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Abstract—In display ad auctions of Real-Time Bid-
ding (RTB), a typical Demand-Side Platform (DSP)
bids based on the predicted probability of click
and conversion right after an ad impression. Recent
studies find such a strategy is suboptimal and propose
a better bidding strategy named lift-based bidding.
Lift-based bidding simply bids the price according
to the lift effect of the ad impression and achieves
maximization of target metrics such as sales. Despite
its superiority, lift-based bidding has not yet been
widely accepted in the avertising industry. For one
reason, lift-based bidding is less profitable for DSP
providers under the current billing rule. Second, the
practical usefulness of lift-based bidding is not widely
understood in the online advertising industry due to
the lack of a comprehensive investigation of its impact.

We here propose a practically-implementable lift-
based bidding system that perfectly fits the current
billing rules. We conduct extensive experiments using
a real-world advertising campaign and examine the
performance under various settings. We find that lift-
based bidding, especially unbiased lift-based bidding
is most profitable for both DSP providers and adver-
tisers. Our ablation study highlights that lift-based
bidding has a good property for currently dominant
first price auctions. The results will motivate the online
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advertising industry to consider lift-based advertising.

Index Terms—Real-Time Bid-ding Bid Optimiza-
tion Online Display Advertising A/B testing

I. INTRODUCTION

Online display advertising has been essential for
the recent business, which accounts for half of
the US advertiser’s expenditures [1]. Ad deliverers,
Demand-Side Platforms (DSPs) charge ad costs for
advertisers through the objective billing rules named
cost-per-click (CPC) and cost-per-action (CPA), by
which advertisers pay DSPs a fixed cost for each
click or conversion. To maximize click-charge and
conversion-charge, most of the DSPs have been
following the “performance-based bidding” strategy
which determines bid price based on the probability
of users taking the desired action (attributed action)
after the ad delivery.

Despite its industrial success, researchers have
recognized a serious caveat in the bidding pro-
cess [2]–[4]. The performance-based bidding strat-
egy ignores the probability that a user will convert
even without an ad. Such a strategy is suboptimal
since it will not reach users with a high prob-
ability of changing their actions by showing an
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ad. Moreover, it might dissuade end-users from
conversion [5]–[7].

Recently, not only scholars but also practitioners
in the display advertising industry pay stronger
attention to the lift effect (causal effect, incremen-
tality) of advertising. Major DSP providers such as
Criteo and Yahoo! advocate the importance of the
causal effects of advertising [8]–[10]. It is urgent
for DSP providers to shift from click/conversion-
maximization to lift-maximization as the client ad-
vertisers want real success in the advertising cam-
paign rather than the maximization of attributed
clicks and conversions.

Xu et al. (2016) [3] is the seminal work that
studies the lift-based bidding algorithm. They show
that lift-based bidding is theoretically more efficient
to increase sales than performance-based bidding
and demonstrate it in the online experiment.

They left two challenges for the real-world im-
plementation of lift-based bidding. First, their lift-
effect predictor does not correct for the bias inher-
ited from the training data. Since the data used for
training is the results of past advertising campaigns,
the ad exposures are not randomized but biased
by targeting strategy. Second, as they have clearly
shown in the paper, lift-based bidding can not be
implemented in the real-world. Under the current
billing rule, DSPs are only rewarded when they earn
attributed actions but not when they change users’
actions, i.e. conversion lift.

Moriwaki et al. [4] addressed the former chal-
lenge by introducing the unbiased lift-effect predic-
tor in the bidding system and showed its superi-
ority in a real-world online experiment. However,
they only compare the lift-based bidder and the
conventional production-ready bidder. They failed
to demonstrate how their “unbiased” predictor af-
fected the result. More importantly, same as [3],
the proposed system is not ready for release as a
product because their system is not profitable for
DSP providers under the current billing rule.

In this paper, we address the challenges left by
the literature. First, we propose an implementable
lift-based bidder by combining click-through rate
(CTR) predictor and lift-effect predictor in the
bidding system. Second, we deploy the unbiased

lift-based bidder and compare them with three
variants including one based on lift-based without
debiasing [3], unbiased lift-based [4], and unbiased
lift-based with clipping in the real-world online
experiment.

We find that an unbiased lift-based bidding sys-
tem achieved the best cost-per incremental action
(CPIA), which is equivalent to the highest return
on advertising (ROA) for the advertiser. At the
same time, the proposed system achieved the high-
est CTR, which implies the profitability for DSP
providers.

