2106.03233v1 [cs.Sl] 6 Jun 2021

arXiv

A Pre-training Oracle for Predicting Distances in Social
Networks

Gunjan Mahindre

Electrical and Computer Engineering, Colorado State

University
Fort Collins, USA

Anura Jayasumana

Electrical and Computer Engineering, Colorado State

University
Fort Collins, USA

ABSTRACT

In this paper, we propose a novel method to make distance
predictions in real-world social networks. As predicting missing
distances is a difficult problem, we take a two-stage approach.
Structural parameters for families of synthetic networks are first
estimated from a small set of measurements of a real-world
network and these synthetic networks are then used to pre-train
the predictive neural networks. Since our model first searches
for the most suitable synthetic graph parameters which can be
used as an “oracle” to create arbitrarily large training data sets,
we call our approach “Oracle Search Pre-training” (OSP).

For example, many real-world networks exhibit a Power
law structure in their node degree distribution, so a Power law
model can provide a foundation for the desired oracle to gen-
erate synthetic pre-training networks, if the appropriate Power
law graph parameters can be estimated. Accordingly, we con-
duct experiments on real-world Facebook, Email, and Train
Bombing networks and show that OSP outperforms models
without pre-training, models pre-trained with inaccurate param-
eters, and other distance prediction schemes such as Low-rank
Matrix Completion. In particular, we achieve a prediction error
of less than one hop with only 1% of sampled distances from the
social network. OSP can be easily extended to other domains
such as random networks by choosing an appropriate model
to generate synthetic training data, and therefore promises to
impact many different network learning problems.

KEYWORDS

social network, autoencoder, pre-training, prediction, network
sampling, missing data

Unpublished working draft. Not for distribution.

2021-06-08 01:13. Page 1 of 1-10.

Randy Paffenroth

Mathematical Sciences, Worcester Polytechnic
Institute
Worcester, USA

Rasika Karkare
Data Science, Worcester Polytechnic Institute
Worcester, USA

ACM Reference Format:

Gunjan Mahindre, Randy Paffenroth, Anura Jayasumana, and Rasika
Karkare. 2021. A Pre-training Oracle for Predicting Distances in So-
cial Networks. In Proceedings of ACM Conference (Conference’17).
ACM, New York, NY, USA, 10 pages. https://doi.org/10.1145/nnnnnnn.
nnnnnnn

1 INTRODUCTION

Shortest node-pair distances in graphs pack a lot of insight
regarding the network as a whole and thus have been used in
several graph analysis algorithms. In social network analysis,
for example, hop-distances are used for predicting friendships
[23, 25], extracting sensor network topology [7, 10], and mod-
eling social networks [5, 20] to name a few. However, missing
measurements in sampled datasets adversely affect the struc-
tural properties of social networks [14, 21] and the original
network characteristics are misrepresented. Predicting these
missing measurements would solve this problem.

Neural networks have proved to be useful in solving many
prediction problems but they often require a large amount of
training data to perform well. Pre-training has alleviated this
issue with transfer learning, especially when the second task
is much more difficult for training [8, 19]. However, relatively
little is known about the pre-training behavior related to neural
networks used for social network analysis as social networks
are difficult to measure or sample completely due to their cost
of measurement, privacy, or storage issues. The ever increasing
size of social networks today only adds to this problem.

We demonstrate a prediction model based on efficient pre-
training for distance inference in social networks when only
sparse samples are known. We use artificially simulated training
data to compensate for the lack of sufficient real-world mea-
surements. For accurate prediction, this artificial pre-training
data has to be faithful with the characteristics of the target so-
cial network. However, we do not know the characteristics of
the target network. All we have is a small fraction of randomly
measured node-pair distances. A way to estimate the right pre-
training parameters is required. The central idea of this paper
is to build an “Oracle” that points us towards these suitable set
of pre-training parameters.

Fig. 1 gives a preview of our results for a 1133 node real-
world Email network when only 0.5% of the total node-pair
distances are known. We can see that accurate pre-training
parameters improve the prediction performance by 33% over

https://doi.org/10.1145/nnnnnnn.nnnnnnn
https://doi.org/10.1145/nnnnnnn.nnnnnnn
https://doi.org/10.1145/nnnnnnn.nnnnnnn

BROBIRNERL witlf A AR PUAMBRAYRA by 53% over mod- GUMan MAGELs; TR T B PP AU RN A TR EE:

els without pre-training.

Absolute Error in Prediction with 0.5%
sampled Data

Low-rank Matrix Completion

I ——

Neural network without pre-training

Pre-training with inaccurate parameters
—

Pre-training with accurate parameters

0.00 0.50 1.00 1.50 2.00

Figure 1: Comparison of proposed method with Low-rank
Matrix Completion, neural network without pre-training,
and pre-training with inaccurate parameters on a real
world Virgili Emails network with only 0.5% of distances
sampled. OSP improves the performance by 53% from
a neural network without pre-training and by 33% from
when inaccurate pre-training parameters are used.

We list the main contributions of our work in Section 2. Sec-
tion 3 discusses relevant literature. Required theoretical back-
ground is provided in Section 4 with the complete methodology
in Section 5. Sections 6 and 7 provide performance analysis
and sensitivity study of the model. We summarize our work in
Section 8.

2 CONTRIBUTION

The main objective of this paper is to present a sophisticated
method of efficiently pre-training an autoencoder (AE) for pre-
diction when sufficient target measurements are not available
for training. A multi-stage setup for estimating network charac-
teristics from partial distance measurements is proposed. We
integrate the idea of pre-training with that of best parameter
selection for optimal prediction.

These optimally pre-trained autoencoders are demonstrated
to predict missing shortest node-pair distances in social net-
works. We show the effectiveness of OSP on real-world social
networks such as Virgili Emails, Facebook, and Train Bombing
network which vary in their size and areas of function. The
prediction performance is also compared against an existing dis-
tance inference model based on Low-rank Matrix Completion
[6, 10, 16] (Section 6).

We improve with respect to the existing work in the follow-
ing ways:

(1) Artificially generated training data is used to pre-train
an autoencoder when sufficient real-world data is not
available (Section 5.1).

