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Abstract

In this paper, we present a denoising sequence-
to-sequence (seq2seq) autoencoder via con-
trastive learning for abstractive text sum-
marization. Our model adopts a standard
Transformer-based architecture with a multi-
layer bi-directional encoder and an auto-
regressive decoder. To enhance its denois-
ing ability, we incorporate self-supervised con-
trastive learning along with various sentence-
level document augmentation. These two
components, seq2seq autoencoder and con-
trastive learning, are jointly trained through
fine-tuning, which improves the performance
of text summarization with regard to ROUGE
scores and human evaluation. We conduct
experiments on two datasets and demonstrate
that our model outperforms many existing
benchmarks and even achieves comparable
performance to the state-of-the-art abstractive
systems trained with more complex architec-
ture and extensive computation resources.

1 Introduction

Text summarization aims to produce an accurate
text snippet to capture the key information. Ex-
isting methods are either extractive or abstractive.
Extractive methods select sentences from the doc-
ument and the abstractive methods generate sen-
tences based on the input document as a summary.
With the advancement of natural language process-
ing (NLP) research, especially in the area of large-
scale pre-trained language models (Devlin et al.,
2019; Peters et al., 2018; Radford et al., 2019; Liu
et al., 2019) in recent years, abstractive summariza-
tion has become a popular research topic and made
significant progress. In most of existing abstrac-
tive summarization models, such as BART (Lewis
et al., 2020b), PEGASUS (Zhang et al., 2020) and
ProphetNet (Qi et al., 2020), all adopt Transformer-
based architecture (Vaswani et al., 2017). They are
usually first pre-trained in an unsupervised manner
with a large amount of corpus and then fine-tuned

Figure 1: An illustration example of ESACL.

on a specific dataset for supervised downstream
applications. These models have shown superiority
on various text understanding tasks, especially for
generating abstractive summaries.

Despite impressive performance on standard
benchmarks, these deep networks are often brittle
when deployed in real-world systems (Goel et al.,
2021). The primary reason lies in that they are
not robust to various noises, such as data corrup-
tion (Belinkov and Bisk, 2018), distribution shift
(Hendrycks et al., 2020) or harmful data manip-
ulation (Jia and Liang, 2017). In addition, they
may also heavily rely on spurious patterns for pre-
diction (McCoy et al., 2019). As demonstrated
in prior studies, the seq2seq model plays a criti-
cal role in many downstream applications. Thus,
we expect to enable its denoising capability when
developing such a seq2seq model in NLP tasks.
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Furthermore, many prior studies in language under-
standing find that the global semantics may signifi-
cantly be neglected by Transformer-based models
(Fang and Xie, 2020). Because self-attention in
these models is usually applied to learn and predict
word-level characteristics during pre-training. The
sentence embeddings aggregated from word em-
beddings learned by existing pre-trained language
models have been found not be able to effectively
and sufficiently capture the semantics among sen-
tences (Li et al., 2020a). This can lead to poor
performance for subsequent tasks, e.g., abstrac-
tive summarization. The reason is that summa-
rization requires wide-coverage natural language
understanding going beyond the meaning of in-
dividual words and sentences (Liu and Lapata,
2019). Therefore, to build a denoising seq2seq
model, state-of-the-art (SOTA) approaches like
BART (Lewis et al., 2020b) and MARGE (Lewis
et al., 2020a) developed new objectives for pre-
training. BART is trained by first corrupting doc-
uments at a word level and then optimizing a re-
construction loss between the generated output and
the original document. MARGE learns the model
by self-supervising the reconstruction of target text
where it first retrieves a set of related texts and
then maximize the likelihood of generating the
original documents based on selected texts. All
these seq2seq-based approaches are inspirational
and emphasize the ability of denoising and model-
ing global semantics.

