
Guided Generative Models using Weak Supervision
for Detecting Object Spatial Arrangement in

Overhead Images
Weiwei Duan

University of Southern California
weiweiduan@usc.edu

Yao-Yi Chiang
University of Minnesota

yaoyi@umn.edu

Stefan Leyk
University of Colorado Boulder
stefan.leyk@colorado.edu

Johannes H. Uhl
University of Colorado Boulder
johannes.uhl@colorado.edu

Craig A. Knoblock
University of Southern California

knoblock@isi.edu

Abstract—The increasing availability and accessibility of nu-
merous overhead images allows us to estimate and assess the
spatial arrangement of groups of geospatial target objects, which
can benefit many applications, such as traffic monitoring and
agricultural monitoring. Spatial arrangement estimation is the
process of identifying the areas which contain the desired objects
in overhead images. Traditional supervised object detection
approaches can estimate accurate spatial arrangement but re-
quire large amounts of bounding box annotations. Recent semi-
supervised clustering approaches can reduce manual labeling
but still require annotations for all object categories in the
image. This paper presents the target-guided generative model
(TGGM), under the Variational Auto-encoder (VAE) framework,
which uses Gaussian Mixture Models (GMM) to estimate the
distributions of both hidden and decoder variables in VAE.
Modeling both hidden and decoder variables by GMM re-
duces the required manual annotations significantly for spatial
arrangement estimation. Unlike existing approaches that the
training process can only update the GMM as a whole in the
optimization iterations (e.g., a ”minibatch”), TGGM allows the
update of individual GMM components separately in the same
optimization iteration. Optimizing GMM components separately
allows TGGM to exploit the semantic relationships in spatial data
and requires only a few labels to initiate and guide the generative
process. Our experiments shows that TGGM achieves results
comparable to the state-of-the-art semi-supervised methods and
outperformes unsupervised methods by 10% based on the F1

scores, while requiring significantly fewer labeled data.

I. INTRODUCTION

Overhead images provide data to unlock information unseen
from the ground. Detecting locations for groups of similar-
sized geospatial objects of interest (i.e., target objects) is an
important computer vision task, which can benefit various
applications, such as detecting a group of cars to monitor busy
hours in parking lots [1], [2], surveying crowds for disease
monitoring [3], and detecting a group of trees in plantations for
agricultural monitoring purposes [4], [5]. We define detecting
the location of a group of target objects as estimating the
spatial arrangement of target objects in this paper. The state-
of-the-art supervised object detectors [6], [7], [8] can estimate
the spatial arrangement of target object locations by obtaining
a precise location of each target object but require thousands

of bounding-box level annotations for the specific objects.
However, overhead images, such as satellite imagery and
scanned topographic maps, do not have sufficient bounding-
box level annotations to train supervised object detectors.
Although many public scenic image datasets, such as PASCAL
Visual Object Classes (VOC) Challenge [9], provide bounding-
box level annotations, transfer learning technologies [10], [11],
[12] cannot effectively transfer knowledge from scenic images
to overhead images because annotations for scenic images are
typically for large and notable objects, while overhead images
often contain small and densely clustered or dispersed objects
over a large area. The spatial arrangement estimation for a
group of similar-sized target objects, such as cars, does not
require precise location for each target object. Therefore, the
bounding-box level annotations are not necessary.

Annotating a region of interest (ROI) and a few boxes cover-
ing target objects within the ROI is sufficient to detect a group
of target objects in overhead images. ROI is a region covering
a group of target objects in overhead images. For example,
most of the overlapping green boxes at the bottom right panel
in Figure 1 represent areas with a significant overlap with
one or more cars. These boxes, typically generated using a
sliding-window-based method, can be used to estimate the
spatial arrangement of car objects in a parking lot. Therefore,
a sliding-window-based method is often sufficient to estimate
the spatial arrangement of a group of objects within an ROI.

A sliding-window-based method uses a fix-size window
sliding across an ROI and detects the windows that contain the
target objects within the ROI. The group of detected windows
containing the target objects is assumed to be representive of
the spatial arrangement of the target objects. In this case, the
sliding-window-based method aims to group window areas in
an ROI into two categories: target vs. non-target categories
(e.g., cars vs. other objects in a parking lot). The solutions to
this type of clustering task can be either unsupervised [13],
[14], [15] or semi-supervised methods [16], [17], [18].

Unsupervised clustering methods [14], [13] discover the
separable patterns in an ROI to separate windows into clusters.
However, the target-vs.-non-target pattern might not be the

ar
X

iv
:2

11
2.

05
78

6v
1

 [
cs

.C
V

]
 1

0
D

ec
 2

02
1

only and dominant separable pattern within an ROI. An
unsupervised clustering method could use other image patterns
(e.g., lighting or texture) to separate the windows. Hence,
results from unsupervised methods are not robust for various
types of target objects and ROIs (i.e., the target objects might
not be grouped into one cluster). In contrast, semi-supervised
models [17], [18], [16] can separate the windows into a spe-
cific target and non-target category by using annotated areas of
example objects (labeled windows containing target and non-
target objects) to guide the clustering process. However, these
methods typically require substantial manual work of labeling
hundreds of target and non-target examples.

