]. Further, several winners and top performers
on challenges routinely use ensembles to improve accuracy.

It is also of common knowledge that a machine learning
model creates value only in the inference phase. That is to say
when the model is hosted on hardware and ready to receive
input data samples from a client application and return their
prediction. However, ensembles of DNNs are memory, time
and computational resources expensive and no inference system
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is still adapted to optimize and to serve ensembles.

Two different software layers have been proposed to infer
efficiently individual DNNs but does not propose to combine
them: the inference servers (Triton [8], Ray Serve [1_-] [19]]
, Tensorflow Serving [[10] and TorchServe [11]) serve the
inference systems (such TensorRT [12], OpenVINO [13],
ONNX [14] and TFLite [15]) predictions. Our work attempt to
fill this gap between the current inference system technologies
and the ensembles of deep neural networks.

The question we attempt to answer is simple but the solution
is challenging “How to systematically allocate an ensemble
of DNNs to a given set of devices?”. The systematic procedure
must be endowed with two main qualities. Firstly, the flexibility,
the systematic procedure aims to fit the ensemble in memory to
be ready to answer requests, even if the number of devices is
lower than the ensemble size. An ideal flexible solution must be
able to allocate heterogeneous DNNs (such ResNet, Inception,
EfficientNet, ...) on modern clusters containing heterogeneous
devices (such CPUs, GPUs, TPUs, ...). Secondly, the efficiency,
when an ensemble fits in memory it should optimize the usage
of underlying multi-cores devices with minimum overhead due
to data transfer.

We design the answer in three points.

o First we propose the allocation matrix as the formalism
of the decision space in an innovative way. It designs
how DNNs are allocated into the devices including co-
localization (multiple DNNs instances into the same
device), data-parallelism (one DNN multi-threaded on
multiple devices), and the batch size of each DNN instance
(which controls devices cores usage, memory consumption,
data exchange).

e We propose an allocation matrix optimizer. It runs
successively a worst-fit-decreasing algorithm to fit DNNs
in memory and a bounded greedy algorithm to speed up
the allocation.

« Finally, we propose a design of the inference system. To
avoid overhead, it asynchronously runs: data batching,

Uhttps://docs.ray.io/en/master/serve/index.html
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DNNs predictions, and the combination rule with an
efficient internal communication scheme.

Our paper follows this structure: (1) we show the recent
progress in inference software. (2) We introduce our inference
server for ensembles DNNs, how to use it and its internal
mechanisms. (3) We perform multiple benchmarks and discuss
the flexibility and the efficiency of our inference system.

I. INFERENCE SOFTWARE

A. Inference frameworks

The inference frameworks contain generally two main
functions, the “load” function to load a trained DNN from the
disk to a targeted device and the prediction function f(z) — y
with = the data samples and y the associated predictions. The
most sophisticated inference frameworks [[12]], [13], [[14], [[15]
perform post-training optimization such operations optimization
and device-specific optimization with low or no impact on the
accuracy. We use here the Tensorflow deployment (“pb files™)
as the underlying format and focus our work on the allocation
challenge.

A critical part of optimizing the performance of a DNN
model is its batch size. It controls the internal cores utilization,
the memory consumption, and the data exchange between the
CPU containing input data and the device supporting the DNN
(if different). That is why some tools E] scans multiple batch
size values of a given DNN. Then, the batch size offering the
best performance is used. This Best Batch Strategy (or BBS) is
a relevant mechanism to optimize a single DNN on one device,
but it is a naive and rigid method to optimize multiple DNNs
predicting ensemble. Due to the lack of efficient technique to
handle ensemble of DNNs in inference mode, we design an
allocation matrix optimizer that we compare to BBS.

B. Inference servers

The last few years, we show the emergence of software [|16]]
[8[1, [OlI, [10], [11] to serve inference framework predictions as
a service. Most of them wrap predictions in a REST service but

other technologies exist such database management service [17].

They implement often the same features. Ensemble selection
allows the client application to choose the model which will
answer among multiple applications or the same application but
different trade-offs between accuracy and speed. To improve
performance under redundant requests, caching allows avoiding
recomputing similar requests. When the amount of requests
is low and irregular, adaptative batching allows triggering
prediction before the buffered batch is full to improve the
latency.

Our work benefits from those inference server technologies.