In this study, we propose a new framework
ESACL, Enhanced Seq2Seq Autoencoder via
Contrastive Learning, to improve the denoising
ability of the seq2seq model and increase the model
flexibility by achieving our goal through fine-
tuning. Unlike most existing methods that design
denoising objectives in pre-training, ESACL opti-
mizes the model in the fine-tuning phase which re-
quires less computation resources and significantly
saves training time. Specifically, ESACL leverages
self-supervised contrastive learning (Chen et al.,
2020; He et al., 2020) and integrates it into a stan-
dard seq2seq autoencoder framework. Overall, it
involves two stages: (1) sentence-level document
augmentation, and (2) joint learning framework of
seq2seq autoencoder and contrastive learning with
an overall objective based on a fine-tuning loss and
a self-supervised contrastive loss. Regarding the
seq2seq autoencoder, ESACL uses a similar archi-
tecture to BART, which is a standard transformer-

based model with a multi-layer bi-directional en-
coder and left-to-right decoder. As shown in Figure
1, ESACL performs document augmentation to cre-
ate two instances, and designs a unique framework
underlying the seq2seq model: it not only uses the
output from the decoder for fine-tuning but also
tries to maximize agreement of the output from the
encoder between two augmented instances.

A key step in contrastive learning is data aug-
mentation. Various augmentation strategies have
been developed in many NLP tasks at the word
level, such as inserting a new word or swapping
two tokens. To capture high-level semantics and the
structural information of the entire document, we
perform data augmentation at the sentence level. In
this study, we implement several combinations of
data augmentation and our experiment results show
that (i) the model performance can be improved
with sentence-level augmentation; (ii) the summa-
rization performance with different data augmen-
tation strategies does not vary much; (iii) the aug-
mentation that largely interrupts the structure of the
document should be avoided.

To sum up, ESACL proposes a new way of de-
noising a seq2seq model via fine-tuning for abstrac-
tive summarization. It presents a new scheme for
summarization which incorporates self-supervised
contrastive learning into a seq2seq framework to
improve the model flexibility. The major contribu-
tions of this study are as follows:
• We propose ESACL, a new abstractive text

summarization framework that jointly trains a
seq2seq autoencoder with contrastive learning
through fine-tuning.

• We evaluate ESACL using two summarization
datasets through quantitative measurement, ro-
bustness check, and human evaluation. ESACL
achieves state-of-the-art performance and has
shown better flexibility concerning modeling po-
tential irrelevant noises.

• We introduce several sentence-level document
augmentation strategies and conduct an ablation
study to understand their impact on the perfor-
mance.

2 Related Work

Three lines of research are closely related to our
paper: abstractive text summarization, contrastive
learning, and data augmentation.

Abstractive text summarization has achieved
promising results with the rapid development of



Figure 2: The overall architecture of our proposed ESACL.

deep learning. Neural network-based models (Rush
et al., 2015; Nallapati et al., 2016; Chopra et al.,
2016; Nallapati et al., 2017; Zhou et al., 2017; Tan
et al., 2017; Gehrmann et al., 2018; Zhu et al.,
2019) enable the framework for generating abstrac-
tive summary. Recently, with the success of atten-
tion mechanism and Transformer-based (Vaswani
et al., 2017) language models, pre-training based
methods (Devlin et al., 2019; Radford et al., 2019)
have attracted growing attention and achieved state-
of-the-art performances in many NLP tasks, and
pre-training encoder-decoder Transformers (Song
et al., 2019; Lewis et al., 2020b; Zhang et al., 2020;
Qi et al., 2020; Lewis et al., 2020a) show great
successes for the summarization.

Contrastive learning has been recently a resur-
gence in image analysis and language understand-
ing (Khosla et al., 2020; Chen et al., 2020; Fang
and Xie, 2020; Gunel et al., 2020). Researchers
have developed many contrastive learning-based
frameworks, including self-supervised framework
(Fang and Xie, 2020) and supervised framework
(Gunel et al., 2020) and apply them to different
language understanding tasks, e.g., sentiment anal-
ysis (Li et al., 2020b) and document clustering (Shi
et al., 2020). They mainly use contrastive learning
to help models deeply explore the unique charac-
teristics of data while ignoring irrelevant noises,
which also motivates the present study.