Furthermore, we conduct a detailed analysis of
the result and find lift-based bidders’ bid prices are
closer to the clearing price than the performance-
based bidder. This property helps DSPs save in-
ventory costs (cost to buy ad impressions). Lift-
based bidders have practical advantages in the first-
price auction that is dominant in the current display
advertising scenes.

In sum, our contribution is
• to propose the lift-based bidding system that is

implementable under the current billing rule,
• to conduct comprehensive online experiments in

the real-world advertising campaign and show the
competitiveness of unbiased lift-based bidding,
and

• to show that lift-based bidders’ bid price is closer
to clearing price than the conventional bidder
which is essential to achieve cost-efficiency in
the first-price auctions

. The present work provides the online advertising
community with insights into how lift-based bid-
ding system work and encourage serious consider-
ations on lift-based strategy.

II. BACKGROUND

To further motivate our work, we present the dif-
ference between lift-based bidding and conventional
performance-based bidding and explain the chal-
lenges that DSPs face. For readers’ convenience,
we summarize the technical terms in TableI.

A. Performance-based vs. Lift-based Bidding

Let Y be a binary variable that takes one when
the consumer purchase the target product(s) and



TABLE I: Glossary of Terms

Term Definition

Demand-Side Plat-
form (DSP)

A server operated by ad-tech
companies that participates ad
auction to buy ad-slot.

Cost-per-click
(CPC) billing

Advertisers pay DSP providers
fixed cost for attributed clicks.

Cost-per-action
(CPA) billing.

Advertisers pay DSP providers
fixed costs for attributed con-
versions (e.g. visit).

CPC/CPA charge Cost borne by advertisers ac-
cording to the CPC/CPA billing
rule.

Inventory cost Cost borne by DSP providers
to buy impression. The price is
determined by auction.

Incremental
action/visit

Increase in conversions due to
advertising.

Return on Adver-
tising (ROA)

Increase in sales per advertis-
ing cost

Cost-per incremen-
tal action (CPIA)

Total incremental actions di-
vided by CPC/CPA charge

takes zero when not. Then the conditional conver-
sion rate given advertisement is E[Y |ad] while that
given no advertisement is E[Y |no ad]. In Fig. 1,
customer A will convert (purchase) at a probability
of 0.8 when she is exposed to advertisement and 0.7
when not. Customer B will convert at a probability
of 0.2 when he is exposed to the advertisement and
0.0 when not.

Conventional bidders bid higher prices for Cus-
tomer A because it only sees the conditional con-
version rate (0.8 vs. 0.2) while advertisers value
the ad for B from the viewpoint of lift (0.1 vs.
0.2). Performance-based billing does not give the
reward for delivering ads to responsive customers
(B) but for finding customers who are prone to
convert regardless of an ad impression (A). In other
words, the conventional strategy that maximizes
the number of attributed conversions, E[Y |ad]. A
better objective to be maximized is the lift effect,
E[Y |ad]− E[Y |no ad].

B. The Challenges of the Lift-based Bidding

To maximize the lift effect, it is natural for
DSP to determine the bid price based on the lift
effect rather than the probability of attributed ac-

0.1  0.2 

A B

Lift Lift

Fig. 1: Schematic of the lift effect
Note: Customer A has a high probability of conversion
without ad while Customer B is more responsive.

tions. However, the majority of DSPs follow a
performance-based bidding strategy and pursue at-
tributed clicks and conversions, which is not directly
linked to the advertisers’ goal.

This gap between DSPs’ strategy and advertisers’
goal stems from the gap in their target metrics. The
advertisers want to maximize the return on adver-
tising (ROA) which is, in turn, the minimization
of cost-per incremental action (CPIA, cost paid by
advertiser for unit of lift effect). On the other hand,
DSPs are simply pursuing the number of clicks and
conversions associated with the ad.

Unfortunately, as proved in [3], lift-based bidding
is not profitable for DSP providers under the current
billing rule. Lift-based bidding buys ad-slots with
larger lift effects. However, they are only rewarded
for attributed clicks (conversions) but not for lift-
effect. In other words, lift-based bidding sacrifices
DSP’s profit to increase advertiser’s sales.

Ideally, there should be a lift-based billing rule
for advertisers who want to minimize CPIA, which
resolves this conflict of interest. The problem is a
lift-based billing rule is hard to be implemented in
practice.