The novelty is that we handle heterogeneous ensemble of DNNs
by adding an intermediate software layer between low level
DNN inference frameworks and inference servers.

2”https://github.com/triton-inference-server/model_analyzer/blob/main/
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Fig. 1. Tllustration of our inference server on a toy example of allocation of
2 DNNs into 3 devices. The DNN model B is run by 2 data-parallel workers
on device J and device K. The DNN instances Al and Bl are co-localized in
device J. The corresponding allocation matrix is described in the bottom left
corner. Threads inside a worker are not fully described for visibility purposes

(see figure 2).

II. THE WORKFLOW

Once an ensemble has been trained and built, we need to
serve it efficiently on the available computing resources. We
design an efficient inference pipeline illustrated in figure

In the following sections, we will describe first how the
inference server is used. Then, the allocation matrix which
drives performance. Finally, main components of our inference
server is presented one-by-one: the inference system core, the
worker-pool and the allocation optimizer.

A. Using our inference server

The engineer who is responsible for managing the inference
server provides to the matrix allocation optimizer the ensemble
of DNNs, the CPUs, and the GPUs to use. Sometimes, the
engineer does not want to give all available devices into its
cluster to deploy an ensemble, so he can keep GPUs for other
applications. The matrix allocation optimizer will automatically
optimize the allocation of the ensemble for the given devices.

Once the allocation matrix is computed, the inference system
is deployed online. It implements the usual inference server
features such as an HTTP/HTTPS wrapper and adaptative
batching. To be more precise, the term ‘“adaptative batching”
can now lead to confusion. The buffer waiting request is now
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defined by the size of segments and not the batch size of the
individual DNNs.

B. The allocation matrix data structure

The allocation matrix is a data structure describing with high
flexibility the design of the worker-pool used by the inference
system. It designs how DNNs are allocated into the devices
including co-localization (multiple DNNs instances into the
same device), data-parallelism (one DNN multi-threaded on
multiple devices), and the batch size.

In this matrix, element 0 means an absence of a worker
process in the given device, while other values represent the
batch size. The workers co-localized into the same device are
readable as non-zero values in the row of the allocation matrix.
The workers which are instances of the same DNN are data-
parallel, they are readable as the non-zero values in a given
column.

Finally, some devices may not be used, so we can observe
rows containing only zero values. But it is illicit to have a
column with only zero values. In other words, all DNNs must
be represented in the ensemble.

1) Co-localization: Co-localization allows fitting more
DNNs than the number of devices (the pigeon-hole principle).
It may allow also maximize the utilization of internal cores
into a device too.

It is well known that the batch size is an important setting.
However, optimal batch size values in the context of multiple
DNNSs co-localized into one GPU are challenging to find. In
general, the larger batch may increase cores utilization and it
consumes more memory. Due to those complex relationships
between multiple DNNs co-localized and hardware, only
benchmarks allow knowing the performance of co-localized
models. And more, only multiple benchmarks allow finding
good settings such as which DNNs should be put together and
their optimal batch size values.

2) Data-parallelism: Data-parallelism allows to speed up a
prediction of one DNN using multiple devices. The workers
run the same DNN but in different instances. They take data
samples to predict from the same input FIFO queue.

Ideally, n threads should multiply the number of images
predicted per second by n. Yet, because we use multiple
shared data structures: one segment ids FIFO queue, the
shared data memory, and the prediction FIFO queue, perfect
scalability is not ensured. Only benchmarks allow to compute
the performance and if increasing the number of workers is
worth it.

C. The inference system

The inference system is the core component of the server.
It is a function f(X,A) — {Y,S} with X data samples to
predict and Y the associated predictions of the ensemble of
DNNs. A is the allocation matrix driving the worker-pool
construction and S is the performance score.

The inference system can be run with 2 modes. In “Deploy
Mode” it is deployed online to serve client requests, A is
fixed and S is ignored. In “Benchmark Mode” it measures the

performance S provided by the allocation matrix A on the data
calibration samples X, and Y is ignored.

To accelerate the inference system we design it with multiple
processes. The segment identifiers broadcaster which splits the
incoming workload of requests into segments, the worker pool
containing DNNs instance and return segments of predictions
in the combination accumulator FIFO queue, the combination
accumulator combines segments of predictions and returns to
the client the final prediction: the prediction of the ensemble.