Data augmentation is the key in contrastive
learning and has been widely applied in image
analysis (Wong et al., 2016). Textual data augmen-
tation is different and can be mainly categorized
into word-level transformation (Kolomiyets et al.,
2011; Wang and Yang, 2015; Zhang et al., 2015;
Qiu et al., 2020) and neural text generation (Sen-
nrich et al., 2016; Yu et al., 2018). In our paper,
to preserve the global semantics while filtering ir-
relevant noise for a document, we design several

sentence-level augmentation strategies and show
their effectiveness in summarization. Based on the
experiment results, we believe that developing new
alternative augmentations for text summarization
has its great merit.

3 Preliminary

Automatic text summarization aims at condensing a
document to a shorter version while preserving the
key information. Let d = {x1, x2, ..., xN} be an
input document with N tokens and xi is the word
embedding for the i-th token. Given a document d,
we expect to learn a function f(d) that maps d to
another sequence of tokens y = {y1, y2, · · · , ym},
where y is the generated summary with m tokens.
m is an unknown apriori and depends on the input
sequence and the task-specific requirement.

Such a function f(·) is often implemented by
a seq2seq model. The key idea is to represent an
input sequence as a low-dimensional vector while
preserving the contextual information in the se-
quence as much as possible, upon which a new
task-specific sequence with an arbitrary length can
be automatically generated (Jurafsky and Martin,
2020). A typical seq2seq model usually consists of
three components:
• An encoder, denoted as fencoder that accepts an

input sequence d, and generates a corresponding
sequence of contextualized representation h.

• A context vector, c that is a function of h and
conveys the essence of the input to the decoder.

• And a decoder, fdecoder that uses c to generate
an arbitrary length of sequence y based on the
task-specific requirement.

4 Our Proposed Model

In this section, we present our proposed model
ESACL, which leverages self-supervised con-



trastive learning to enhance the denoising ability of
a seq2seq framework. Figure 2 illustrates the over-
all architecture of ESACL. For a given input docu-
ment d, ESACL first creates a pair of augmented
documents that are expected to associate with the
same original target summary. ESACL then gen-
erates the latent representation of the augmented
documents using the Transformer-based encoder
and performs self-supervised contrastive learning
to encourage the model to capture potential noises
in the document d. Finally the optimized latent
representation is sent to the Transformer-based de-
coder to generate the summary. In Section 4.2, we
present our implementation of contrastive learning
in ESACL. In Section 4.1, we introduce several
sentence-level document augmentation strategies
which are the key in contrastive learning. In Section
4.3, we describe the detailed seq2seq architecture
of ESACL, in particular how the self-supervised
contrastive learning is incorporated and how they
are jointly trained via fine-tuning.

4.1 Document Augmentation

Data augmentation has been used to increase the
denoising capability of a model. In prior litera-
ture as mentioned in Section 2, there exists many
contrastive learning-based models and applications
in NLP. However, most of these methods focus
on augmentation at the word level, which might
not be suitable for text summarization because the
global semantics and even noises at a higher level
(e.g., sentence or document) can be easily ignored.
In this study, we perform document augmentation
at the sentence level. Specifically, given an input
document d with a sequence of k sentences, we ma-
nipulate the document via various transformations
at the sentence level to augment the document. By
doing this, ESACL can generate another sequence
d̂ where main semantics are preserved with some
additional noises.

Similar to Qiu et al. (2020), we design several
document augmentation approaches at the sentence
level, as follows:
• Random Insertion (RI): randomly pick an exist-

ing sentence and insert it into a random position
in the input document.

• Random Swap (RS): randomly select two sen-
tences and swap their positions.

• Random Deletion (RD): randomly delete a sen-
tence from the input document.

• Document Rotation (DR): randomly select a

sentence and the document is rotated using this
selected sentence as the pivot.