First of all, the lift effect is counterfactual (i.e.,
not observable) so that it is always need to be
estimated. There is no guarantee that the stakehold-
ers all agree on one estimate. Second, conventional
performance-based billing is simple and easy to un-
derstand while the understanding of the importance
of lift-based advertising is limited. There is little
incentive for the industry to change the de-facto
standard.

In sum, lift-based bidding inevitably needs modi-
fications to be introduced in the advertising industry.
Moreover, such modifications should be tested in



real-world advertising campaigns and proved to be
practically effective.

III. RELATED WORK

A. Real-Time Bidding (RTB) System

RTB is a programmatic infrastructure where the
publishers sell impressions of users to advertis-
ers through online auctions. In the RTB environ-
ment [11]–[13], DSPs participate in online auctions
to purchase ad impressions. DSP charges advertisers
for the cost based on the observed metrics, such
as the number of clicks and conversions after ad
impressions. Bidding the true value is well known
to be a dominant strategy in the second price
auction. However, the recent literature has realized
that this simple strategy does not hold under the
budget constraint [14], and pacing strategy could
be the optimal strategy [15], [16] and for first-
price auction [17]. Given that most of the SSPs
transformed to a first-price auction mechanism, bid
shading becomes essential for DSPs [18].

B. Performance-based Bidding Strategy

Most of the existing researches propose
performance-based bidding. To implement this
automatic system, the bidding system has adopted
several implementations such as reinforcement
learning [19], [20], proportional-integral-derivative
(PID) controller [21]–[23]. Since the performance
of the bidding system has been evaluated by the
reward to the DSPs, previous studies have proposed
methods to predict the user responses to given an
ad impression.

In the online advertising industry, the goal of
the advertisers is naively defined as the number of
clicks and conversions after ad impressions [20],
[24]. The researchers have proposed a prediction
model for click-through rate (CTR) [25]–[28] or
conversion rate (CVR) [28]–[30].

C. Lift-based Bidding Strategy and Impression Bias

Recently, many researchers study predictions of
a causal effect of policy interventions as uplift
modeling [31]–[38]. Attempts to incorporate the
causal effect of the ad in the bidding strategy

are proposed by several researchers including lift-
based bidding [3], incrementality bidding [39], and
unbiased lift-based bidding [4].

[3] first show that lift-based bidding is more effi-
cient than performance-based bidding theoretically
and empirically. A problem with this work is that
they ignore the effect of the impression bias. A more
appropriate approach needs to incorporate causal
inference technique [40], [41]. [4] addresses the
inherent bias in impression log data. Specifically,
they propose a method to unbiasedly predict the
lift-effect of an ad impression on a specific user
from biased impression data. The method is easily
implementable with the well-known machine learn-
ing libraries, while the previous debiasing method
for the performance-based bidding strategy requires
additional implementation cost [42]. In another
strand, Bompaire et al. [43] propose a rigorous
attribution model based on a causal model and
successfully show the cost-reduction in real-world
experiment. However, their work is different from
ours since they assume no conversion when an ad
is not delivered. Thus, the previous works have
a limitation in their implementability in the real-
world ad-tech industry because there is no incentive
for DSPs to pursue lift-effect in the conventional
billing rule. The present work attempts to solve
the inconsistency between the prevailing billing rule
and the advertisers’ true goal.

IV. PROPOSED METHOD

We propose an unbiased lift-based bidding strat-
egy under a performance-based billing rule. While
we describe the case of CPC billing due to its
popularity, it can be extended to the cost-per-action
(CPA) version. We use the inverse propensity score
(IPS) technique and provide proof for unbiasedness.

A. Setup

We consider a bidding strategy that maximizes
the number of clicks and minimizes CPIA by max-
imizing lift-effect at the same time. To this end,
the bid price should be based on both the lift
effect of advertising and predicted CTR (pCTR).
The combination of lift effect and CTR prediction
is expected to contribute to both an advertiser’s



sales and DSP’s profits. In particular, our algorithm
calculates bidt, bid price for t-th auction as:

bidt = φ(xi, s(a)) · CPC · pCTR · α. (1)

where φ(xi, s(a)) denotes normalized predicted
lift-effect when it delivers additional ad a to user i
who has feature vector xi. In the performance based
bidding φ becomes a normalized predicted CVR.
The details are described below. CPC is a fixed
reward for each click, pCTR is the predicted CTR
of the ad slot. CTR prediction is a well-studied task
(Sec.III-B). We simply use the predictor deployed in
the production environment. α ∈ (0, 1) is a budget
pacing multiplier (Section V-B2). In the first-price
auction, α is also a bid shading parameter.
φ(xi, s(a)) is the most important part for lift

based bidding. Specifically, φ(xi, s(a)) is calculated
using the following equation:

φ(xi, s(a)) =
τ(s(a) | xi)

τ̄
, (2)

where τ(s(a) | xi) is the predicted lift-effect of
additional exposure to the ad a for user i charac-
terized by a feature vector xi. By dividing by the
mean lift effect τ̄ = 1

|I||S|
∑

i,s(a)

τ(s(a)|xi), φ(·) is

normalized so that E[φ(·)] = 1. This normalization
stabilizes bid prices when combined with pCTR.
s(a) ∈ S represents the ad exposure state of an

ad a under consideration, and S is a set of possible
states. We use the number of impressions of a to
i as a scalar variable representing the ad exposure
state of a to i, and thus S = {0, 1, . . .}

To formally define the lift-effect τ , we introduce
the essential notation called potential outcome in
causal inference [44]. Let yi(s(a)) denote user i’s
potential outcome associated with the exposure state
s(a) of ad a. Each user i has potential outcomes
associated with every possible state, that is, y =
{y(s(a)) | ∀s(a) ∈ S}, however, only one of them
is observable. The observed outcome for user i is
defined as yobsi = yi(si) where si is a random
variable representing an exposure state for user i.
Note that the potential outcomes associated with
every possible state other than the realized one is
unobservable.

The lift-effect τ of showing ad a for each user
i is sequentially defined as the difference between
the expectation of the potential outcomes given the
two consecutive ad exposure states (the number of
impressions):

τ(s(a) | xi) = E[yi(s(a)) | xi]−
E[yi(s(a)− 1) | xi],∀s(a) ∈ S\{0}, (3)

where E[yi(s(a))|xi] is the expected potential out-
come of i when the number of impressions is
s(a). In contrast, E[yi(s(a)−1)|xi] is the expected
potential outcome when the number of impressions
is s(a)− 1. Thus, Eq. (3) is a reasonable definition
for the lift-effect of showing an additional ad a to a
specific user i who was exposed to the ad s(a)− 1
times in the past. This formulation well captures
wear-in and wear-out effects of additional impres-
sion [7], [45]. Note that τ(0 | xi) = 0 by definition
while E[yi(0)|xi] ≥ 0 (organic conversion).

To predict τ , we train predictors of outcomes for
every possible state separately and combine their
predictions as follows.

τ̂(s(a) | xi) =

fs(a)(xi)− fs(a)−1(xi),∀s(a) ∈ S\{0}, (4)

where fs(a) and fs(a)−1 predict E[yi(s) | xi] and
E[yi(s(a) − 1) | xi], respectively. To accurately
predict the lift-effect τ , it is essential to predict the
expected probability of conversion under each ad
exposure state appropriately. As a result, the bid
price is higher for users with a higher lift-effect. At
the same time, the bid price is high for ad-slot with
high CTR.

B. Unbiased Lift-effect Prediction

To obtain a well-performing predictor f for each
ad exposure state, it is ideal to directly optimize the
following generalization error:

Lideal(f
s(a))

= E(x,y(s(a)))[`(y(s(a)), fs(a)(x))], (5)

where fs(a) is a predictor for E[y(s(a)) | x], ` spec-
ifies a loss function such as the mean squared error,
p(x, y(s(a)) is the joint probability distribution of
the entire population, meaning that the population



before the ad auction selection or the testing time.
We consider optimizing the generalization error
defined over the entire population because we apply
fs(a) to predict the potential outcome in the testing
time.

In reality, however, it is impossible to directly
optimize Eq. (5). This is because we can only
utilize a finite size ns(a) of training data Ds(a) =

{(xi, y
obs
i ) | si = s(a)}ns(a)

i=1 ∼ p(x, y|s = s(a))
for each ad state and cannot take the expectation of
obtaining Eq. (5), as we cannot know the exact joint
distribution. The conventional solution to this issue
is the empirical risk minimization (ERM), which
optimizes the empirical approximation of Eq. (5)
as

f
s(a)
ERM = arg min

fs(a)

L̂ERM (fs(a))

= arg min
fs(a)

1

ns(a)

∑
i∈Ds(a)

`(yobsi , fs(a)(xi)). (6)

The ERM principal works well under the situa-
tion of the same train-test distribution, however, the
ad impression bias breaks this premise of machine
learning. Specifically, the simple empirical approx-
imation of the loss function over Ds(a) has a bias,
that is, E(x,y(s(a)))[L̂ERM (fs(a))] 6= Lideal(f

s(a))
for a given fs(a). The bias issue emerges because
users assigned to higher bid prices have higher
density in the training data than in the test data
(i.e., p(x, y) 6= p(x, y|s = s(a))). As a result, the
trained predictor fs(a)ERM may perform poorly in the
testing time because it mistakenly overfits the over-
represented samples in the training data.