1) The segment ids broadcaster: The inference system
contains thread-safe FIFO queues allowing to broadcast and
gather information with the workers. It contains also the X
shared memory, this is a heavy buffer of data readable by all
the workers. All those data structures are stored in the RAM.

To avoid transmitting heavy messages and stressing thread-
safe FIFO queues, all images information passing through
queues are gathered into segments. All segments contain N
samples, except the last segment which contains the information
of the remaining samples.

After getting a segment identifier s, such as s > 0, a worker
knows he is responsible to predict the images from start(s) =
s* N position to the end(s) = min((s + 1) * N, nb_images)
position with nb_images the number of images in the X
shared memory. The segment ids broadcaster can also put
special values like s = —1 to ask workers to shut down before
terminating the overall inference system.

For example, in the figure[T]if the user requests the prediction
for 300 images with N = 128, they are represented internally
as 3 segments, two are size 128 and one is size 44. Then, the
segment ids broadcaster put 6 messages: 0, 1, 2 integers into
A queue and B queue.

2) The prediction accumulator: This process combines
efficiently predictions from workers and when it is finished it
returns them to the client. After predicting a segment of data,
a worker puts a message in the prediction queue. Each of these
messages is a triplet {s, m, P} with s the segment identifier, m
the model identifier and P the prediction matrix of dimension
(end(s) — start(s)) x C and C the prediction length for each
image e.g., the number of classes. To combine predictions, the
prediction accumulator first allocates a buffer Y of dimension
nb_data x C zeroed. Then, it updates the cumulative prediction
each time it receives a message triplet {s, m, P}. The Python
code using Numpy arrays of the averaging accumulation is
simply:

Y[start (s) :end(s) ]+=P/M

With M the number of DNNs in the ensemble. Other
combination rules can be easily implemented such as majority
voting or weighted averaging. Furthermore, other applications
can require specific combination rules such as those applied
in object detection [18]. Any combination rule code must
be developed by keeping in mind that predictions come
into messages to be asynchronous with the neural network
predictions.

To go into further details, the workers can send special
messages to the prediction accumulator. The special message
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{-1, None, None} allows notifying that a device has not enough
memory to load or initialize a DNN. This triggers the shutdown
of the inference system and every process into it. The special
message {-2, None, None} allows notifying that one worker
is ready to serve after its initialization. Starting the inference
system takes a few seconds, we know the inference system is
fully initialized and ready to receive the user requests when all
workers send {-2, None, None} to the prediction accumulator.

D. The worker pool

The worker pool gets segments from FIFO queues, predicts
them, and returns the predictions to the prediction accumlator.

All workers are designed the same, they are illustrated in
figure [2] To be performant it contains 3 asynchronous threads:
the batcher, the predictor and the prediction sender.

e The batcher waits for incoming segment identifiers from
the input FIFO queue. When it receives one, it splits
the segment into a batch of data and gives them to the
predictor. Each worker has its batch size described in the
allocation matrix.

e The predictor persists the DNN into the device memory.
When it receives a segment identifier, first it loads the
segment of data. Then it runs the prediction on each
batch and finally, it gives the batch of predictions to the
prediction sender.

o The prediction sender gathers predictions batch by batch
to build segments of prediction. When a segment is
completed, this process puts the segment of prediction
into the prediction FIFO queue.

E. The allocation optimizer

The allocation matrix optimizer goal is first to fit DNNs into
the memory and then optimize their performance. That is why
it runs first a worst-fit-decreasing algorithm to solve the bin-
packing problem to fit DNNs into the memory of the device.
Second, a greedy algorithm assesses thousands of matrices to
find the faster one based on offline benchmarks. Finally, the

best matrix is cached to avoid recomputing it again when the
server will be restarted. These two algorithms are next detailed.

1) Algorithm 1 - Worst-Fit-Decreasing with priority to GPUs:
It solves a bin packing problem to put objects (DNNs) into
a finite number of bins (devices). All DNNs are set with the
minimum batch size value (8 in our experiments). It is more
exactly a bin packing with offline heuristics problem because
the DNNs are known before execution and can be sorted in
decreasing order. We attempt to find a feasible solution with
the already known Worst-Fit Decreasing algorithm.