(2) A novel two stage oracle is presented to predict suitable
parameters for optimal pre-training. The oracle points us
towards the suitable parameters solely using the sampled
distances and without knowing any characteristics of the
target network (Section 5.5).

(3) OSP does not require large amounts of measurements
from the target network that needs to be predicted. Our
experiments show results for networks sampled as low
as 0.1%, 0.5%, and 1% while also covering up to 80%
sampling (Section 6).

ferent pre-training parameters. This helps us understand
pre-training behaviour of social networks and identity
best set of pre-training parameters for the given test
network parameters (Section 7).

3 RELATED WORK

In this section, we discuss the most relevant literature to this
paper: prediction techniques for node-pair distances, complet-
ing missing network measurements from partial measurements,
and using pre-training for predicting distances.

Low-rank Matrix Completion (LMC) [6] has been used ef-
fectively in reconstructing missing distances in graphs such as
0T or social networks when partial distance measurements are
known, either randomly or from a selected set of landmarks. It
has demonstrated accurate prediction up to 20-40% of sampled
measurements [10, 13, 16]. This deterministic technique works
well due to the low-rankness of the distance matrices. Thus we
use Low-rank Matrix Completion as one of the reference points
for comparing our results.

Deep learning techniques have found its way into social
network analysis for distance prediction. Graph convolutional
neural networks have been used to predict missing links in
recommender systems [4]. Preserved distances of each node
from a few landmark nodes are successfully used [18] to train a
multi-layer perceptron (MLP) and predict distance between two
vertices without a high space cost. WiDE, [15], uses unsuper-
vised stacked autoencoders to pre-train a deep neural network
and predicts person-to-person distances using surrounding Wifi
signals. However, these techniques rely on a significant amount
of measurements within the real-world networks.

Our work is inspired by the methods proposed in [12, 17]
where Hadamard Autoencoders are trained on synthetic data
when only sparse measurements are available from the target
network. Though this helps us train on artificial data, all social
networks are not the same and vary greatly in their characteris-
tics. This leaves room for improving the pre-training process to
be customized for each social network being reconstructed.

Thus, we hypothesize that building a pre-training “Oracle
that guides us into a narrower range of the pre-training data
being used will help significantly improve the prediction per-
formance by generating customized training data that is more
faithful to the given social network.

”

4 THEORY

In this section, we provide necessary background by giving a
brief introduction of the autoencoders and the data used. We
also briefly talk about the concept of pre-training which forms
the foundation of this work.

4.1 Supervised Autoencoders

An autoencoder is a special type of artificial neural network
that tries to reproduce the input at the output while learning
its representation in a low dimensional space. It consists of
two parts, namely, encoder and decoder. The encoder takes the
input, X, and maps it to a hidden representation h, such that:
2021-06-08 01:13. Page 2 of 1-10.

A Pre-training Oracle for Predicting Distances in Social Networks

h=a(Wx+b), (1)

where W is the weight matrix, b is the bias vector and ¢ is the
activation function for the encoder. We use Leaky ReLU as the
activation function throughout the autoencoder. It is defined as:

o(2) = {z, ifz>0 @)

az, z<=0,

where z is the input and « is a small non-zero, constant gradient.
Leaky ReLU helps to solve the “vanishing gradient” problem
caused by ReLU where the function outputs 0 if z < 0, seizing
the update of the hyperparameters and thus the learning.

The decoder reconstructs this hidden representation h to the
output, X, given by:

x=0(Wh+b’), 3)

where W’ is the weight matrix, b’ is the bias vector and o is
the activation function for the decoder.

The input and output layers have the same number of neurons
in order to reconstruct the given input. Each neuron operates
on the incoming signal and generates an output based on its
activation function, weight and bias values. The weight and
bias values are found by training so that the difference between
X and x is minimized.

4.2 Training Protocols

We use supervised training method to train the hyperparame-
ters, i.e., while training, the expected output is known. Back-
propagation is used to train the weights and biases for each
layer during training. Back-propagation consists of two phases.
During the first phase, input is fed to the autoencoder with
weights and biases initialized to random values and the output
layer reconstructs the input. In the second phase, the error be-
tween expected and predicted output is calculated using a mean
squared error loss function given by Eq. 4. The weights and
biases are updated iteratively using this error value.

L(x%) =[x x|, “)
where x is the known expected output, X is the predicted output

as reconstructed by the output layer. Thus from Eq. (1), (3),
and (4), we can say that

L(x,%) = [[x - s(W (c(Wx +b)) +b")|%. Q)
n

In other words, the loss function is the mean (% >) of
i=1

the squared errors (x; — %;)2, which is an easily computable
quantity for the given data sample, and can be expressed as

n
MSE = % 3 (x; — %;)2, where n is the total number of samples.
i=1

The size of the hidden layer can be adjusted in proportion to
the size of the target data. We used learning rate 0.001, batch
size 1, and hidden layer size 50 for the Facebook network
and 20 for the Virgili Emails and Train Bombing network, as
determined from the observed measurements.

2021-06-08 01:13. Page 3 of 1-10.

4.3 Pre_trainiﬁgﬁerence 17, July 2017, Washington, DC, USA

The concept of pre-training is inspired from the way humans
learn. While learning new things, we re-use our knowledge of
the past. Pre-training a neural network refers to training the
model during one task and using the trained parameters as a
head start for another task. This way, the model does not have to
learn from scratch for the second task. It is especially useful if
the two tasks are similar or the final task is much more difficult
and can be broken down in simpler pre-training tasks [8, 19] .
For instance, training an autoencoder to predict missing mea-
surements of sparsely available data can be difficult. Instead,
we pre-train the autoencoder on readily available simulated
data and try to predict the parameters for this pre-training data
so that it is similar in characteristics to the target data.