To alleviate this bias issue with ERM in online
advertising, we apply the inverse propensity score
(IPS) estimation technique to debias the estimation
of the ideal loss in Eq. (5). Our loss function takes
the following form,

L̂IPS(fs(a)) =
1

n

∑
i∈Ds(a)

1

es(a)(xi)
`(yobsi , fs(a)(xi)).

(7)

where n =
∑

s(a)∈S ns(a) is the total number of
the training data, and es(a)(xi) = P (si = s(a)|xi)
is the probability that user i is assigned to the ad

exposure state si called the propensity score. A
fascinating property of the IPS loss in Eq. (7) is
that it is unbiased for the ideal generalization error
as the following proposition states.

Proposition 1: The IPS loss function in Eq. (7) is
unbiased for the ideal generalization error in Eq. (5),
that is, for any given fs(a), we have

E(x,y,s)[L̂IPS(fs(a))] = Lideal(f
s(a))

Proof 1:

E(x,y,s)[L̂IPS(fs(a))]

= E(x,y,s)[
1

n

∑
i∈Ds(a)

1

es(a)(xi)
`(yobsi , fs(a)(xi))]

= E(x,y,s)[
1

n

∑
i∈D

I{si = s(a)}
es(a)(xi)

`(yobsi , fs(a)(xi))]

=
1

n

∑
i∈D

Ex[
Es[I{si = s(a)} | xi]

es(a)(xi)
·

Ey(s(a))[`(yi(s(a)), fs(a)(xi)) | xi]]

=
1

n

∑
i∈D

Ex[Ey(s(a))[`(yi(s(a)), fs(a)(xi)) | xi]]

=
1

n

∑
i∈D

E(x,y(s(a)))[`(yi(s(a)), fs(a)(xi))]

= E(x,y(s(a)))[`(y(s(a)), fs(a)(x))] = Lideal(f
s(a))

under standard identification assumptions in causal
inference [37], [44], [46]. D = {(xi, y

obs
i , si)}ni=1

is the size n of the dataset containing all samples.
The above proposition suggests that our IPS loss

function successfully alleviates the bias issue of
ERM and approximates the ideal loss from only
observable data. Therefore, to unbiasedly predict
the lift-effect under the ad impression bias, we op-
timize the IPS loss and use the resulting predictors
to obtain the final lift-effect prediction as:

τ̂(s(a) | xi) = f
s(a)
IPS(xi)− fs(a)−1IPS (xi),∀s(a) ∈ S\{0}.

where fs(a)IPS = arg min
fs(a)

L̂IPS(fs(a)) is the IPS loss

minimizer.



V. ONLINE EXPERIMENT

We conduct a rigorous online experiment using a
real-world advertising campaign, the gold standard
for evaluation of online systems [47] to examine the
performance of various bidding strategies.

One can consider an evaluation with the offline
experiment using past data but it is inappropriate for
the DSP. First of all, the realization of ad auctions
depends on the complex interplay between competi-
tor DSPs. We need information on the competitors
bidding strategy to simulate the real-world RTB
environment. Second, the simulation needs the re-
sponse model of users since we need counterfactual
intervention and its response. However, the results
inevitably depend on the user model and are not
reliable.

On the other hand, an online experiment simply
evaluates the performance of bidding systems with-
out further information. We deployed the proposed
bidding strategy along with other bidding strategies
in a real-world DSP server at CyberAgent, inc,
a Japan-based major adtech company. The DSP
delivers ads to mobile phone apps through RTB.
The DSP follows the CPC billing rule so that it
charges the advertiser with a fixed cost per click
while the advertiser pursues an increase in foot
traffic to the real stores. We deploy five bidders for
extensive performance comparison.