4.2 Self-Supervised Contrastive Learning

We introduce self-supervised contrastive learning
into ESACL during the fine-tuning process to en-
hance its noising flexibility. ESACL performs doc-
ument augmentation of the original input document
to create positive training pairs. Along with neg-
ative pairs (two different documents), ESACL is
able to encourage itself to identify if two context
vectors learned from the encoder are representing
the same original input document. By doing so,
ESACL improves the quality of the context vec-
tor c during the fine-tuning which can benefit the
performance of downstream language generation.

To form positive pairs during training, we per-
form document augmentation to create two aug-
mented instances for each document in a batch of
K training instances b = {d1,d2, ...,dK}. Sup-
pose di is the original input document, we generate
the augmented documents d̂2i−1 = A1(di) and
d̂2i = A2(di), where A refers to a specific aug-
mentation strategy. Thus, we have 2K augmented
instances in total for a batch, and we assume d̂2i−1
and d̂2i are augmented from the same input docu-
ment di. A positive pair is defined if and only if
two instances are from the same original input doc-
ument. Otherwise they are considered as a negative
pair. We use the pre-trained encoder fencoder(·) to
obtain the latent representation of each augmented
document d̂ as h = fencoder(d̂). In our work, we
use the final hidden vector corresponding to the
first input token as the aggregate representation for
the document like prior literature did (Devlin et al.,
2019). ESACL also applies a non-linear projection
head g to further understand the deep semantics
among latent dimensions. It projects the represen-
tation h into another latent space z = g(h), which
is used to calculate the contrastive loss l(i, j) for
the positive pair as Equation 1. Here 1[k 6=i] is 1
when k 6= i and 0 otherwise. τ is a temperature
parameter. sim(·, ·) is a cosine similarity measure.

l(i, j) = − log
exp(sim(zi, zj)/τ)∑2K

k=1 1[k 6=i] exp(sim(zi, zk)/τ)
(1)

The loss of contrastive learning in ESACL is:

Lcl =
1

2K

K∑
i=1

[l(2i− 1, 2i) + l(2i, 2i− 1)] (2)



4.3 Sequence-to-sequence Architecture

For the abstractive text summarization, we fol-
low the literature and adopt the Transformer-based
seq2seq model, which has proven to be effective
(see Section 2). A natural question arising here
is how to leverage the denoising ability of con-
trastive learning in the seq2seq framework to im-
prove the summarization. To answer this question,
we design a combined loss to jointly learn model
parameters. For each instance di, we obtain two
augmented instances: d̂2i−1 and d̂2i

1, which are
considered as a positive pair for self-supervised
contrastive learning. They are also used to generate
summaries ŷ2i−1 and ŷ2i. The generated summary
is compared with the target summary of the origi-
nal input document for calculating the fine-tuning
loss, Lgenerate, which measures the generation per-
formance. In this study, we define the Lgenerate as
the cross-entropy loss. We also use the generated
positive pair to calculate the contrastive learning
loss as we introduced, which measures the noising
flexibility of our model. Equation 3 summarizes
the overall loss of ESACL as the weighted sum of
two losses. A hyper-parameter α ∈ [0, 1] is used
to balance the importance of contrastive learning
and the summary generation. The overall process
of ESACL is summarized in Algorithm 1.

L = αLcl + (1− α)Lgenerate (3)

5 Experiments

5.1 Experiment Setting

We evaluate our model using two popular sum-
marization datasets: the CNN/Daily Mail dataset
(CNN/DM) (Hermann et al., 2015) and the ex-
treme summarization dataset (XSUM) (Narayan
et al., 2018). Our experiments are conducted with
3 NVIDIA V100 GPUs. We adopt a 12-layer en-
coder and a 6-layer decoder with 16 attention heads.
We warm-start the model parameter with the distil-
BART pre-trained model2 and trains 5 epochs with
a batch size of 163. For projection head in con-
trastive learning, we implement a 2-layer MLP to
project the representation to a 128-dimensional la-
tent space. We use Adam optimizer with a learning

1Different augmentation strategies can be combined. For
example, d̂2i−1 is augmented via RI while d̂2i is via RS.