Analysis of both natural and human-created real-world net-
works have shown that such networks closely follow specific
rules, such as Power law behaviour in their degree distributions
P(k) ~ k7Y, with the exponent varying between 2 and 3. The
characteristic that only a few nodes have an extremely large
number of connections while most of the nodes have very few
links is due to ‘preferential attachment’ [1, 3, 22]. Furthermore,
social networks like Facebook and WeChat are observed to have
Power law growth dynamics [24]. Thus, for a given real-world
network, it is possible to identify a closely related network type
that can be used to generate synthetic data for training. Social
networks that we are interested in for this paper, e.g., Emails,
Facebook, and Train Bombing networks, are well documented
to follow Power law.

Training the autoencoder on Power law networks with simi-
lar parameters helps the model treat the target real-world net-
work as just a variation of the training network. Another advan-
tage is that we can generate sufficient data as required for proper
training and effective performance of the neural network.

4.4 Data

Given a graph G = {V, E}, where V is the set of nodes in the
network and E is the set of undirected edges, we use shortest
hop-distances between node-pairs as our data. For a given graph
G, its shortest hop-distance matrix H can be given as

H= [hﬁ = hij = shortest hop-distance from i to j] , (6)

The shortest Hop-Distance Matrix (HDM), H € Név XN can rep-
resent the entire network, where Ny denotes the non-negative
integers N U {0} and N denotes number of nodes in G.

Note that nodes and links may have different interpretation
in different networks, e.g., in the Facebook network, nodes are
users and links represent friendships, where as in a software
system network, nodes represent software modules and links
may represent dependency between the two modules. While
our work focuses only on connected, unweighted, and undi-
rected graphs, there are several commercially important social
networks in this domain such as Friendship, Email, crime, and
interaction networks to name a few.

4.5 Sampling Scheme

We aim to predict missing distances in networks when the target
network is only partially sampled. In our experiments, we mea-

OreeReORTa st s ARRBI BRfRE YRR dom pairs of nodes
from the distance matrix H to achieve distributed, unbiased
sampling. The randomly sampled H results in an N X N matrix
P, as shown in Fig. 2, where the sampled entries are depicted by
solid squares and ‘?’s represent missing entries. Other sampling
schemes such as random walk or snow-ball sampling tend to be
biased towards higher degree nodes, producing a misrepresen-
tation of typical large scale, real-world, unstructured networks
with non-uniform degree distributions, e.g., Power law degree
distribution [2].

The conventional approach for network reconstruction from
a sparse set of random samples are based on Low-rank Matrix
Completion which requires a sampling scheme to measure at
least one non-zero distance value in each row for the test net-
work [10]. However, our approach overcomes this restriction.

4.6 Low-rankness of Data

Low-rankness in a dataset implies redundancy which allows
reconstruction of missing measurements from a small set of
entries, i.e., partial measurements. We leverage this while re-
constructing distance matrices.

Here, we demonstrate low-rankness of the real-world social
networks used. Fig. 3 shows the logarithm of all the singular
values of H. Only a small set of singular values are dominant
with the later magnitudes falling down rapidly towards ‘0’,
indicating low-rankness of the H matrices for shown networks.

Note that low-rank data lies on low-dimensional linear sub-
space whereas low-dimensional data lies on low-dimensional
non-linear subspace.

5 METHODOLOGY

An overview of the proposed simple approach for predicting
distances from a small set of measurements is shown in Fig. 5.
In this section, we discuss how pre-training data is artificially
generated to train a neural network, which parameters are tuned
to make the synthetic data similar to real-world data we are
predicting on, and how the ideal values of this parameter are
estimated using our proposed pre-training “Oracle”.

Random Sampling

Figure 2: Visual illustrations of P (sampled H) for random
sampling scheme with N = 8. Known entries are denoted
by dark blue and unknown values by light blue.

GunjanMa 15

Log of singular values

== = Virgili Emails network
Facebook network

arkare

g 10 == = Train Bombing network
=] .
© .
> 2
50
3 ~
SRR i
£] ~o
[7p} 0 1 N
° 1
g :]
o 1
1
1
_ |
1005 500 1000 1500 2000 2500 3000 3500 4000

Component Number

Figure 3: Low-rankness of hop-distance matrices of social
networks used in this paper.

5.1 Generation of Artificial Training Data

We learnt in Section 4.3 that our target networks, i.e., social
networks, are Power law in nature. Thus, we use synthetic
Power law networks as a base for generating our pre-training
data.

Power law cluster model, in Python’s Networkx library, cre-
ates graphs for a given network size and edges using preferen-
tial attachment with the function powerlaw_cluster_graph(N,
m, p), where a graph of N nodes is grown by attaching new
nodes, each with m edges that are preferentially attached to
existing nodes with high degree [9, 11], and p is the proba-
bility of forming a triangle after adding a random edge. The
model generates a network whose degree distribution follows
a Power law curve and thus, represents social networks such
as protein-protein interactions, World-Wide-Web, citations net-
work, Facebook, and others. However, depending on the given
parameter values, the generated graphs could be vastly different
from the specific network under consideration. Even for two
networks of the same type, e.g., social networks, the parameters
could be significantly different. Next we address the method for
determining the appropriate parameters that need to be tuned,
corresponding to the specific network of interest.

5.2 Tuning Parameter for Synthetic Data
Generation

Node degree is the simplest way of describing how nodes are
connected to each other. Yet, it has a prodigious effect on the
network characteristics such as clustering coefficient, between-
ness centrality, diameter of the network, etc., proving to be a
simple but significant network feature.

As m represents number of edges connected to each new
node, in the function powerlaw_cluster_graph(N, m, p), it is
analogous to the degree of the node. Hence, we focus on find-
ing a suitable range of values for parameter m for the given
target network. We generate various training networks with
fixed N - to generate networks of the size same as that of the
target network, consciously selected values of m - to study the
effect of different m values on prediction performance, while
using widely spread values of probability p, i.e., from 0.1 to
0.9 - to generate networks with different extent of clustering.
This allows us to train the autoencoder on different clustering

2021-06-08 01:13. Page 4 of 1-10.

A Pre-training (1gton, DC, USA
—

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19

- A A A A

Window 1 Window 2 Window 3 Window 4 Window 5 Window 6 Window 7 Window 8 Window 9

Figure 4: Illustration of selecting windows for parameter values for generating artificial Power law networks. Neural net-
work is trained and tested to evaluate effectiveness of each window on prediction.