This algorithm has the already known properties to optimize
memory allocation. At each step of the worst-fit algorithm, it
chooses to allocate a DNN into the device with the largest
available memory. Therefore it may remain large memory space
into the GPU after a DNN allocation. This remaining memory
space can be big enough so that other smaller DNNs can also be
placed in that remaining memory and therefore maximize the
memory filling. Second, ordering the input list by decreasing
DNNs size has been proved [19] to maximize the memory
filling compared to a non-ordered version. Finally, Worst-Fit
prioritizes an equitable workload between homogeneous devices
based on the memory criterion. On the opposite, First-Fit, Best-
Fit and Next-Fit, attempt to fill the first devices and keep the
last devices empty.

To improve significantly the speed up of the allocation, we
hard code a rule to allocate in priority the GPUs rather than
CPUgs. It is of common knowledge that GPUs can run DNNs
an order of magnitude faster than CPUs. Indeed, the CPUs
start to be used by algorithm [I] only when no more space is
available on the GPUs.

Algorithm 1 Worst-fit-decreasing with a priority to GPUs

1: input: M the list of DNN models in the ensemble, D the device
set, default_batch_size

: output: A the allocation matrix containing all models placed

start

Am,a < 0, m=1..card(M) and d = 1...card(D)

: M sorted in desc. order of memory size

: for m in M do

A

/I AG is the matrix where m is put on the GPU-side
9: g < more_remaining_memory(A,de fault_batch_size,'GPU”)
10:  AG <« copy(A)
11:  AGm,g < default_batch_size
12:
13:  // AC is the matrix where m is put on the CPU-side
14: ¢ < more_remaining_memory(A,de fault_batch_size,"CPU’)
15:  AC < copy(A)
16:  AChm,c < default_batch_size
17:
18:  // Put the model m
19:  if fit_mem(AG) then
20: A < AG /I Priority to the GPU-side
21:  else if fit_mem(AC) then
22: A+ AC
23:  else
24: Error no device have enough memory
25:  end if
26: end for
27: return A




more_remaining_memory function returns the device
with the most remaining memory. £it_mem returns if the
allocation matrix is feasible in terms of memory availability.

2) Algorithm 2 - Bounded greedy optimization: The algo-
rithm 2 goal is to refine the starting allocation matrix and return
a faster allocation matrix. Before explaining this algorithm, we
will first provide a detailed analysis of the complexity of its
decision space which drives our choices to design it.

The number of matrices is given by equation [I] with D
devices, B batch size values and M DNN models in the
ensemble.

total_matrices = (B + 1)P — 1)M (1)

The number of possible element values is (B + 1) all possible
batch size values plus the O elements for no worker. The
number of possible values in a single column is described by
(B +1)P — 1. The term (B + 1)? allows to brute-force all
possible values in a column minus the zero columns which are
forbidden.

Note the two power terms which show the explosion number
of combinations. For example, if we have 8 DNNs, 4 GPUs, and
1 CPU total_matrices ~ 1.3FE 31, this is much more than the
number of stars in the observable universe. To put the problem
into perspective, one allocation matrix takes an average of
40 seconds to be assessed. It includes the construction of the
inference system time plus the offline benchmark time. That is
why only a few hundred matrices can be reasonably assessed
by an optimizer.

A greedy algorithm provides an often effective solution to
many combinatorial optimization problems. When applied to
our case, it starts with the matrix given by algorithm [I] and
at each iteration, it assesses all neighborhood matrices and
replaces the current matrix with the best-assessed matrix. We
consider that two matrices are neighborhoods if they are both
valid (again, no O columns) and if there is only one different
element between them. The greedy algorithm is stopped when
no neighborhood improves the current matrix.

The greedy algorithm breaks down the overall complexity
described in equation [I] into a succession of combinations
(or neighbors) measured by equation [2| to assess. With F
the number of forbidden matrices we cannot explore such
0<F<D.

total_neighs = (B+ 1)« (D« M) — F ()

Let’s take our previous example, 8 DNNs, 4 GPUs, and 1
CPU. The total number of combinations is total_matrices =~
1.3E31 but the greedy algorithm needs to assess only between
232 and 240 neighbors at each iteration.

Greedy algorithms are well-known approximation algorithms.
However, the number of neighbors can still be very computing-
intensive to evaluate in some cases, and more the number of
required iterations can be large before finding an optimum.
To limit the computing cost of the greedy we propose two
bounds. First, each iteration evaluates at most max_neighs
randomly drawn neighbors (line 9). We also limit the number
of iterations to max_iter (line 6).