This paper proposes a target-guided generative model
(TGGM), which exploits a few labeled target windows to
detect the spatial arrangement of the target objects within an
ROI in overhead images. TGGM has two main advantages: 1.
TGGM only needs labeled windows for the target category in-
stead of all categories required by semi-supervised methods; 2.
TGGM reduces the number of required labeled target windows
from hundreds in the existing approaches to just a few. TGGM
exploits a few labeled target windows to initialize the target
cluster and then iteratively optimizes the clustering process
by accumulating windows assigned to the target cluster. This
way, the target cluster can eventually cover all target objects
with diverse appearances within an ROI. TGGM also leverages
a unique property in spatial data. The ROI boundaries are
carefully selected to have a strong semantic relationship with
the target objects (e.g., parking lots and cars). Also, within
the ROI, the non-target objects are similar (e.g., most non-car
areas in a parking lot are parking lot surfaces). If the input
image is geo-referenced, TGGM can use external geographic
data sources (e.g., OpenStreetMap1) to automatically generate
the desired ROI boundaries (e.g., parking lot boundaries). In
other cases, annotating the ROI boundary is a straightforward
task compared to annotating a large number of bounding boxes
for objects within the ROI.

Figure 1 illustrates how TGGM detects the target windows
(e.g., windows overlapping with one ore more cars) within
the ROI iteratively. The first column shows how to generate
fixed-size windows over the blue ROI. The window has
approximately the same size as the target objects (e.g., cars
in the ROI). The second column shows the generated win-
dows across the ROI. The non-blurry windows in the second
column indicate the initial manually labeled target windows
(in iteration 1) or the detected target windows (in the rest of
iterations). The green areas in the third column represent the
detected windows containing cars in the parking lot. TGGM
leverages an iterative detection process that takes advantage of
the detected target windows for the next iteration. The iteration
ends when TGGM cannot detect new target windows. The
bottom right panel in Figure 1 shows that TGGM estimates
the spatial arrangement of cars in the parking lot.

TGGM is a weakly-supervised probabilistic clustering
framework based on the Variational Auto-encoder and Gaus-

1https://www.openstreetmap.org/

Iteration n

…

Iteration 1

Iteration i

…

slide

Iteration n

…

Iteration 1

Iteration i

…

Fig. 1: The first column shows that TGGM uses a window (similar
to the size of a car) sliding across the blue ROI. The second column
shows the generated windows across the ROI. The non-blurred and
blurred images in the second column represent labeled target windows
and unlabeled windows, respectively. In the first iteration, the non-
blurred image is manually annotated. TGGM takes the manually
labeled target window and unlabeled windows as inputs first and
detects more windows covering cars in the green areas in the top
panel in the third column. The detected target windows are inputs for
the next iteration to help detect new target windows. The iteration
ends when TGGM cannot detect new target windows. In the end, the
green areas in the bottom left panel show the detected target windows
representing the spatial arrangement of cars in the parking lot.

sian Mixture Models. The main contribution of TGGM is
that it can exploit a few labeled data to guide the clustering
process so that the data in one of the resulting clusters are
similar to the labeled data. Specifically, unlike the existing
approaches in which the training process can only update
the Mixture of Gaussians (MoG) as a whole or use a subset
of the data to update a specific component in the MoG in
separate optimization iterations (e.g., a ”minibatch”), TGGM’s
network design allows the update of individual components
in the MoG separately in the same optimization iteration.
Using labeled and unlabeled data in one optimization iteration
is important because when the data in some categories are
(partially) labeled, an optimization iteration should update the
MoG using both labeled and unlabeled data so that the data
distributions of some specific components in MoG is specific
for the partially labeled data in some categories.

Without loss of generality, here, we assume 1) the input data
contain two clusters: the target and the non-target clusters,
and 2) only limited labeled data in the target category are
available. TGGM assumes the hidden space is an MoG where
the number of components is the number of the desired clusters

https://www.openstreetmap.org/

(e.g., two components in this case) like the other generative
clustering approaches [13]. Unlike other approaches, TGGM
can use both the labeled and unlabeled data in one optimization
iteration. Initially, the labeled data provide examples for the
target cluster, and the unlabeled data can contain either the
target or non-target data. In one optimization iteration, for the
labeled and unlabeled data in the target cluster from the previ-
ous iteration, TGGM only updates the parameters for the target
component in the MoG. For all other unlabeled data, TGGM
updates the entire MoG. The result is that TGGM iteratively
learns the MoG parameters that best describe the target data
in one component and all other data in the other component.
We call this process the target guidance mechanism.

In sum, TGGM exploits a few manually labeled target
windows in a spatially-constrained ROI to iteratively detect
the spatial arrangement of the target objects within the ROI in
overhead images. This paper’s contribution is that TGGM pro-
vides the optimization procedure that leverages both labeled
target and unlabeled windows in one optimization iteration.
The optimization procedure enables using the labeled target
windows and unlabeled windows to guide the formation of
the target and non-target clusters. The resulting windows in
the target cluster represent the spatial arrangement of the target
objects in the overhead images.

II. RELATED WORK

Weakly supervised object detection [19], [20], [21], [22],
[23], [12], [11], [24], [25], [26], [27], aiming to localize
objects with image-level annotations, has attracted attention
because bounding box annotations require intensive manual
work. However, existing weakly supervised object detectors
focus on scenic images, such as images in the PASCAL VOC
Challenge [9]. The target objects, such as cats, are usually
large and notable in scenic images. Because of the notability
property and proportional size of target objects in scenic
images, existing methods transfer prior knowledge learned
from scenic images [11], [12] or utilize the multiple instances
learning methods [19] to localize the objects using image
annotations. However, the notability property of target objects
is usually not valid in overhead images [28], [29]. The target
objects in satellite imagery, like cars, are small, densely clus-
tered or spatially dispersed over large areas [30]. Therefore,
the weakly supervised object detectors cannot directly apply
on overhead images.