Generate a set ?
e Y 7 o e 1
<«

networks of

i

1 5 10 15 20 25 30 90 95 100
e o 0 - —o0——o
W, : A broad range set of parameter windows: e.g. e s —
Wo 1 Wo 2 Wy 3 Wo_o
W : A narrow range set of parameter windows, : e.g. 20 21 22 23 24 25 26 27 28 29 30
*r——o —0o — o —¢o —0©
L Y J L Y J L :) L Y JL . J
W, c Wy Wia W2 W3 W4 Wis
Create broad range windows (W) of Select best
parameter values for generating artificial Perform analysis for each performing window
training data. Perform analysis for each narrower range in the set range from W; and
window in the set of windows, W, of windows, W; final prediction
(| Checkaccuracy |) (| Checkaccuracy | /| Predictmissing |
f f distances
| Predicted output | Predicted output | . . —
o O o
t (o2 @ @
° o o Fine tune the
@ o 2l
. autoencoder
Train o o P o, ° @ ©)
<3 e) usin;
autoencoder S e o e e 4+ g
i ° o > o > ° observed
on artificial o o ° o o ° —
@ o o o ° E A I real-world
data o o di
o 5] istances
t 1 21 20 2| 2 N
viz] 2 i
N
O
Q-
Lol
@
o

size N ' f Generate a set
° ° of Power law
? 2| T Select best o o Eetwgrks
@ 2]
S?mpled 2| v 2| v performing range ° ° ased on
distances from ° ° — parameters
N from STAGE 0 and -
the real-world 2 2] 2] 2 - f selected in
. split it into narrower
social network 2|] ‘ £ wind w. STAGE | and
y ereineons j @@@ pre_trainthe
- N —> . / \. s autoencoder

STAGE 0 STAGE | STAGE I

Figure 5: Oracle Search Pre-training (OSP): Model architecture. STAGE 0 helps narrow down suitable parameter values
from a very broad range and STAGE I helps to select the three most suitable parameters for the given sampled network.
The neural network is pre-trained on artificial data generated using these selected parameters and fine tuned using sampled
distances form the target network in STAGE II to predict missing distances in the real-world social network.

densities, as we do not know the clustering coefficient of our 5.3 Window Method for Varying the
target network. Parameter Value
Next, we use window method, as described below, to system-

. . L. Our goal is to find a narrow range of values for m to generate
atically vary m and study its effect on prediction performance.

training data so that it comes closer to the characteristics of our
target network.

If we assume that the average node degree of the target
network is less than some value ny and that the network has
a Power law node degree distribution, then the distribution
is highly right-skewed and we can safely say that the set of

2021-06-08 01:13. Page 5 of 1-10.

SeniwEess 1\/7111‘{1%%,29&7 tAf 1ri1%ggﬁﬂ’aDg%n%§ﬁion, are more likely
to fall on the left side of average node degree as most of the
nodes have node degree less than the average node degree of
the network. We also demonstrate this in Section 7.

As m > 0 for connected networks, we partition the range 1
to ny in small windows as shown in Fig. 4, where n; = 19 for
illustration purposes. An autoencoder is trained on networks
generated for the m values in each window and is tested. This
allows us to evaluate effectiveness of each parameter window
with respect to its prediction performance. The goal is to find
an ideal range of parameters that will give us the best prediction
for the given target network.

Note that the assumed value of ny may vary as per the type
of the target network. For example, we know that in a road
network, a node (an intersection) is less likely to have more
than 10 edges (roads) so ng can be set to a lower value. Set-
ting a higher n; has no major drawbacks in the model as it
only produces a few more windows for analysis but under-
estimating n; might make us miss the ideal set of values of
m for the target data.

5.4 Evaluation Parameters

We now describe the performance metric used to evaluate pre-
diction performance of our model. We aim to calculate the
cumulative error in prediction. Thus, we measure and com-
pare mean error and absolute hop-distance error to evaluate
prediction performance and to demonstrate effectiveness of our
model. Note that we measure these error values for the set of
node-pairs under test. This can be a set of observed node-pairs
or unobserved node pairs depending on the stage of the model
and will be mentioned accordingly.

5.4.1 Mean error. We define mean error M, as follows:

Dokl

Vi, jeQ

Me=| > Ihb(f)—hijl/

Vi, jeQ

where, Q is a set of all node pairs under test, h;- 7 (f) refers to the
predicted shortest hop-distance from node i to node j when f
percentage of random measurements are sampled and h;; refers
to its original expected value. Mean error gives a percentage
value of the prediction error with respect to sum of the original
hop-distances in the network.

5.4.2 Absolute hop-distance error. Absolute hop-distance
error (AHDE) is defined as

He:{ Z |hvij(f)—hij|}/{card(f;)}, ®)

Vi, je

where card(F) gives the total number of node-pair entries in
H under test. AHDE captures average deviation in prediction
in the magnitude of hop-distances. For instance, the absolute
hop-distance error of 1 implies that on average a predicted path
length will be off by 1 hop, i.e., for the original hop-distance of
10, predicted value will be somewhere from 9 to 11.

GunjaS.lgaherny%lJy Paffenroth, Anura Jayasumana, and Rasika Karkare

A visual illustration of the model architecture can be seen in
Fig. 5. A detailed explanation of various stages of the proposed
model follows where we explain the ideal parameter selection
(STAGE 0 and STAGE I), systematic pre-training and final
prediction of missing node-pair distances (STAGE II).

5.5.1 STAGE 0-Broad range parameter selection. In ini-
tial stages of building the Oracle, the autoencoder is evaluated
for a range of m values as we are not aware of the ideal values
for the tunable parameter. These values are chosen using a slid-
ing window to include a wide range (Section 5.3 and Fig. 4). As
we saw in Section 5.3, a parameter range can be assumed for
m to start. If the range is broad, it can be divided into smaller
windows. This can be viewed as STAGE 0.

For example, being a communication network, Virgili Emails
network might have a high average node degree. So we first
test the autoencoder performance on a set of windows W, of m
values of [1,5,10], [10,15,20], and so on up to [90,95,100] (as
shown in Figs. 6[a]). The best performing window of [1,5,10],
say W, k. is selected from this set for the next stage, i.e.,
STAGE L.