A. Setting

1) Comparison Variants: Table II summarizes
the five variants deployed in the experiments. We

TABLE II: Comparison Variants for the Experi-
ment.

description #users budget

Baseline Performance-based 268,018 1.0
Naive Naive lift-based à la [3] 266,917 0.1
Unbiased Unbiased lift-based 267,289 0.1

Noclip Unbiased lift-based
w/o clipping à la [4] 267,343 0.1

Control No ad is delivered. 267,758 0.0
Note: Budget is normalized to baseline. Since variant
except for baseline is experimental, the assigned budget
is small for them. We normalize the key matrices per user
and budget for a fair evaluation.

split our user base into five groups including the
control group. As the bidders except for the baseline
are experimental we assign a small fraction of the
budget to them. We normalize the key matrices
per user and budget for a fair evaluation. The five
variants are as follows:
• Baseline is a performance-based bidder imple-

mented in the production which bid according
to the predicted conversion rate (pCVR, E[y|ad])
i.e., bidt = α · CPC · pCTR · pCVR.

• Unbiased determines the bid price according to
eq.(1). To make the estimation results stable,
we clip the propensity score at top 0.1%, i.e.,
es(a)(xi) = min(es(a)(xi), ẽs(a)) where ẽs(a) is
99.9 percentile of the propensity score [48].

• Noclip is the unbiased lift-based bidder without
clipping proposed in [4].

• Naive is a lift-based bidder without debiasing
proposed in [3], which is trained by a simple
ERM loss (eq. (6)) and substitute the obtained
prediction to the bidding model.

• Control are not exposed to the ad. Since the
experiment measure the foot trafic to real stores
even control group can be converted. The number
of conversions in this group is the organic con-
versions (i.e. E[y|no ad]) and used the results to
calculate incremental actions.
2) Advertising Campaign: We ran the experi-

ment in an ad campaign by a major department store
company that promotes a new lifestyle with new
high-quality products. We define visits to real stores
as conversion. The ads are delivered to pre-defined
Android smartphone users’ apps through RTB.

We measure the number of visits to 70 stores of
the company located all over Japan using location
data from the audiences’ app. The visit is counted
each day up to one for each user. Since visits to
specific stores located inside or very close to train
stations are hard to detect by location data, 10 stores
are deleted from the measurements. The experiment
ran one week from September 29, 2020.

B. Implementation

We deployed five variants of bidders in real-
world DSP servers. For each bid request, the bid-
der returns the bid price according to CPC, the



predicted CTR, and the predicted value of the user
φ(xi, s(a)). φ(xi, s(a)) is performance-based (i.e.,
the predicted probability of visit) for the baseline
and lift-based (i.e., the predicted lift due to the
ad) for the lift-based bidders. CTR is predicted
using the past CTR of the ad-slots and size of
the creative. All the bidders share the same CTR
predictor. The input xi contains user i’s features
includes frequency (how many times the user visited
the stores) and distance from home to the nearest
stores.

1) Architecture: We summarize the whole archi-
tecture of our bidding system in Figure 2. For each
bid request, the corresponding φ(xi, s(a)) multi-
plied by pCTR and α is returned as the bid price.
φ is the predicted lift-effect (CVR for baseline) for
a coming impression. The ad impression count is
calculated by scanning the history of ad impressions
for each user. The entire procedure is scalable and
performed within a few milliseconds and does not
harm the user experience.

Fig. 2: The lift-based bidding system architecture
Note: For each bid request, the DSP server immediately
checks the impression count of the same user. The ad-
justment parameter α is updated every hour based on the
budget digestion. The bid price is a combination of α,
pCTR and φ(·) (predicted lift-effect or CVR).

2) Automated Bid Adjustment: We use α for
budget pacing, and it adjusts the bid price as in
Eq. (1). Appropriate α is not known a priori, and
thus we use an automated bid adjustment algorithm
to update it to keep the spending constant. The
algorithm increases α when the budget digestion
is less than the target and vice versa.

3) Attribution of the Conversion: Attribution of
conversion to each ad impression is a hard task.
To circumvent this problem, we follow user-level
learning following [4]. Unlike log-level learning
chosen by other studies [3], [39], we need neither
arbitrary attribution rule nor complex estimation.

4) Lift-effect Predictor Training: We train each
predictor on the data from past advertising cam-
paigns by the same advertiser. The online ad takes
various forms, including ad creative, template, for-
mat, and size. Size and ad creative are especially
critical. To account for the effect of ad size and
creative on target variables, we train specific pre-
dictors for each size and creative. As a result, we
train |S| predictors for each ad creative.

The propensity score, es(·) in Eq. (7) predict the
probability of that the user is exposed to the ad
a s times. We use a XGBoost multi-class classi-
fier [49] and train it using the whole training data
{(xi, s(a)i)}ni=1. Hyperparameters are tuned with
cross-validation.