Despite that our algorithm is an approximation of a greedy
algorithm, we have the guarantee that in the worst-case scenario
a solution as good as the starting one is returned. This
characteristic is inherited from the greedy algorithm. Line
18 can be read “if we do not improve strictly the performance,
the algorithm is stopped”.

The rate of visited neighbours is measured with %
If it is close to zero it means the final performance may be very
volatile. At the opposite, % > 1 means all neighbours
are visited and does not introduce volatility. Another source
of volatility is the benchmark function (lines 4 and 11) but in
practice, when the amount of calibration data samples is large
enough, the measurement is stable.

The pseudo-code is presented in bloc code [2] bench
function instantiates the pipeline with the given allocation
settings (first argument) on the calibration data samples (second
argument) and returns the performance to maximize or 0 if a
DNN instance does not fit in memory.

Algorithm 2 Bounded greedy algorithm
1: input: maz_iter maximum number of greedy iteration,
maz_neighs maximum number of neighboors to evaluate
at each iteration, A is the zeroed allocation matrix,
calib_data contains calibration data to perform offline
benchmarks
: output: The optimized allocation matrix A
: start
A_speed <+ bench(A,calib_data)
iter < 0
while iter < max_iter do
neighs < neighborhood(A)
if length(netghs) > maz_neighs then
neighs < draw randomly maz_neighs samples
from neighs_A
10:  end if
11:  best_A, best_speed < for all n in neighs return the
best one and its score based on the bench(n,calib_data)

R A A A o

criterion
12:  if best_speed > A_speed then
13: A+ best_A
14: A_speed <+ best_speed
15: iter < iter + 1
16:  else
17: // local maxima (or plateau) detected
18: iter < max_iter_greedy
19:  end if
20: end while
21: return A

III. OFFLINE BENCHMARK SETTINGS

This section provides a detailed description of our experimen-
tal settings. Reading this section is not needed to understand
the next sections.

The performance metric. The transmission of online
messages with the client and their characteristics is application



dependant and thus we rather perform offline benchmarks to
evaluate the core prediction performance. This allows us to
stay focused on the specificity to deploy ensembles under a
heavy workload of requests. Therefore, our metric will be the
throughput measured by the number of data samples predicted
per second.

Code and framework. All the asynchronous objects are
implemented with the “Multiprocessing” built-in Python 3.6
package. Our FIFO queues, shared memory, and processes are
respectively implemented with Queue class, Manager class,
and Process class.

Additionally, we use two well-known external packages:
the Numpy numerical library and Tensorflow 1.14 to deploy
models widely supported by GPUs and CPUs.

The hardware. All results reported are performed into an
HGX cluster containing 16 Tesla-V100 GPUs. The flexibility
and efficiency of our server are analyzed by varying the number
of GPUs to use from 1 to 16.

We also performed a few benchmarks on a computing node
identical to the Oak Ridge Summit node. Both clusters have
the same GPUs but different CPUs and different operating
systems. The measured results are very similar to HGX so we
decided do not to report the performances.

The ensembles of DNNs. To assess the efficiency and
the flexibility of the inference system, we benchmark 5
heterogeneous ensembles named according to the number of
models and the name of the database they learned from.

First, we build arbitrary 3 ensembles of present or past state-
of-art DNNs. They have also been chosen for reproducibility
purposes and they are easily implementable for any deep
learning framework. IMN1 contains only ResNet152 and
it allows us to show our workflow is general enough to
optimize one single DNN. IMN4 contains 4 DNNs {ResNet50,
ResNet101, DenseNet121 and VGG19}. IMNI12 contains all
DNNs from IMN1 and IMN2 plus {ResNetl8, ResNet34,
ResneXt50, InceptionV3, Xception, VGG16, MobilNetV2}.

Then, we generate 2 other ensembles named FOS14 and
CIF36. FOS14 contains 14 DNNs and is used for our in-house
applications with 224x224 RGB images as input and predict
among 91 classes. CIF36 is an ensemble of 36 DNNs to classify
the images from the CIFAR100 dataset taking 32x32 RGB
images and 100 classes.