Note that STAGE 0 is optional and can be used when a quick
narrow down of a possible wide range of m values is required.

5.5.2 STAGE I-Narrow range parameter selection. The
best performing window from STAGE 0 is further split into
a narrower set of windows, W and ‘W; c ‘W, (as shown in
Fig. 5), to tune the parameter values further. The autoencoder is
trained for each of these windows, ‘Wj ., independently and is
tested after each session on observed distances from the target
network.

For example, we selected the range [1,5,10] from STAGE
0 for the Virgili Emails network, thus, in STAGE I, we have
trained the autoencoder on narrower windows of m values
as shown in Fig. 6[b] from [1,2,3], [3.4,5], and so on up to
[9,10,11].

Virgili Emails network - STAGE 0 Virgili Emails network - STAGE |

% [15,10] s0 @ <+ (123
10,15,20] 3451

== [202530]
== [30.35,40] —= (789

—= (567

\‘; == 40,45,50] | —= (910,11]
530 wo O 50,55.601 5
L So X - woeso | £
e} S N 10 35
o K} 170,75,80] -
525 / S~aol N=- wossool s L
@ - ~< = poss100 @3 g
= - AN =
- AND,
WA, 2
2 - R
P > ,;~ §$! 0 N
= ‘ S=ssmenliiito,

10° 10!
Percentage of entries sampled

(b) STAGE I evaluation

100 o
Percentage of entries sampled

(a) STAGE 0 evaluation

Figure 6: Parameter selection for pre-training in the Or-
acle for the Virgili Emails network: (a) STAGE 0: Each
broad range window is evaluated for its prediction effec-
tiveness on sampled distances. The best parameter range is
selected for the next stage. Here, parameter range [1,5,10]
is seen to perform the best. (b) STAGE I: The braod range
of (1,5,10) selected from STAGE 0 is split into narrower
windows and each window is evaluated.

As we are evaluating the system over partial and presumably

a very small quantity of sampled data, and because no single
window performed significantly better than the rest in STAGE
I, we select the top three parameter windows that performed
2021-06-08 01:13. Page 6 of 1-10.

M EIPTERTING QIRGAL RiediPaREIICSS N SRR Figs. 7
and 8 that windows [5,6,7], [7,8,9], and [9,10,11] perform the
best for the Virgili Emails and Facebook network. The Train
Bombing network being small in size, we can safely pick a
narrower range and train the final model on the best performing
window from STAGE 1.

5.5.3 STAGE lI-Final Prediction. The best parameter val-
ues selected from STAGE I are eventually used to generate
pre-training data. Once trained, this model can be fine tuned on
observed distances from the target network. We examine the
results in both cases (with and without fine tuning) in Section
6. The trained autoencoder then reconstructs the complete dis-
tance matrix from only a fraction of sampled distances from
the test network.

Note that STAGE 0 and STAGE I act as an “Oracle” to
search the ideal pre-training parameters corresponding to the
target network while STAGE II pre-trains AE on artificial data
generated with these parameters.

5.6 Implementation Details

We used TensorFlow, Google’s Machine Learning Library, to
build the autoencoder and wrote the script in Python 3.6. We
ran the experiments on Google Colab.

Data used and the code for our model are available on Github:
https://github.com/anonymous/anonymous

6 PERFORMANCE EVALUATION OF THE
PROPOSED METHOD

We measure mean error (Section 5.4.1) and absolute hop-distance
error (Section 5.4.2) to evaluate the prediction performance of
our model and compare it with the Low-rank Matrix Comple-
tion [10] based approach. Here, the errors are measured only
over the unobserved node-pair distances. We know that all di-
agonal values in a distance matrix are ‘0’ and no off-diagonal
entries are ‘0’, so we set all diagonal values of P to 0 and
round-up all off-diagonal values between O and 1 to 1.

The model has been evaluated for different variations and are
labeled as shown in Figs. 7, 8, and 9. These labels are explained
below:

o Trivial 0: all missing values are replaced by 0
e Trivial 1: all missing values are replaced by 1
Trivial 0 and Trivial 1 cases provide a reference to the
worse case model performance.
e MC: prediction using Low-rank Matrix Completion
e Trained on observed: the AE has been trained only
on the sampled node-pair distances from the real-world
network and no pre-training has been done at all
[x,y,z] - Powerlaw q: the STAGE II AE, i.e., trained on
artificial Power law networks with parameter m values
X,y, and z, was tested on a same size Power law network
artificially generated with m = q
[x,y,z] - Network: the STAGE II AE, i.e., trained on
artificial Power law networks with parameter m values
X,y, and z, was tested on the real-world social network
[x,y,z] - Network, fine tuned: the STAGE II AE, i.e.,
trained on artificial Power law networks with parameter
2021-06-08 01:13. Page 7 of 1-10.

m values x,y,C 8?1’3*%? %32;87 ‘ﬁjﬁg ?&ﬂgd%ﬁﬂ”&%“ogscer%é
entries of the real-world network and then tested on the
unobserved entries of the same real-world network

Now let us take a look at the performance of the model for
three real-world social networks.

Virgili Emails network: This is a 1133 nodes network with
average node degree of 9.6.

Facebook network: This is a 4039 node network with aver-
age node degree of 43.6.

Train Bombing network: This is a 64 node network with
average node degree of 7.5.

From STAGE 0 and STAGE I of the Virgili Emails network,
as shown in Fig. 6, three best windows were selected, [5,6,7],
[7,8,9], and [9,10,11]. In STAGE II, the AE is thus trained on
[5,7,9] to cover these three windows. This behavior is also seen
in the Facebook network. The STAGE 0 and STAGE I results
for the Facebook and Train Bombing networks are not shown
here due to space restrictions. However, can be found at Github:
https://github.com/anonymous/anonymous

Note that the parameter values selected by the “Oracle”
are not the same as the average node degree of the test net-
work but tend to be on the lower side of the average node
degree value. We will explore this relation and the sensitivity
of the model towards parameter value m in Section 7.