2We choose distil-BART provided by HuggingFace. For
CNN/DM, we use "sshleifer/distilbart-cnn-12-6". For XSUM,
we use "sshleifer/distilbart-xsum-12-6". Appendix A records
the detailed implementation.

3It takes about 35 hours for 5 epochs on our machine.

Algorithm 1 ESACL training in one epoch

Input: batch size K, fencoder, fdecoder, g
1: Pick two augmentation strategies A1, A2

2: for each batch b ∈ {1, ..., B} do
3: for each document i ∈ {1, ...,K} in b do
4: # using the first augmentation
5: d̂2i−1 = A1(di); # augmented instance
6: h2i−1 = fencoder(d̂2i−1);
7: z2i−1 = g(h2i−1); # projection
8: ŷ2i−1 = fdecoder(h2i−1); # generation
9: # using the second augmentation

10: d̂2i = A2(di); # augmented instance
11: h2i = fencoder(d̂2i);
12: z2i = g(h2i); # projection
13: ŷ2i = fdecoder(h2i); # generation
14: end for
15: calculate L using Equation 3;
16: θ ← argmin

θ
L(fencoder, fdecoder, g | θ);

17: end for
18: return the learned f∗encoder, f

∗
decoder, g

∗.

rate of 5e− 7.
Given the limited computing resource (e.g., the

memory limitation), we need to freeze some layers
of the encoder to reduce the number of parameters.
The impact of freezing different layers of the en-
coder will be discussed in the following ablation
study (see Section 6.3). All results reported below
are based on freezing the first 6 layers of the en-
coder. For the loss calculation, we set α = 0.2 and
τ = 0.5. For data augmentation, we choose two
augmentation operations, and discuss this hyper-
parameter in Section 6.3. For the purpose of repro-
ducibility, all codes are publicly available here4.

5.2 Experimental Results
We compare our proposed model with the follow-
ing cutting-edge summarization models.
• Lead-N uses the first N sentences of the article

as its summary.
• BERTSUM (Liu and Lapata, 2019) proposes a

novel document-level encoder based on BERT to
generate summary.

• MATCHSUM (Zhong et al., 2020) is an extrac-
tive summarization approach which formulates
the task as a semantic text matching problem.

• PGNet (See et al., 2017) is the pointer-generator
network, which copies words from the source text
and retains the ability to produce novel words.

4https://github.com/chz816/esacl



PGNet+Cov is with the coverage mechanism.
• BART (Lewis et al., 2020b) employs the bidi-

rectional encoder to enhance the sequence under-
standing and the left-to-right decoder to generate
the summary.

• PEGASUS (Zhang et al., 2020) introduces a new
pre-train objective to encourage the model gener-
ate target sentences, which enables the model to
capture global information among sentences.

• ProphetNet (Qi et al., 2020) predicts the next n
tokens simultaneously based on previous context
tokens at each time step.
We adopt ROUGE (Lin, 2004) F1 score as the

evaluation metric. We choose ROUGE-1, ROUGE-
2, and ROUGE-L for performance measurement,
which are the common choices in the literature.
We report the performance for all baseline models
using the numbers from the original literature.

Results on CNN/DM: Table 1 records the per-
formance on CNN/DM. ESACL outperforms most
of the baseline models and achieves the highest
ROUGE-L score on CNN/DM. Comparing to the
SOTA extractive system MATCHSUM, ESACL
achieves a higher ROUGE-2 and ROUGE-L score.
Comparing to three SOTA abstractive systems,
ESACL outperforms ProphetNet and improves the
performance of BART by 7.3% on ROUGE-L. Our
model achieves comparable performance with PE-
GASUS, which is the best-performed SOTA model.

Model RG-1 RG-2 RG-L
Lead-3 40.07 17.68 36.33
BERTSUM 42.13 19.60 39.18
MATCHSUM 44.41 20.86 40.55
PGNet 36.44 15.66 33.42
PGNet+Cov 39.53 17.28 36.38
BART 44.16 21.28 40.90
ProphetNet 43.68 20.64 40.72
PEGASUS 44.17 21.47 41.11
ESACL 44.24 21.06 41.20

Table 1: ROUGE (RG) evaluation on CNN/DM dataset

Results on XSUM: Table 2 records the ROUGE
score on XSUM. ESACL outperforms the natu-
ral baseline and extractive systems. Our model
achieves comparable performance to BART, and it
is lower than the best-performed model PEGASUS.