Sliding-window-based detectors are commonly used to de-
tect if a window covers small target objects in overhead
images [31], [29], [30], [32], because The state-of-the-art
object detectors [7], [8] lose the information about small
objects when taking entire satellite imagery as the input
because of down-sampling operations. The sliding window is a
straightforward way to search for small objects across imagery.
Detecting if the sliding window contains the target objects is
equivalent to classifying the images into the target or non-
target categories. State-of-the-art image classifiers without or
with a limited number of labeled images are unsupervised and
semi-supervised methods.

Unsupervised methods separate data into multiple clusters
by identifying separable patterns in the data. Generative mod-
els under the Variational Auto-encoder (VAE) framework are
common unsupervised clustering methods [15], [13], [18],
[33], [14], which learn the distribution to represent and
separate inputs in the hidden space. Generative clustering
models have shown impressive results by learning flexible
distribution representations in the hidden space. However,
images in sliding windows have many separable patterns,
such as light-vs.-dark or target-vs.-non-target patterns. The
methods do not produce target and non-target clusters when
unsupervised methods use other separable patterns to cluster
the images. In contrast, the target guidance mechanism guides
TGGM to separate images in sliding windows into the target
and non-target clusters.

Semi-supervised learning methods [34], [18], [16], [35],
[36], [37], [38], [39], [40], [41], [42] aim to automatically
annotate large amounts of unlabeled data using a small set of
labeled data in each category. Recent work [18], [16] shows
that unsupervised generative clustering models can convert to
semi-supervised models easily by adding a cross-entropy loss
for labeled data. The cross-entropy loss optimized by labeled
data helps to improve the clustering results. However, labeling
both target and non-target windows can require a huge amount
of manual work. In contrast, TGGM reduces the manual work
for non-target window annotations and separates windows into
the target and non-target categories by leveraging the strong
semantic relationship between the ROI and the target objects.

III. TARGET-GUIDED GENERATIVE MODEL

First, we introduce symbols used in the following subsec-
tions. xt represents labeled target windows. xu is unlabeled
windows. x̂u stands for the generated unlabeled windows from
TGGM. z is a continuous variable to represent the distribution
of xt and xu in the hidden space. y is a categorical variable
representing the labels for xu. y = {0, 1}, 1 for target
windows and 0 for non-target windows.

Figure 2 shows TGGM’s architecture. finf encodes xu

concatenating with y into z, then fgen decodes z into x̂u. x̂u

is the reconstructed xu. fcls assigns xu into clusters. Section
3.1 describes the distribution of z given xu and y learned by
finf and fcls. Section 3.2 describes the process for fprior.
Section 3.3 formulates the evidence lower bounds of the
marginal likelihood of xu and xt to optimize TGGM. Section
3.4 explains how TGGM leverages labeled target windows to
form target and non-target clusters.

A. The Variational Inference

TGGM learns the approximation posterior distribution for z,
i.e., q(z|xu) to estimate the true posterior probability p(z|xu)
which is intractable [43]. The approximate posterior probabil-
ity of z is MoG with two Gaussian components showing in
eq. 1. The parameters of Gaussian components are learned
by finf in eq. 2. The weights of two components are the
probabilities of the hidden categorical variable y in eq. 3. The
hidden categorical variable y is learned by fcls activated by the

!!!(#"|%)!!"('|%,#"))#" ('|#")

%$ %%…%&#& #$ %& %% #"…%$

×	!!!(#&|%)%&, %$, %%,…×	!!! #$ %%%,%$,%&, …

…
…

…
…

…
……

finf

fgen

fprior fcls

Fig. 2: TGGM’s architecture. finf in the center model encodes xu

concatenating with y into the distribution of the hidden variable z, and
fgen decodes z into x̂u weighted by q(y|xu) from fcls represented
by the right model. Section 3.1 describes finf and fcls. Section 3.2
describes fprior represented by the left model. Sections 3.3 and 3.4
describe the optimization procedure.

softmax function. The joint approximate posterior probability
of z and y is shown in eq. 4.

q(z|xu) =
∑
y

q(y|xu)q(z|xu, y) (1)

q(z|xu, y) = N (µ̃z, σ̃z), [µ̃z, σ̃z] = finf (xu, y) (2)

q(y|xu) = Cat(y|π(xu)) = softmax(fcls(xu)) (3)

q(z, y|xu) = q(z|xu, y)q(y|xu) (4)

B. The Generative Process for Windows

Generating a target window follows the steps below:
1) Sample a hidden vector z from p(z|y = 1)
2) Compute the distribution of xt following N (µxt

, σxt
)

3) Sample a x from N (µxt
, σxt

)

The generative process for non-target windows is similar
to the above process, except sampling from p(z|y = 0)
and sampling x from the Gaussian distribution for non-
target windows. p(z|y) in step 1 above follows a Gaussian
distribution showing in eq. 5. The parameters of Gaussian
distribution are learned by fprior(y) in eq. 6. The parameters
of N (µxt

, σxt
) in step 2 are learned by fgen in eq. 7.

p(z|y) = N (µz, σz) (5)

[µz, σz] = fprior(y) (6)

[µxt , σxt] = fgen(z) (7)

According to the generative process above, the joint probabil-
ity p(x, z, y) can be factorized as:

p(x, z, y) = p(x|z, y)p(z|y)p(y) (8)

Where p(y) is the prior distribution for y defined in eq. 9.

p(y) = Cat(1/K) (9)

Where K is the number of categories. In our case, the number
of categories is two, one for the target category and the other
for the non-target one. At the beginning of the iterations,
TGGM assumes that the number of target and non-target
windows, i.e., p(y) is uniformly distributed since we do not
have prior knowledge about the number of target objects in
the ROI. This assumption is relaxed in later iterations.