The STAGE II (Virgili Emails: Fig. 7, Facebook: Fig. 8§,
Train Bombing: Fig. 9) show that AE performs far better than
MC for lower percentages of sampled measurements. We also
see that AE trained on artificial data performs better than AE
trained only on the observed entries as the neural network
has much more data to train on from synthetic Power law
networks. Note that the network performs best for a variation
of Power law network (see label “[x,y,z]-Powerlaw”) which
is obvious as the network was trained on very similar data.
The error, when tested on the real-world network is slightly
higher than for “[x,y,z]-Powerlaw” as the real-world network is
different than the synthetic Power law networks. However, we
notice that fine tuning the AE almost always bridges this gap.
Especially when we have a higher percentage of sampled node-
pair measurements from the network, fine tuning gives lower
error than mere Power law trained AE for all three networks.

It is worthwhile to say that OSP performs well not only for
large networks but also for smaller networks such as the Train
Bombing network here, showing independence of the model
performance with respect to the network size.

7 DISCUSSION ON OPTIMUM
PARAMETER SELECTION FOR
PRE-TRAINING

This section furthers the intuition behind parameter selection
for optimal pre-training when the average node degree of the
test network is (tentatively) known.

We saw that the parameter m is analogous to node degree
as it represents number of edges attached to the new node
while the artificial network is being constructed. We conduct
a sensitivity analysis on the prediction performance towards
parameter range. This helps us understand the model behavior

Conference’17..ulv 2017. Washinaton. DG. LISA
Virgili Emails network - STAGE Il

70 "‘-"'-"h--_'i— == === Trivial 0
\ == Trivial 1
60 \ == MC
~ \ == Trained on observed
RN . 4= [5,7,9] - Powerlaw 8
5 \\\ \ = [5,7,9] - Network
= N \\ s~ [5,7,9] - Network, fine tuned
L 40 So \
C ~ N
© ~
o 30 \\\
= ¥* e * \\
A it
20 o S .
* * e Bkt Sl
10 . -=RiD
-~
< ~m
0 o
10t 100 101 10

Percentage of entries sampled

(a) Mean error for prediction in Virgili Emails Network

Gunjan Mahindre, Randy Paffenroth, Anura Jayasumana, and Rasika Karkare

AHDE

Virgili Emails network - STAGE I

25 R === Trivial 0
' \ == Trivial 1
\ - MC
2.0 \\ \ rained on observe
So n #= [5,7,9] - Powerlaw 8
S \ %= [5,7,9] - Network
15 NS N % [5.7,9] - Network, fine tuned
. So N\
< N
SN
\\\

1.0 - KN

#* \‘\

o NS ==
NS L .

0.5 T~

e * Y %. =T -

=
I~ ~‘
0.0
107t 10° 0! 102

Percentage of entries sampled
(b) AHDE for prediction in Virgili Emails Network

Figure 7: Virgili Emails network: Prediction performance. The plots show that pre-trained neural networks (yellow, pink
and blue) outperform prediction especially when lower percentages of entries are sampled from the real-world network.
Graceful degradation is also observed for pre-training models. Fine tuning along with pre-training predicts with higher
accuracy than a neural network trained only on sampled entries.

Facebook network - STAGE I

—— i
70 L ~< q‘ Tr1v5al 0
~ -1 == Trivial 1
== MC
%0 \\ “ =(=Trained on observed
50 \\ \ #= [5,7,9] - Powerlaw 8
5] S 4= [5,7,9] - Network
c \ \ #= [5,7,9] - Network, fine tuned
L 40 SO
c % et
@©
0¥ x " ﬁ‘~\ %
= \‘ ‘*N\~ Y g o =k
20 S~ s
Ll < il E P
10 * o RES dom e
~
~
~
0 B = -i— — 5§ -u-2
1071 10° 10! 10

Percentage of entries sampled

(a) Mean error for prediction in Facebook Network

AHDE

Facebook network - STAGE ||

k::——-——:p— ______ Tivial 0
2.5 =< —= Trivial 1
< - MC
\ “ =(=Trained on observed
2.0 \\ \ #= [5,7,9] - Powerlaw 8
N \ = [5,7,9] - Network
N \ s [5,7,9] - Network, fine tuned
15 Ny \
g
Yo \&
1.0 * e A = "
\ RS e * e ==
‘.. SNl T TR ws
0.5 So el K
' ~
* A SN Yoo o e e Ky
S
0.0 SE—-—n -
101 100 10! 102

Percentage of entries sampled
(b) AHDE for prediction in Facebook Network

Figure 8: Facebook network: Prediction performance. The plots show that pre-trained neural networks (yellow, pink and
blue) outperform prediction especially when lower percentages of entries are sampled from the real-world network. Grace-
ful degradation is also observed for pre-training models. Fine tuning along with pre-training predicts with higher accuracy

than a neural network trained only on sampled entries.

and select best training parameters for the given average node
degree of the test network.

Mean error over the unobserved values of the Virgili Emails
network, when autoencoder is pre-trained over various parame-
ter windows, is shown in Fig. 10[a]. A more comparative visual
display of the results can be seen in Fig. 10[b]. We can see that
for an average node degree of 9.6, the autoencoder performs
better when trained on narrower windows as compared to wider.
Thus, the performance improves from [2,10,18] to [9,10,11].
‘We also observed that a narrow window placed on the lower
side of the target node degree gives a slightly better perfor-
mance than window placed on the higher side of the spectrum,
i.e., [7,8,9] performs better than [10,11,12], even if both the
windows are equally narrow. This is because our target network

is Power law in nature and a lot of nodes have degrees on the
lower side of the average node degree.

8 CONCLUSION

In this paper, we have shown how to optimally pre-train a
neural network when only sparse samples are available from
the target network. We call this model “Oracle Search Pre-
training” (OSP) as it helps us search the optimal pre-training
parameter values specifically for the given social network. We
use artificially generated data to compensate for the scarcity of
real-world measurements to effectively train a neural network.

The low-rankness of the distance matrices is leveraged.
Prediction performance is evaluated on three real-world net-
works, namely, Virgili Emails, Facebook, and Train Bombing
2021-06-08 01:13. Page 8 of 1-10.