The experimental results on two datasets show
the effectiveness of the joint learning framework
with contrastive learning, as indicated by the su-
perior performance improvement of ESACL over

Model RG-1 RG-2 RG-L
Lead-1 16.30 1.60 11.95
BERTSUM 38.81 16.50 31.27
MATCHSUM 24.86 4.66 18.41
PGNet 29.70 9.21 23.24
PGNet+Cov 28.10 8.02 21.72
BART 45.14 22.27 37.25
ProphetNet * - - -
PEGASUS 47.21 24.56 39.25
ESACL 44.64 21.62 36.73
* ProphetNet doesn’t provide the result on XSUM.

Table 2: ROUGE (RG) evaluation on XSUM dataset

many baseline models and the comparable perfor-
mance to the best-performed SOTA model with
much smaller architecture. Comparing to BART
and PEGASUS, our model has less trainable pa-
rameters: we have a 12-layer encoder and 6-layer
decoder, which is much smaller than the architec-
ture of BART: 12-layer encoder and 12-layer de-
coder, and the architecture of PEGASUS: 16-layer
encoder and 16-layer decoder.

5.3 Human Evaluation
To further examine the quality of the generated
summaries by ESACL, we conduct the human eval-
uation. Two common indicators in the literature,
informativeness and fluency are used to measure
the quality of summary (Huang et al., 2020; Xu
et al., 2020). Informativeness measures whether the
summary covers the important information from
the input article and fluency focuses on if the gen-
erated summary is grammatically correct. We ran-
domly select 100 articles from the XSUM test set
and hire 7 fluent English speakers as our annotators
to rate summaries generated by distil-BART and
ESACL. They are required to give a comparison
between the two generated summaries that are pre-
sented anonymously. Table 3 reports the human
evaluation results. Overall, we find that our model
is capable of capturing the key information of a
document and the global semantics, which can be
further demonstrated by the two example generated
summaries from ESACL in Table 4.

Win Tie Loss
Informativeness 38.5% 24.7% 36.8%
Fluency 19.5% 61.0% 19.5%

Table 3: Human evaluation results on XSUM dataset.



Source article (abbreviated) Summary by ESACL
The London trio are up for best UK act and best album, as
well as getting two nominations in the best song category. "We
got told like this morning ’Oh I think you’re nominated’", said
Dappy. "And I was like ’Oh yeah, which one?’ And now we’ve
got nominated for four awards. I mean, wow!" ...

N-Dubz have revealed they were sur-
prised to be nominated for four Mobo
Awards.

Since late November, Scotland’s five mountain resorts have
attracted 373,782 customers. The ski season is estimated to
have attracted £37.5m into the local economy. With fresh snow
on the slopes, CairnGorm Mountain expects skiing during the
first weekend of June. Recent figures from Ski Scotland showed
that this season’s figures were better than the last bumper season
of 2000-2001. ...

A record number of skiers and snow-
boarders have visited Scotland’s five
ski areas this winter.

Table 4: Two example summaries by ESACL on XSUM dataset.

6 Discussion

6.1 Impact of Contrastive Learning
Component

Since our model is warmed up using distil-BART,
one could assume that the original distil-BART
may simply need to be fine-tuned longer to achieve
the same experimental results. Inspired by Peinelt
et al. (2020), we perform an additional experiment
to finetune distil-BART using the same experimen-
tal settings. By analyzing the results in Table 5,
we can conclude that longer finetuning does not
considerably boost distil-BART’s performance.

Model RG-1 RG-2 RG-L
distil-BART 41.23 19.38 38.11
ESACL 44.24 21.06 41.20

(a) Performance on CNN/DM

Model RG-1 RG-2 RG-L
distil-BART 44.41 21.40 36.50
ESACL 44.64 21.62 36.73

(b) Performance on XSUM

Table 5: Finetune distil-BART under the same setting.