FOS14 and CIF36 have been built with an in-house AutoML
[20] with a posthoc ensembling method to automatically build
ensembles to maximize the prediction quality. FOS14 and
CIF36 are built around the Resnet skeleton from 10 to 132
layers and the number of filters in each convolution is multiplied
from 0.5 to 3 compared to the usual ResNet architectures. We
do not provide further details on their construction and training
to stay focused on the inference phase.

Calibration data samples. The meaning of the data has no
impact on any performance measured on the classification task.
However, applying this server to other DNN methods may need
a few realistic data samples to measure a relevant performance
time. For example, in the Faster-RCNN [21]] architectures the

RPN module iterates on some region of interest for each input
image.

The possible batch size values. We fixed {8, 16, 32, 64,
128} as possible batch size values. More values increase
significantly the number of possible allocation matrices and
make the exploration of combinations more difficult. Fewer
values reduce the degree of freedom to control internal
parallelism, memory consumption, and data exchange.

The segment size. We evaluate multiple segment sizes and
we observe that smaller values reduce the granularity of the
workload and improve its distribution between processes. In all
this work the segment size is fixed to 128. It should generally
be equal to or greater than the maximum batch size.

Algorithm 2 - Greedy allocation. We choose
max_neighs = 100 and max_tter = 10. This is a
total of at most 1000 combinations to assess. On average, one
matrix evaluation takes 40 seconds therefore those two chosen
values limit the computing cost to 12 hours.

When D — M > max_iter with M DNNs and D devices.
The max_iter is replaced with D — M. It allows getting a
chance of using all devices when the number of devices is
large. In all our benchmarks, it is used only three times with
IMN1 ensemble on 12 GPUs and 16 GPUs and IMN4 on 16
GPUs.

IV. OFFLINE BENCHMARKS

This section describes 3 performance analyses of our
system. The first one estimates the overhead introduced by the
inference system. Then we analyze the performance varying the
ensembles and the number of GPUs. Finally, we will compare
our allocation matrix optimizer to a simple baseline named
“Best Batch Size”.

A. Overhead of the inference system

In all our benchmarks, the inference system overhead is
measured at most 2% of the total inference time. To estimate
this overhead, we temporarily replace all the DNNs calls with a
fake prediction containing only zero values, thus the prediction
accumulator still gathers predictions but returns zero values.

We perform multiple offline benchmarks of this fake infer-
ence system and we report it takes at most 0.035 seconds in the
case of IMN12 ensemble on 16 GPUs, in this case, allocation
matrix optimizer producing 22 workers. In comparison, the
true inference system (without faking predictions), takes 2.528
seconds to predict 1024 images (i.e., throughput=405 in the
table [I).

B. Varying GPUs and ensembles

Table [] shows the performance in terms of prediction
performance of the 5 ensembles. The first major observation is
that to serve efficiently an ensemble of DNNs we do not need
systematically as much as GPUs as DNNs, but more GPUs
generally improve performance.

The allocation optimizer successes in automatically con-
structing allocation matrices in the majority of assessed
scenarios. It found a feasible solution to store 12 DNNs into



IMNI IMN4  IMNI2  FOS14  CIF36
#G | Al A2 | Al A2 | Al A2 |Al A2 |Al A2
1106 136 |- - |- - |- - |- -
2 [106 270 |13 101 |- - [213 233 |- -
3 1106 394 | 158 199 |- - [308 339 |- -
4 106 539 |160 251 |15 24 [380 410 |- -
5 1106 617 | 160 294 |65 106 | 388 461 |15 15
6 | 106 722 | 160 351|103 194 (397 470 |35 37
8 | 106 974 | 160 472|103 226 | 483 518|239 243
12 | 106 1436 | 160 686 | 103 317 | 511 545 | 428 481
16 | 106 1897 | 160 877 | 103 405 | 511 559 | 563 633
TABLE T

WE BENCHMARK THE THROUGHPUT OF 5 ENSEMBLES ON DIFFERENT
NUMBERS OF GPUS (+1 CPU). THE MENTION ‘-> MEANS OUT OF MEMORY
ERROR IS RETURNED. BECAUSE A2 IS A STOCHASTIC ALGORITHM, EACH
RUN TIME WAS PERFORMED 3 TIMES AND THE MEDIAN VALUE IS REPORTED.