C. The Generative and Inference Processes for
Labeled Windows

For the labeled target windows, y becomes an observation
instead of a hidden variable, i.e., y = 1. Because y is an
observation, TGGM only uses labeled target windows to learn
one Gaussian component of z and generate windows from the
component. As a result, the approximate posterior distribution
of z and generative xt distribution can be written as eq. 10
and eq. 11, respectively.

q(z|xt) = q(z|xt, y = 1) (10)

p(xt|z, y = 1) = p(xt|z, y = 1)p(z|y = 1) (11)

D. Evidence Lower Bounds

TGGM aims to separate target and non-target windows
into two clusters by maximizing the marginal likelihood of
unlabeled windows, xu. Because the log-likelihood of xu (the
leftmost term in eq. 12) is intractable, TGGM optimizes the
evidence lower bound (LELBO) (the rightmost term in eq. 12)
instead.

log p(xu) = log
∑
y

∫
z

p(xu, z, y)dz

≥ Eq(z,y|xu)

[
log

p(xu, z, y)

q(z, y|xu)

]
= LELBO(xu) (12)

Eq. 13 shows the details of LELBO for unlabeled windows.
LELBO after using the reparameterization trick proposed in
VAE [43] can be written as:

LELBO(xu) = Eq(z,y|xu)

[
log

p(xu, z, y)

q(z, y|xu)

]
=

∑
y

q(y|xu) log p(xu|z, y)

−
∑
y

q(y|xu)KL
[
q(z|xu, y)‖p(z|y)

]
−KL

[
q(y|xu)‖p(y)

]
(13)

According to the generative and variational inference pro-
cesses for labeled target windows, xt, described in the last
subsection, TGGM uses xt to optimize one Gaussian compo-
nent in z and generate xt from the component. LELBO for
xt is defined in eq. 14.

LELBO(xt) = Eq(z|xt,y=1)

[
log

p(xt, z, y = 1)

q(z|xt, y = 1)

]
= log p(xt|z, y = 1)

−KL
[
q(z|xt, y = 1)‖p(z|y = 1)

]
(14)

The total LELBO as the optimization goal of TGGM is the
summation of LELBO for xu and xt showing in eq. 15.

LELBO(x) = LELBO(xu) + LELBO(xt) (15)

E. Network Design

Figure 2 shows TGGM’s network architecture. When the
input is a labeled target window xt, the encoder (finf) in
TGGM encodes xt concatenating with y = 1 into q(z|xu, y =
1), then decoder (fgen) sampled z from p(z|y = 1) into x̂t. In
the optimization process, the optimization goal of the second
term in eq. 14 is that one component of the hidden variable z
represents the labeled target windows. The optimization goal
of the first term in eq. 14 is that the decoder generates similar
x̂t to xt from the component of z which represent labeled
target windows in the hidden space. TGGM explicitly learns
one component in z to represent the labeled target windows.
We call this learning process the target guidance mechanism.

When the input is a unlabeled window, xu, finf encodes xu

concatenating with y into the hidden variable z. fgen decodes
the sampled z0 from p(z|y = 0) and z1 from p(z|y = 1) into
x̂u0 and x̂u1. In the optimization process, the optimization
goal of first term in eq. 13 is assigning a high weight (q(y|xu))
to x̂u0 or x̂u1, whichever is more similar to xu. For example,
when the input is an unlabeled window covering the target
objects, the x̂u1 from p(z|y = 1) should be more similar to
x̂u than x̂u0 from p(z|y = 0) because p(z|y = 1), optimized
by labeled target windows in the target guidance mechanism,
represents the target windows. The weight for x̂u1 is higher
than the weight for x̂u0 (i.e., (q(y = 1|xu) > q(y = 0|xu))

Similarly, the optimization goal of the second term in eq. 13
is assigning a high weight (q(y|xu)) to one component of z,
which has the smaller KL value than the other component does.
For example, when the input is an unlabeled window covering
the target object, the KL value between q(z|xu, y = 1) and
p(z|y = 1) should be smaller than the KL value between
q(z|xu, y = 0) and p(z|y = 0) (i.e. KL[q(z|xu, y =
1)‖p(z|y = 1)] < KL[q(z|xu, y = 0)‖p(z|y = 0)]) because
q(z|xu, y = 1) and p(z|y = 1), optimized by labeled target
windows in the target guidance mechanism, represent the
target windows. Hence, TGGM assigns a higher weight to
the component in z which represents the target windows (i.e.,
(q(y = 1|xu) > q(y = 0|xu)). The weights, q(y|xu), are
the probabilities of a window belonging to the target and non-
target clusters. With the target guidance mechanism, TGGM
assigns unlabeled windows covering the target objects into the
target cluster.