6.2 Robustness Check

We perform a robustness check for ESACL to bet-
ter understand the impacts of different datasets
on the constrastive learning performance. Follow
Goel et al. (2021), we use several heuristics from
literature to identify sub-populations of datasets.
We first select top 10% and bottom 10% exam-
ples in the test set as two subpopulations based

Metric Baseline ESACL

Length
Longest 15.89 15.96
Shortest 23.35 23.14

Abstractive
Most 19.44 19.77
Least 24.21 24.13

Distilled
Most 15.71 16.15
Least 24.21 24.13

Position
Latest 17.30 17.60
Earliest 22.22 22.40

Table 6: Robustness Check on sub-populations defined
by metrics using ROUGE-2. Baseline refers to distil-
BART.

on four metrics from Goel et al. (2021): length,
abstractiveness, distillation and position. Then
we evaluate the performance using ROUGE score
on each subpopulation. Table 6 shows the perfor-
mance of ESACL in each population comparing
to distil-BART 5. For length, we find that ESACL
performs better than the baseline on the longest
set, which is the hardest to summarize consider-
ing a large amount of information. For the most
abstractive set, ESACL is more capable to recon-
struct the text and achieves higher performance.
This is more significant on the most distilled set,
ESACL performs much better than the baseline
by improving the performance by 2.8%. We can
also identify a smaller performance gap between
two sub-populations for ESACL, thereby empha-
sizing that ESACL performs more robustly than
the baseline.

5We report ROUGE-2 score in Table 6. We include the
detailed results for other ROUGE scores in Appendix B.



6.3 Ablation Study

To better understand the contribution of different
modules in ESACL to the performance, we conduct
an ablation study using the XSUM dataset.
Document augmentation. As we illustrated the
importance of data augmentation in contrastive
learning (see Section 4.1), we design several docu-
ment augmentations but we have not explored their
impact on the summarization performance. Table 7
shows the result of ESACL using different augmen-
tation methods 6. We can clearly see that (1) the
performance with different combinations of aug-
mentation in abstractive text summarization does
not vary too much. (2) The augmentation method
that interrupts the document structure, such as doc-
ument rotation (DR), is usually harmful to the per-
formance, since the structure of the input document
plays an important role.

RI RD RS DR
RI 21.62 21.56 21.51 21.47
RD - 21.59 21.58 21.38
RS - - 21.46 21.41
DR - - - 21.11

Table 7: Performance on XSUM dataset under different
combinations of document augmentation.

Number of augmentation operations. One ques-
tion we have not answered is what is the optimal
number of augmentation operations. We expect
this number to be in a reasonable range: too large
can completely change the document’s structure
and too small does not add enough noise. So we
design the experiment with varied number of sen-
tences modified in the document augmentation and
Table 8 shows the performance of ESACL under
Random Deletion (RD) and Random Swap (RS)
with different numbers of augmentation operations
n. Given there are 19.77 sentences per article for
XSUM on average (Narayan et al., 2018), we de-
cide to choose n from [1, 3, 5]. As we expected,
both n = 5 and n = 1 performs worse than n = 3.
A reasonable choice for n should be based on the
characteristics of datasets under the guidance that
data augmentation is useful to add some noises
while preserving the critical information.
Layer freezing in the encoder. In all the above
experiments, we need to freeze some layers in the

6we use ROUGE-2 as the evaluation metrics, and we also
report the results using ROUGE-L in Appendix C.