The feature vector includes the predicted CVR
used for the existing bidder and the number of
impressions before the advertising campaign of the
training period as well as the other features. These
two features improve the accuracy because the
higher predicted CVR means a higher bid price and
the number of impressions in the training period
indicates how easily the ad-slots of the users are
obtained.

For each ad creative, we split users into eight
classes by the number of impressions si ∈ S =
{0, 1, , 2, 3, 4, 5−9, 10−19, 20+}. The window size
of bins increases for a higher number because the
distribution of the number of impressions is highly
skewed to the right. We train four propensity score
predictors for each size and ad creative.

We train outcome predictors for each pair of
ad exposure states and ad creative. We use the
XGBoost regressor to predict the number of visits
to an offline store by weighting each sample by IPS.
See Eq. (7) for the detail.

C. Results

1) Overall Performance (Table III): CTR is sta-
tistically significantly highest for unbiased and



almost the same for the other three. This suggests
lift-based bidding has no problem in collecting
clicks. Mean visits are higher for lift-based bidders
(naive, noclip and unbiased) than baseline. This
result is consistent with the existing literature [3],
[4]. One can argue that the baseline is not strong
enough. However, the causal effect of advertising
is typically very small [50]. The result highlights
that the shift from performance-based strategies to
lift-based strategies has a significant effect.

TABLE III: A/B testing; Overall Performance

mean CTR mean visits

baseline 1.000 (0.079) 1.004 (0.016)
naive 1.020 (0.243) 1.015 (0.015)
noclip 1.000 (0.229) 1.018 (0.016)
unbiased 1.207 (0.282) 1.016 (0.016)
control 1.000 (0.015)

Note: mean CTR, the mean click-through rate for
users with one more impression.; mean visits, the
average number of visits during the experiment. All
numbers are divided by the baseline. Standard errors
are in parenthesis.

2) Cost-efficiency (Table IV): Now we further in-
vestigate the result by calculating the cost-efficiency
of each bidder. The first column of Table IV shows
the share of inventory cost in CPC charge which
represents the share of cost in sales for DSP. Lower
is better. The result clearly shows that noclip and
unbiased are most profitable for DSP providers.

Now, we look at metrics for advertisers. First of
all, visit lift (the number of visits per user of each
bidder minus that of control) is much higher for
lift-based bidders and noclip is slightly better than
the others.

Finally, we look at CPIA which is calculated as
CPCcharge

incremental visits . CPIA is of the advertiser’s primary
interest when checking the campaign results since
the metric answer how much the advertiser spent
to acquire one more customer’s visit?. Lift-based
bidders are much better than performance-based
(baseline) and noclip is slightly better than the
other two lift-based bidders. This result highlights
the cost-efficiency of lift-based bidding strategies
for advertisers.

TABLE IV: A/B Testing; Cost-efficiency

% inv. cost visit lift CPIA
baseline 1.000 1.000 1.000
naive 0.906 4.109 0.024
noclip 0.588 4.843 0.021
unbiased 0.547 4.393 0.023

Note: % inv. cost is the share of inventory cost
to CPC charge; visit lift is the mean visits per user
subtracted by that of the control group; CPIA stands
for cost per incremental action, the advertiser’s
cost for each incremental visit. Smaller is better.All
numbers are normalized to the baseline.

VI. ABLATION STUDY

We observed compelling results for lift-based
bidders. In this section, we disentangle the high
performance and cost-efficiency of the lift-based
bidders. After comparing the φ values among the
bidders, we investigate their performances in the
advertisement auction. This ablation study demon-
strates that the mechanism behind the lift-based bid-
ders’ high performance is supported by the accuracy
and stability in predicting ad slots’ value.

A. Comparisons of the Predictions Results

Fig. 3 compares the realized number of visits for
each bin of φ(·), [0, 0.5), [0.5, 1.5), · · · , [5.5, 6.5]. φ
represents pCVR for baseline (performance-based)
and lift effect for the others. Since φ is normalized
to have the same mean (eq. (2)), the long tail of
the baseline implies that the variance of φ(·) is
much larger for the baseline bidder. It is intuitive
because baseline considers not only lift-effect but
also random organic visits as attributed visits. In the
following study, we will point out this distinction
brings competence to the lift-based bidder.