ResNet50  ResNetlO1  DenseNetl2l  VGGI19
CPU 0 0 0 0
GPU1 8 8 0 0
GPU2 0 128 0 0
GPU3 0 0 8 0
GPU4 0 0 0 8
TABLE I

ALLOCATION MATRIX OF IMN4 ON 4 GPUS RETURNED BY OUR
ALLOCATION MATRIX OPTIMIZER

only 4 GPUs. On the opposite, it also shows success to leverage
multiple GPUs, for example, the Resnet152 model alone gets
a Weak Scaling Efficiency of 87% with 16 GPUs. Finally,
when we compare algorithm 1 (Worst-Fit Decreasing) alone
and algorithm 1 followed by algorithm 2 (Bounded Greedy)
throughput, we observe also that the second algorithm produces
generally a significant speed-up confirming the usefulness of
this second algorithm.

We observe from the different matrices produced. To
illustrate the decision making of the matrix allocation optimizer,
we show an example of a matrix allocation in figure [I]

In general, slower DNNs responsible for the performance
bottleneck of the ensemble are multi-threaded in priority and
their batch size optimized. Furthermore, we observe that when
some models are co-localized their batch size is often chosen
smaller. Finally, when we increase the number of GPUs,
algorithm 2 automatically stops using the CPU. Indeed, the
CPU is only used by Algorithm 1 and Algorithm 2 when the
GPUs memories are full.

In addition to measuring the throughput, we also measure
the good stability of this throughput for any allocation matrix.
This is a desirable property for some industrial applications
where the server must guarantee a certain quality of service.
More formally, the function bench(A, fake_data) (algorithm
2) returned values varies to a relative standard deviation
(RSD) below 2% for any A. We also measure that when
the rate max_neighs/total_neighs is low (e.g., inferior to
0.2) the bounded greedy algorithm can return diverse matrices
performance at different run-time until RSD=16%.

C. Baseline comparison

We compare in table [lI| our allocation matrix optimizer with
the commonly used strategy we named BBS as baseline. The
BBS uses n GPUs for n models and for each model it searches
for the optimum batch size. It requires the same amount of
GPUs as DNNG, this is a major limitation that requires small
ensembles or it requires large hardware investment.

BBS baseline  Our server
img/sec #bench img/sec #bench
IMN1 / 1GPU 136 5 136 69
IMN4 / 4GPUs 211 20 251 200
IMN12 / 12GPUs 136 60 338 1000
? ? ? 376 2000
TABLE IIT

COMPARISON BETWEEN TWO ALLOCATION STRATEGIES: THE SIMPLE
PREFERRED BATCH SIZE STRATEGY AND OUR PROPOSED ALLOCATION
MATRIX OPTIMIZER WITH DIFFERENT ENSEMBLES (FROM IMN1 TO
IMN12) AND DIFFERENT GPUS (+1 CPU EACH TIME). THOSE TWO
STRATEGIES PRODUCE AN ALLOCATION MATRIX FOR THE INFERENCE
SYSTEM AND BENEFIT FROM THE HIGHLY ASYNCHRONOUS INFERENCE
SYSTEM DESIGN AND LOW BOTTLENECK. THE LAST LINE WE SET
max_iter = 20.

CONCLUSION

This work answers this missing piece of pipeline between
DNNSs built by machine learning practitioners and serves them
efficiently with any hardware investment. We propose a solution
to the complex allocation problem of multiple heterogenous
DNNs in multiple heterogeneous GPUs. This flexibility relies
on the formalism of the allocation matrix allowing data-
parallelism, co-localization, and batch size optimization.

To target efficiency, hundreds of allocation matrices are
assessed before selecting the best one and instantiating it. And
more, the inference system is built with many asynchronous
processes to avoid overhead and accelerate the predictions.
In our benchmarks, we observe the smart decision of our
allocation optimizer. When the number of GPUs is superior to
the number of DNNs, the heavier DNN are automatically multi-
threaded to avoid bottleneck performance. On the opposite,
when the number of GPUs is lower, we observe automatically
co-localization and smaller batch size to fit all DNNSs into the
memory.

Finally, each part of the proposed pipeline is well identified
to guarantee easy code adaptation to facilitate introduction in
current inference servers. For example, Object Detection and
classification require different combination rules. To benefit
from hardware-specific optimization, changing the inference
framework requires localized updates into the predictor process.

Acknowledgement: We would like to thank TotalEnergies
SE and its subsidiaries for allowing us to share this material
and make available the needed resources.
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