A Pre-trainina Oracle_for Predictina Distances in Social Networks

Train Bombing network - STAGE |l

—-—— Trivial 0
60 ~ = Trivial 1
Sy= mC
==(=_Trained on observed
>0 #=[5,7,9] - Powerlaw 8
S s [5,7,9] - Network
£ 40 * * 4= [5,7,9] - Network, fine tuned
LL] T \
c N N AN
© N e
0° . W\
s e % . S o\ s
* s % AN
20 \
o\
R
\ Y
10
)|
0 107! 10° 10! 102

Percentage of entries sampled

(a) Mean error for prediction in Train Bombing Network

175

1.50

1.25

W 1.00

Zo075

0.50

0.00

Conference’17, July 2017, Washington, DC, USA
Train Bombing network - STAGE Il

—-----.-*-- === Trivial 0
~ -
S == Trivial 1
N -m- MC
== Trained on observed
4= [5,7,9]- Powerlaw 8
- " = [5,7,9] - Network
* s~ [5,7,9] - Network, fine tuned
N TN
\\ '\3 "
¥ e \ \ ¥
¥
P
s \ #*
* * Nt
\I
-
107t 10° 10! 102

Percentage of entries sampled
(b) AHDE for prediction in Train Bombing Network

Figure 9: Train Bombing network: Prediction performance. The plots show that pre-trained neural networks (yellow, pink
and blue) outperform prediction especially when lower percentages of entries are sampled from the real-world network.
Graceful degradation is also observed for pre-training models. Fine tuning along with pre-training predicts with higher
accuracy than a neural network trained only on sampled entries.

Virgili Emails network - Sensitivity
< 21018)
(#1036)
- € - s1004) o
—- 1012)
00 == o1
_________________ 01112}

w1018 3

1016 B

1010 »
200

s1012) w
s 011 ns

1m0l i . w12 —_ %
107 10 10 .
Percentage of entries sampled e “

(a) Prediction performance with (b) Prediction performance with various

various window sizes. window sizes: Visual comparison.
Figure 10: Sensitivity analysis: The plots show that our
model predicts more accurately when pre-trained on a
more suitable and narrow range of pre-training parame-
ters. More so, the accuracy is higher for parameters on the
lower side of the average node degree as Power law net-
works have a right skewed node degree distribution with a
high number of nodes with low node degree.

network, under different variations of the model, and is also
compared with a state-of-the-art Low-rank Matrix Completion
approach. The model infers distances within one hop of the
original value even when only 1% of measurements are sam-
pled. We also study sensitivity of the model towards the tuning
parameter values and its relation with average node degree of
the social network. It is worth mentioning that though we illus-
trate results on social networks, the method can be generalized
to other network domains by adapting the synthetic data.

In the future, we would like to test our model for directed
networks and networks from other domains such as crime net-
works. The effect of other network parameters, such as cluster-
ing coefficient, on reconstruction can also be studied.

REFERENCES

[1] Réka Albert and Albert-Laszl6 Barabdsi. 2002. Statistical mechanics of
complex networks. Reviews of modern physics 74, 1 (2002), 47.

[2] Asad Awan, Ronaldo A Ferreira, Suresh Jagannathan, and Ananth Grama.
2006. Distributed uniform sampling in unstructured peer-to-peer networks.
In Proceedings of the 39th Annual Hawaii International Conference on
System Sciences (HICSS’06), Vol. 9. IEEE, 223¢-223c. https://doi.org/10.
1109/HICSS.2006.126

2021-06-08 01:13. Page 9 of 1-10.

(3]

[4

[5

(6]

17

[8

9

[10]

[11]

[12]

[13]

[14]

[15]

[16]

Albert-Ldszl6 Barabdsi et al. 2016. Network science. Cambridge University
Press.

Rianne van den Berg, Thomas N Kipf, and Max Welling. 2017. Graph
convolutional matrix completion. arXiv preprint arXiv:1706.02263 (2017).

Maridn Bogund, Romualdo Pastor-Satorras, Albert Diaz-Guilera, and Alex
Arenas. 2004. Models of social networks based on social distance attach-
ment. Physical review E 70, 5 (2004), 056122. https://doi.org/10.1103/
PhysRevE.70.056122

Emmanuel J Candés and Benjamin Recht. 2009. Exact matrix completion
via convex optimization. Foundations of Computational mathematics 9, 6
(2009), 717. https://doi.org/10.1007/s10208-009-9045-5

Dulanjalie C Dhanapala and Anura P Jayasumana. 2013. Topology pre-
serving maps—Extracting layout maps of wireless sensor networks from
virtual coordinates. IEEE/ACM Transactions on Networking 22, 3 (2013),
784-797. https://doi.org/10.1109/TNET.2013.2263254

Dumitru Erhan, Aaron Courville, Yoshua Bengio, and Pascal Vincent. 2010.
Why does unsupervised pre-training help deep learning?. In Proceedings
of the thirteenth international conference on artificial intelligence and
statistics. IMLR Workshop and Conference Proceedings, 201-208.

Aric A. Hagberg, Daniel A. Schult, and Pieter J. Swart. 2008. Exploring
Network Structure, Dynamics, and Function using NetworkX. In Proceed-
ings of the 7th Python in Science Conference, Gagl Varoquaux, Travis
Vaught, and Jarrod Millman (Eds.). Pasadena, CA USA, 11 — 15.

Anura P Jayasumana, Randy Paffenroth, Gunjan Mahindre, Sridhar Ra-
masamy, and Kelum Gajamannage. 2019. Network topology mapping from
partial virtual coordinates and graph geodesics. IEEE/ACM Transactions
on Networking 27, 6 (2019), 2405-2417. https://doi.org/10.1109/TNET.
2019.2953921

Emily M Jin, Michelle Girvan, and Mark EJ Newman. 2001. Structure
of growing social networks. Physical review E 64, 4 (2001), 046132.
https://doi.org/10.1103/PhysRevE.64.046132

Rasika Karkare, Randy Paffenroth, and Gunjan Mahindre. 2021. Blind
Image Denoising and Inpainting Using Robust Hadamard Autoencoders.
arXiv:2101.10876 [eess.IV]

Samir Khuller, Balaji Raghavachari, and Azriel Rosenfeld. 1996. Land-
marks in graphs. Discrete applied mathematics 70, 3 (1996), 217-229.
https://doi.org/10.1016/0166-218X(95)00106-2

Gueorgi Kossinets. 2006. Effects of missing data in social networks. Social
networks 28, 3 (2006), 247-268.