IV. EXPERIMENT AND ANALYSIS

This section presents a comprehensive experiment on
TGGM with four types of target objects in four datasets,
which are cars, airplanes, and ships in overhead imagery [44],
[45], [46], and wetland symbols from scanned topographic
maps. The experiment entails two groups of experiments and
sensitivity analysis. The first group of experiments applied
TGGM on four types of objects in five datasets, and evaluated
the spatial arrangement estimation from TGGM by comparing

with three baseline models. The second group of experiments
applied TGGM on the DIOR dataset and compared results
from TGGM with a supervised object detector, YOLOv3 [7].

A. Data Preparation and Experimental Settings

Datasets and Target Objects We tested the TGGM on
four objects in two types of images in four datasets. They are
cars in the Cars Overhead With Context (COWC) dataset [45],
cars and airplanes in the xView dataset [46], and airplanes
and ships in the DIOR dataset [44], which are all overhead
imagery. The other object is wetland symbols in scanned
topographic maps from the United States Geological Survey
(USGS) topographic map archive.

Region-Level Annotations We used two approaches to
generate the ROI annotations for the two groups of experi-
ments, respectively. In the first group of experiments, we man-
ually drew polygons which have an assumed strong semantic
relationship with the target objects in overhead imagery in the
xView, COWC, and DIOR datasets. The USGS dataset in the
first set of experiments was combined with an external dataset2

to provide the ROIs for wetland symbols. In the second group
of experiments, we tested on the entire imagery covering a
group of ships and airplanes in the DIOR dataset.

Target Window Annotations We manually annotate one
window covering a target object for each ROI. To augment the
number of labeled target windows, we rotated the window and
translated the positions of the target object in the window.

Evaluation Methods In the first group of experiments,
we used precision, recall, and F1 at the grid-cells to esti-
mate the performance of spatial arrangement estimation using
TGGM. We sliced images into non-overlapped grid cells. Grid-
level assessments are commonly used in Geospatial Informa-
tion Science (GISc) to estimate the detection accuracy [47],
[48], [49]. In the second group of experiments, we used mean
average precision (mAP). In the first group of experiments, we
generated the grid-level ground truth from the bounding-box
ground truth. We sliced images using varied grid sizes, i.e.,
20× 20-, 40× 40-, 60× 60-, 80× 80-pixel. If the overlapping
area between the grid cell and the bounding box of the target
object is over either 50% bounding-box or 50% grid cell, the
grid cell was a true positive. Otherwise, it was a true negative.
xView, COWC, and DIOR datasets provide the bounding box
annotations for target objects. We manually generated the
bounding boxes ground truth for wetland symbols in the USGS
dataset. In the second group of experiments, we used the
bounding-box ground truth provided by the DIOR dataset.
We generated grid-level results from the detected windows.
If the overlapping area between the grid and detected target
window occupied over either 50% window or 50% grid, the
grid was a detected positive grid. Otherwise, it was a detected
negative grid. In the second group of experiments, the DIOR
dataset provides the bounding boxes ground truth. We generate
bounding-box results from detected windows using non-max
suppression (NMS) [8].

2https://apps.nationalmap.gov/downloader

Baselines In the first group of experiments, we compared
TGGM with two unsupervised generative clustering models,
VaDE [13] and dualAE [14], and one semi-supervised gen-
erative model, AVAE [17]. For the semi-supervised model
(AVAE), we used 40% target and non-target windows as
labeled data for the training phase. The number of labeled
windows for AVAE follows recently reported experiments [17].
In the second group of experiments, we compered TGGM
with YOLOv3, a supervised object detector. We adopted the
YOLOv3 results from paper [44], which trained YOLOv3 in
a supervised manner.

Implementation Details All submodels in TGGM were
the multilayer perceptrons with two fully connected layers and
optimized by the Adam optimizer with a learning rate of 1e−3.
The iterative learning of TGGM for all tasks ended around
seven iterations. Each iteration converged around 200 epochs.

B. Experiment Results and Analysis

Figure 3 shows that TGGM outperformed the unsupervised
generative clustering models, i.e., dualAE and VaDE, and per-
formed similar to the semi-supervised generative model, i.e.,
AVAE, in the first group of experiments. An F1 score that is on
average 10% higher than for dualAE and VaDE demonstrates
that the spatial arrangement estimation using TGGM was
more accurate than the state-of-the-art unsupervised methods.
The high recall and low precision from the unsupervised
methods show that the clustering results are noisier than those
from TGGM. The precise results from TGGM show that the
target guidance mechanism improves the clustering results.
Compared with the semi-supervised model, AVAE, the F1

score for TGGM was about 5% lower on average. However,
AVAE required 40% labeled target and non-target windows,
while TGGM only needed one labeled target window with
augmentation, which minimized the manual work needed.

Figure 4 shows the spatial arrangement estimation of cars
from TGGM and three baselines in xView. The green and red
boxes are true positive and false positive grids, respectively.
The bottom two figures show the noisy results from unsu-
pervised models. Although TGGM missed some true positive
grids compared to results from AVAE (the semi-supervised
method), the spatial arrangement from TGGM covers most
cars in the parking lot. In sum, TGGM could obtain more
accurate spatial arrangement estimation within the ROI than
unsupervised models did and achieved similar results as semi-
supervised with much less manual work.