1) The inventory cost of ad slots: The first col-
umn of Table V shows the average ad inventory
cost, which represents how much DSPs pay to buy
an impression. The average inventory cost is highest
for naive, which is consistent with [3]. On the other
hand, unbiased lift-based bidders (noclip and un-
biased) are less costly than baseline. Even though
the unbiased lift-based bidders bid lower prices, the
win rates in the second column of Table V are
almost the same for the four bidders. Unbiased lift-



Fig. 3: Predicted values (φ) and realized visits
Note: The distribution of mean visits of users binned by
φ value. The horizontal axis represents bins on φ value.

based bidders somehow can save the cost without
sacrificing win rates.

TABLE V: Inventory Cost and Win rate

avg inv. cost win rate (%)
baseline 1.018 14.1
naive 1.068 13.6
unbiased 0.835 13.3
noclip 0.765 13.4

Note: avg inv. cost is the total inventory cost borne by
DSP divided by the number of impressions;win rate is
# impressions divided by # bid requests.The numbers are
normalized to the average.

B. Bidding behavior of the lift-based bidders

To study the source of the cost efficiency of
unbiased lift-based bidders, we lastly investigate the
bidding behavior of the bidders by comparing with
the baseline.

1) Win Prices by Bidders: Fig. 4 describes the
distribution of the bid price for ad auction won by
the bidders (i.e., win price). The figure represents
how the bidders buy impressions. Notice that the
actual cost paid by DSPs depends on the type of
auctions (i.e., first-price or second-price).

The figure shows that the baseline bids higher
prices in general compared to the lift-based bidders.
Also, the baseline has a larger variance. As clearly
shown, all of the lift-based bidders have a similar
distribution of their bidding history. This is consis-
tent with the fact that the baseline tends to predict

higher φ than the lift-based bidders as discussed in
Section VI-A.

Fig. 4: Bid price normalized to the average.
Note: The value of the bidding price history of the wined
auctions. The value is on a logarithmic scale and they are
normalized to the average of the population.

2) Price Difference between the Bid price and
Clearing Price: What makes unbiased lift-based
bidders so economical? To clarify this point, we
leverage the fact that a small fraction of ad auctions
are run by second-price auctions. In the second
price auction, the winner pays the second-highest
bid price as the clearing price. The differences
between the winner’s bid price and clearing price
represent the gap between the ad-slots values pre-
dicted by the winner DSP and that by the competitor
DSPs. A large gap suggests that the winner would
over-pay in the first-price auctions which share most
of the auctions.

Table VI compares the average price difference
for each bidder. Lift-based bidders, especially our
favored unbiased lift-based bidders have a smaller
gap between bid prices and clearing prices. This
suggests that it saves money by bidding close to
clearing prices in the first-price auctions. In other
words, the baseline overestimates the value of the
ad-slots as it ignores the organic visit and the naive
lift-based bidder ignores the bias in the training
data. Interestingly, without clipping for propensity
score the unbiased lift-effect bidder has a larger
price difference than the naive lift-based bidder.

In sum, our ablation study provides our unbiased
lift-based bidding system

• the baseline is more costly than the unbiased lift-
based bidders



• the lift-based bidder saves inventory cost by
bidding close to the clearing price in the first
price auctions

• clipping further reduces inventory cost

TABLE VI: Average Price difference from the clear-
ing price

price diff gap from baseline p-val
baseline 0.9774 0.0 (0.0) N/A
naive 0.8756 -0.1018 (0.052) 0.049
unbiased 0.8485 -0.1289 (0.063) 0.040
noclip 0.9027 -0.0747 (0.056) 0.056

Note: The price difference is normalized to the average.
The third column shows the estimated difference from the
baseline. Standard errors are in parenthesis.

VII. CONCLUSION

In this study, we address the practical difficulty
in introducing a lift-based bidding in the real world.
We combined a CTR predictor with lift-effect pre-
dictors to pursue high CTR which is good for
DSPs and low CPIA which is good for adver-
tisers. Then we embedded the various lift effect
predictors proposed in the existing research into the
bidding systems and compared them along with the
performance-based system in an online experiment.
As a result, the lift-based bidding system achieved
high cost-efficiency without hurting DSP’s profit.

Our ablation study shows that (i)the lift-based
bidding saves inventory cost by bidding at appro-
priate prices and (ii)debiasing and clipping fur-
ther improve cost-efficiency. The online advertising
community can find a way to adopt lift-based adver-
tising which fulfills advertisers’ true goals (increase
in sales) and ultimately contributes to the healthy
growth of the industry.
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