Wenping Liu, Yufu Jia, Guoyin Jiang, Hongbo Jiang, Fan Wu, and Zhicheng
Lv. 2018. WiFi-Sensing Based Person-to-Person Distance Estimation Using
Deep Learning. In 2018 IEEE 24th International Conference on Parallel
and Distributed Systems (ICPADS). IEEE, 236-243. https://doi.org/10.
1109/PADSW.2018.8644549

Gunjan Mahindre, Anura P Jayasumana, Kelum Gajamannage, and Randy
Paffenroth. 2019. On sampling and recovery of topology of directed social
networks—a low-rank matrix completion based approach. In 2019 IEEE
44th Conference on Local Computer Networks (LCN). IEEE, 324-331.
https://doi.org/10.1109/LCN44214.2019.8990707

https://doi.org/10.1109/HICSS.2006.126
https://doi.org/10.1109/HICSS.2006.126
https://doi.org/10.1103/PhysRevE.70.056122
https://doi.org/10.1103/PhysRevE.70.056122
https://doi.org/10.1007/s10208-009-9045-5
https://doi.org/10.1109/TNET.2013.2263254
https://doi.org/10.1109/TNET.2019.2953921
https://doi.org/10.1109/TNET.2019.2953921
https://doi.org/10.1103/PhysRevE.64.046132
https://arxiv.org/abs/2101.10876
https://doi.org/10.1016/0166-218X(95)00106-2
https://doi.org/10.1109/PADSW.2018.8644549
https://doi.org/10.1109/PADSW.2018.8644549
https://doi.org/10.1109/LCN44214.2019.8990707

ﬁ(}Tf%ESQ]%%‘ thﬂllxrg,o Z&iﬁaﬁgﬂgtr%?’Rl?n(i"dyuliéfenroth, and Anura Jaya-

[18]

[19]

[20]

[21]

sumana. 2020. Inference in Social Networks from Ultra-Sparse Distance
Measurements via Pretrained Hadamard Autoencoders. In 2020 IEEE
45th Conference on Local Computer Networks (LCN). IEEE, 256-266.
https://doi.org/10.1109/LCN48667.2020.9314769

Jianzhong Qi, Wei Wang, Rui Zhang, and Zhuowei Zhao. 2020. A learning
based approach to predict shortest-path distances. (2020). https://doi.org/
10.5441/002/edbt.2020.34

Alec Radford, Karthik Narasimhan, Tim Salimans, and Ilya Sutskever. 2018.
Improving language understanding by generative pre-training.

Purnamrita Sarkar and Andrew W Moore. 2005. Dynamic social network
analysis using latent space models. ACM SIGKDD Explorations Newsletter
7,2(2005), 31-40. https://doi.org/10.1145/1117454.1117459

Rajesh Sharma, Matteo Magnani, and Danilo Montesi. 2015. Investigat-
ing the types and effects of missing data in multilayer networks. In 2075
IEEE/ACM International Conference on Advances in Social Networks Anal-
ysis and Mining (ASONAM). 1EEE, 392-399. https://doi.org/10.1007/

Gunjan Mashli%{;g1 (ﬁ%pgysg?gfenroth, Anura Jayasumana, and Rasika Karkare

[22]

[23]

[24]

[25]

G Udny Yule. 1925. A mathematical theory of evolution, based on the
conclusions of Dr. JC Willis, FRS. RSPTB 213 (1925), 21-87. https:
/Idoi.org/10.1098/rstb.1925.0002

Akanda Wahid-Ul-Ashraf, Marcin Budka, and Katarzyna Musial. 2019.
How to predict social relationships—Physics-inspired approach to link
prediction. Physica A: Statistical Mechanics and its Applications 523
(2019), 1110-1129. https://doi.org/10.1016/j.physa.2019.04.246
Chengxi Zang, Peng Cui, Christos Faloutsos, and Wenwu Zhu. 2018. On
Power Law Growth of Social Networks. /EEE Transactions on Knowledge
& Data Engineering 30, 09 (sep 2018), 1727-1740. https://doi.org/10.
1109/TKDE.2018.2801844

Yang Zhang and Jun Pang. 2015. Distance and friendship: A distance-
based model for link prediction in social networks. In Asia-Pacific Web
Conference. Springer, 55-66.

2021-06-08 01:13. Page 10 of 1-10.

https://doi.org/10.1109/LCN48667.2020.9314769
https://doi.org/10.5441/002/edbt.2020.34
https://doi.org/10.5441/002/edbt.2020.34
https://doi.org/10.1145/1117454.1117459
https://doi.org/10.1007/s13278-016-0384-3
https://doi.org/10.1007/s13278-016-0384-3
https://doi.org/10.1098/rstb.1925.0002
https://doi.org/10.1098/rstb.1925.0002
https://doi.org/10.1016/j.physa.2019.04.246
https://doi.org/10.1109/TKDE.2018.2801844
https://doi.org/10.1109/TKDE.2018.2801844

	Abstract
	1 Introduction
	2 Contribution
	3 Related Work
	4 Theory
	4.1 Supervised Autoencoders
	4.2 Training Protocols
	4.3 Pre-training
	4.4 Data
	4.5 Sampling Scheme
	4.6 Low-rankness of Data

	5 Methodology
	5.1 Generation of Artificial Training Data
	5.2 Tuning Parameter for Synthetic Data Generation
	5.3 Window Method for Varying the Parameter Value
	5.4 Evaluation Parameters
	5.5 Model
	5.6 Implementation Details

	6 Performance evaluation of the proposed method
	7 Discussion on optimum parameter selection for pre-training
	8 Conclusion
	References