RG-1 RG-2 RG-L
n = 1 44.48 21.54 36.64
n = 3 44.52 21.58 36.59
n = 5 44.36 21.48 36.52

Table 8: Performance on XSUM dataset with different
numbers of augmentation operations.

encoder because of the memory limitation. Espe-
cially for contrastive learning, it benefits from the
larger batch size comparing to supervised learning
(Chen et al., 2020). This brings us to a trade-off
between the batch size and the number of fine-
tuned layers. Previous studies find that higher-level
layers capture context-dependent aspects of text
meaning while lower-level states model aspects
of syntax (Peters et al., 2018; Mou et al., 2016).
Thus, in our study, we freeze the first several l lay-
ers of the encoder in ESACL. Table 9 reports the
performance for different l’s under Random Dele-
tion (RD) and Random Swap (RS). When l = 12,
the model is fine-tuned only using the augmented
documents, which makes contrastive learning in-
effective. When compared to l = 6, we clearly
see the benefit of incorporating contrastive learning
into the seq2seq during fine-tuning.

RG-1 RG-2 RG-L
l = 6 44.52 21.58 36.59
l = 9 44.41 21.47 36.55
l = 12 44.27 21.41 36.46

Table 9: Performance on XSUM dataset when freezing
the first l layers in the encoder.

7 Conclusion

In this paper, we propose ESACL, an enhanced
sequence-to-sequence model via contrastive learn-
ing to improve the performance of abstractive text
summarization, where two critical components
are jointly learned via fine-tuning. With several
proposed sentence-level document augmentation,
ESACL can build an autoencoder with a denoising
capability through fine-tuning. We empirically eval-
uate ESACL on two datasets both quantitatively
and qualitatively. The results demonstrate that
ESACL outperforms several cutting-edge bench-
marks. We also examine the impact of different
augmentation strategies on the performance and
explore the robustness of ESACL.
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A Implementation

Our implementation in this paper is warmed up us-
ing the pre-trained model from HuggingFace: for
CNN/DM, we use "sshleifer/distilbart-cnn-12-6"
7. For XSUM: we use "sshleifer/distilbart-xsum-
12-6" 8. These two models are fine-tuned on the
corresponding datasets. Comparing to the original
BART, distil-BART contains much less parameters,
which is also able to achieve comparable perfor-
mance.

For CNN/DM, we also add the post-processing
step after the generation, which is common in liter-
ature. We use the same post-processing program 9

from SOTA model ProphetNet (Qi et al., 2020).

B Robustness Check

For robustness check, we report the performance us-
ing ROUGE-1, ROUGE-2 and ROUGE-L in Figure
3. We can have the same conclusion by analyzing
the numbers: ESACL is more capable to perform
well and robust for documents with different fea-
tures, since ESACL can perform better than the
baseline in the subpopulation which is more chal-
lenging to summarize. For example, for the most
distilled subpopulation which requires the language
model to reconstruct a lot of information from the
document (refer to "Most Distilled"), ESACL per-
forms better than the baseline by 1.6%, 2.8% and
1.4% in RG-1, RG-2 and RG-L. We can also find
the performance gap for each subpopulation from
ESACL is smaller. The key conclusion from the
robustness check is ESACL performs more stable
and robust on different types of the input document.

Figure 3: Robustness check on XSUM dataset.

7https://huggingface.co/sshleifer/distilbart-cnn-12-6
8https://huggingface.co/sshleifer/distilbart-xsum-12-6
9https://github.com/microsoft/ProphetNet

C Document Augmentation

In Section 6.3, we perform an ablation study to
analyze the impacts of choosing different docu-
ment augmentation strategies on the model perfor-
mance. Table 10 records the performance eval-
uated by ROUGE-2 and ROUGE-L under differ-
ent combinations of document augmentation meth-
ods. Numbers in parenthesis refer to the ROUGE-L
score. We have the consistent conclusion with our
previous analysis in Section 6.3.

RI RD RS DR

RI 21.62 21.56 21.51 21.47
(36.73) (36.65) (36.62) (36.55)

RD - 21.59 21.58 21.38
- (36.65) (36.59) (36.38)

RS - - 21.46 21.41
- - (36.49) (36.44)

DR - - - 21.11
- - - (36.12)

Table 10: Performance on XSUM dataset under differ-
ent combinations of document augmentation. We re-
port the ROUGE-2 and ROUGE-L (in parenthesis) F1
score.