In the second group of experiments, we tested the detection
of ships and airplanes in the DIOR dataset and compared
the results with the best supervised model, YOLOv3 [44]
using mAP. The results from YOLOv3 represent the best case
scenario where a large amount of training data for the target
objects are available. For airplanes, TGGM obtained 60.15%
mAP, while YOLOV3 achieved 72.2%. As for the ships, the
mAP for TGGM was 69.92%, while mAP from YOLOv3 was
87.4%. The average mAP from TGGM was 15% lower than
YOLOv3, but TGGM only required one labeled target window

100%

80%

60%

40%

20%

0%

Pr
ec
isi
on

100%

80%

60%

40%

20%

0%

R
ec
al
l

100%

80%

60%

40%

20%

0%

F 1

Fig. 3: The performance comparisons among TGGM and three
baseline models. VaDE and dualAE are unsupervised baselines, and
AVAE is the semi-supervised baseline.

Fig. 4: The evaluation of car spatial arrangement estimation using
40× 40-pixel grid size. Green and red boxes represent true positive
and false positive grids, respectively.

with data augmentation for each image while YOLOv3 needed
50% target objects for the training process.

Two major reasons cause mAP from TGGM lower than
YOLOv3. First, the ROI annotations may not have a strong
semantic relationship with the target objects. We chose all im-
agery covering a group of target objects in the DIOR dataset.
This criterion cannot guarantee any semantic relationship
between the imagery and the target objects. Figure 5a shows

that the imagery covers not only the airplane apron, which
has a strong semantic relationship with airplanes but also
other areas, such as a lawn. The weak semantic relationship
between airplanes and the imagery contents results in rather
noisy results (Figure 5a). Figure 5b shows similar failures
where the image covers a large area, much of which has no
particular semantic relationship with ships. When we manually
chose the ROI which has strong semantic relationship with
the target objects in the first grounp of experiment, TGGM
achieved 77% average F1 score.

The other reason is the limited performance of TGGM on
multi-scaled objects. TGGM uses a fixed-size window slide
across all imagery and separates windows into target and non-
target categories. The sizes of target objects varied a lot in all
imagery. The fixed-size window, which is set based on the size
of the small target objects, would often be smaller than those
large target objects, and thus the model would fail to cluster
the large target objects into the target category. Figure 5c
shows that TGGM could detect small ships but missed some
of the large ships when using small target objects to set the
window size. However, users can adjust the window size to
fit both large and small target objects when applying TGGM
to one ROI. Consequently, TGGM can estimate the spatial
arrangement of the target objects reliably. Figures 5d, 5e, and
5f show that TGGM applying to specific ROIs performs well
in estimating the spatial arrangements of airplanes and ships in
the overhead imagery, and wetland symbols in the topographic
map, respectively.

(a) (b) (c)

(d) (e) (f)

Fig. 5: The figures in the first row show failure cases from TGGM
because of ROIs and multi-scale objects. The figures in the second
row show the successful cases from TGGM when ROIs are spatially-
constrained and the sizes of target objects are similar.

C. Sensitivity Study

1) Accuracy of Spatial Arrangement Estimation: We varied
the grid size to assess how different levels of detail affect
TGGM’s estimation of the spatial arrangement [48]. Figure 6
shows that precision, recall, and F1 increase with increasing

100%

80%

60%

40%

20%

0%

Pr
ec
isi
on

100%

80%

60%

40%

20%

0%

R
ec
al
l

100%

80%

60%

40%

20%

0%

F 1

Fig. 6: The evaluations with varied grid sizes from 20 × 20-pixel
to 80 × 80-pixel. The overall precision, recall and F1 grow with
increasing grid size.

window sizes. In contrast, the spatial arrangement details
are lost with increasing window sizes. Figure 7 shows an
example of the spatial arrangement estimation for ships in
the DIOR dataset using 20× 20-, 40× 40-, and 60× 60-pixel
grid dimensions, respectively. Green and red grids are true
positive and false positive grids, respectively. The green and
red grids in Figure 7 show that the performance of spatial
arrangement estimation improves while the details are lost
with the increase of the grid sizes. When the grid size is
similar to the object size, we find that TGGM can obtain
satisfactory performance of spatial arrangement estimation
and acceptable spatial arrangement details. TGGM achieved
around 80% precision, recall, and F1 on average when the
grid size is similar to the object size. Figure 7b shows the
detection results represented by a 40 × 40-pixel grid, which
is similar in size to the ships in the image. The result shows
that ships can be detected without losing much detail.

2) Spatial Arrangement Estimation over Iterations: This
group of experiments tested the robustness of TGGM to
the noise in the detected target windows by showing the
performance of spatial arrangement estimation over iterations.
Figure 8 shows the grid-level evaluation over iterations using
grid extents similar to the object sizes. All detection tasks
show high precision and low recall in the first few iterations.
The true positive (green) grids in Figures 9a and 9b show
that TGGM achieved precise but partial spatial arrangement

(a) 20× 20 grid (b) 40× 40 grid (c) 60× 60 grid

Fig. 7: An example of the accuracy of spatial arrangement estimation
using varied grid sizes.

estimation over the first three iterations. After the first few
iterations, Figure 8 shows that precision decreases while recall
increases. The green grids in Figures 9c and 9d show gradu-
ally increasing coverage, while the red grids in Figures 9c and
9d show the estimation contains some noise, such as partial car
bodies. The detection evolvement in Figure 9 shows that the
TGGM at first can detect cars with similar appearances. For
example, most detected cars in the first three iterations have
bright colors. With more iterations, the TGGM can detect cars
with diverse appearances.

Fig. 8: The performance evaluation over several iterations

(a) Iteration 1 (b) Iteration 3 (c) Iteration 5 (d) Iteration 6

Fig. 9: The spatial arrangement estimation for cars in COWC dataset
using 60× 60-pixel grids over several iterations.

V. DISCUSSION

This paper presents TGGM to estimate the spatial ar-
rangement of the target objects within a spatially-constrained
ROI in overhead images. TGGM’s advantage is reducing the
manual work to a few windows and an ROI annotations. The
experiments show that TGGM outperforms baseline models
in terms of spatial arrangement estimation accuracy and the
amount of manual work. We are going to integrate TGGM into
a pipeline for automatic information extraction from historical
topographic maps which have little available labeled data.

Historical topographic map archives store valuable information
about the evolution of natural features and human activities.
Additionally, we will work to address TGGM’s multi-scale
objects limitation by using windows with multiple sizes.

VI. ACKNOWLEDGE

This material is based upon work supported in part by the
National Science Foundation under Grant Nos. IIS 1564164
(to the University of Southern California) and IIS 1563933 (to
the University of Colorado at Boulder), NVIDIA Corporation,
the National Endowment for the Humanities under Award No.
HC-278125-21, and the University of Minnesota, Computer
Science & Engineering Faculty startup funds.

APPENDIX

Here is the detailed evidence lower bounds (ELBO) deduc-
tion for the unlabeled data xu and labeled target data xt.

LELBO(xu) = Eq(z,y|xu)

[
log

p(xu, z, y)

q(z, y|xu)

]
= Eq(z,y|xu)

[
log p(xu|z, y) + log p(z|y) + log p(y)

− log q(z|xu, y)− log q(y|xu)
]

= Eq(z,y|xu)

[
log p(xu|z, y)

]
+ Eq(z,y|xu)

[
log p(z|y)− log q(z|xu, y)

]
+ Eq(z,y|xu)

[
log p(y)− log q(y|xu)

]
=

∑
y

q(y|xu)

∫
z

q(z|xu, y)
[
log p(xu|z, y)

]
dz

−
∑
y

q(y|xu)

∫
z

q(z|xu, y)
[
log q(z|xu, y)− log p(z|y)

]
dz

−
∑
y

q(y|xu)
[
log q(y|xu)− log p(y)

]
=

∑
y

q(y|xu)

∫
z

q(z|xu, y)
[
log p(xu|z, y)

]
dz

−
∑
y

q(y|xu)KL
[
q(z|xu, y)‖p(z|y)

]
−KL

[
q(y|xu)‖p(y)

]
(16)

LELBO(xt) = Eq(z|xt,y=1)

[
log

p(xt, z, y = 1)

q(z|xt, y = 1)

]
= Eq(z|xt,y=1)

[
log p(xt|z, y = 1) + log p(z|y = 1)

− q(z|xt, y = 1)
]

= Eq(z|xt,y=1)

[
log p(xt|z, y = 1)

]
+ Eq(z|xt,y=1)

[
log p(z|y = 1)− log q(z|xt, y = 1)

]
= Eq(z|xt,y=1)

[
log p(xt|z, y = 1)

]
−KL

[
q(z|xt, y = 1)‖p(z|y = 1)

]
(17)

REFERENCES

[1] G. Palubinskas, F. Kurz, and P. Reinartz, “Detection of traffic congestion
in optical remote sensing imagery,” in IGARSS 2008-2008 IEEE Inter-
national Geoscience and Remote Sensing Symposium, vol. 2. IEEE,
2008, pp. II–426. 1

[2] J. Kurniawan, S. G. Syahra, C. K. Dewa et al., “Traffic congestion
detection: Learning from cctv monitoring images using convolutional
neural network,” Procedia computer science, vol. 144, pp. 291–297,
2018. 1

[3] E. O. Nsoesie, B. Rader, Y. L. Barnoon, L. Goodwin, and J. Brownstein,
“Analysis of hospital traffic and search engine data in wuhan china
indicates early disease activity in the fall of 2019,” 2020. [Online].
Available: http://nrs.harvard.edu/urn-3:HUL.InstRepos:42669767 1

[4] N. A. Mubin, E. Nadarajoo, H. Z. M. Shafri, and A. Hamedianfar,
“Young and mature oil palm tree detection and counting using con-
volutional neural network deep learning method,” International Journal
of Remote Sensing, vol. 40, no. 19, pp. 7500–7515, 2019. 1

[5] B. A. G. de Oliveira, F. M. F. Ferreira, and C. A. P. da Silva Martins,
“Fast and lightweight object detection network: Detection and recogni-
tion on resource constrained devices,” IEEE Access, vol. 6, pp. 8714–
8724, 2018. 1

[6] W. Liu, D. Anguelov, D. Erhan, C. Szegedy, S. Reed, C.-Y. Fu, and A. C.
Berg, “Ssd: Single shot multibox detector,” in European conference on
computer vision. Springer, 2016, pp. 21–37. 1

[7] J. Redmon and A. Farhadi, “Yolov3: An incremental improvement,”
arXiv:1804.02767, 2018. 1, 3, 5

[8] S. Ren, K. He, R. Girshick, and J. Sun, “Faster r-cnn: Towards real-time
object detection with region proposal networks,” in Advances in Neural
Information Processing Systems, 2015, pp. 91–99. 1, 3, 5

[9] M. Everingham, L. Van Gool, C. K. I. Williams, J. Winn,
and A. Zisserman, “The PASCAL Visual Object Classes
Challenge 2012 (VOC2012) Results,” http://www.pascal-
network.org/challenges/VOC/voc2012/workshop/index.html. 1, 3

[10] Q. Tao, H. Yang, and J. Cai, “Zero-annotation object detection with
web knowledge transfer,” in Proceedings of European Conference on
Computer Vision, 2018, pp. 369–384. 1

[11] M. Shi, H. Caesar, and V. Ferrari, “Weakly supervised object localization
using things and stuff transfer,” in Proceedings of the IEEE International
Conference on Computer Vision, 2017, pp. 3381–3390. 1, 3

[12] T. Hu, P. Mettes, J.-H. Huang, and C. G. Snoek, “Silco: Show a few
images, localize the common object,” in Proceedings of the IEEE/CVF
International Conference on Computer Vision, 2019, pp. 5067–5076. 1,
3

[13] Z. Jiang, Y. Zheng, H. Tan, B. Tang, and H. Zhou, “Variational deep
embedding: An unsupervised and generative approach to clustering,”
arXiv:1611.05148, 2016. 1, 3, 6

[14] X. Yang, C. Deng, F. Zheng, J. Yan, and W. Liu, “Deep spectral
clustering using dual autoencoder network,” in Proceedings of the IEEE
Conference on Computer Vision and Pattern Recognition, 2019, pp.
4066–4075. 1, 3, 6

[15] N. Dilokthanakul, P. A. Mediano, M. Garnelo, M. C. Lee, H. Salimbeni,
K. Arulkumaran, and M. Shanahan, “Deep unsupervised clustering with
gaussian mixture variational autoencoders,” arXiv:1611.02648, 2016. 1,
3

[16] D. P. Kingma, S. Mohamed, D. J. Rezende, and M. Welling, “Semi-
supervised learning with deep generative models,” in Proceedings of
Advances in Neural Information Processing Systems, 2014, pp. 3581–
3589. 1, 2, 3

[17] X. Zhang, L. Yao, and F. Yuan, “Adversarial variational embedding
for robust semi-supervised learning,” in Proceedings of the 25th ACM
SIGKDD International Conference on Knowledge Discovery & Data
Mining, 2019, pp. 139–147. 1, 2, 6

[18] L. Maaløe, M. Fraccaro, V. Liévin, and O. Winther, “Biva: A very deep
hierarchy of latent variables for generative modeling,” in Proceedings of
Advances in Neural Information Processing Systems, 2019, pp. 6548–
6558. 1, 2, 3

[19] Y. Gao, B. Liu, N. Guo, X. Ye, F. Wan, H. You, and D. Fan, “C-
midn: Coupled multiple instance detection network with segmentation
guidance for weakly supervised object detection,” in Proceedings of
the IEEE/CVF International Conference on Computer Vision, 2019, pp.
9834–9843. 3

[20] X. Li, M. Kan, S. Shan, and X. Chen, “Weakly supervised object detec-
tion with segmentation collaboration,” in Proceedings of the IEEE/CVF
International Conference on Computer Vision, 2019, pp. 9735–9744. 3

[21] K. Yang, D. Li, and Y. Dou, “Towards precise end-to-end weakly
supervised object detection network,” in Proceedings of the IEEE/CVF
International Conference on Computer Vision, 2019, pp. 8372–8381. 3

[22] Z. Zeng, B. Liu, J. Fu, H. Chao, and L. Zhang, “Wsod2: Learning
bottom-up and top-down objectness distillation for weakly-supervised
object detection,” in Proceedings of the IEEE/CVF International Con-
ference on Computer Vision, 2019, pp. 8292–8300. 3

[23] S. Rahman, S. Khan, and N. Barnes, “Transductive learning for zero-
shot object detection,” in Proceedings of the IEEE/CVF International
Conference on Computer Vision, 2019, pp. 6082–6091. 3

[24] Y. Zhu, Y. Zhou, Q. Ye, Q. Qiu, and J. Jiao, “Soft proposal networks
for weakly supervised object localization,” in Proceedings of the IEEE
International Conference on Computer Vision, 2017, pp. 1841–1850. 3

[25] D. Kim, D. Cho, D. Yoo, and I. So Kweon, “Two-phase learning for
weakly supervised object localization,” in Proceedings of the IEEE
International Conference on Computer Vision, 2017, pp. 3534–3543.
3

[26] K. K. Singh and Y. J. Lee, “Hide-and-seek: Forcing a network to be
meticulous for weakly-supervised object and action localization,” in
2017 IEEE international conference on computer vision (ICCV). IEEE,
2017, pp. 3544–3553. 3

[27] X. Liang, S. Liu, Y. Wei, L. Liu, L. Lin, and S. Yan, “Towards
computational baby learning: A weakly-supervised approach for object
detection,” in Proceedings of the IEEE International Conference on
Computer Vision, 2015, pp. 999–1007. 3

[28] F. Yang, H. Fan, P. Chu, E. Blasch, and H. Ling, “Clustered object de-
tection in aerial images,” in Proceedings of the IEEE/CVF International
Conference on Computer Vision, 2019, pp. 8311–8320. 3

[29] M. Pritt, “Deep learning for recognizing mobile targets in satellite
imagery,” in 2018 IEEE Applied Imagery Pattern Recognition Workshop
(AIPR). IEEE, 2018, pp. 1–7. 3

[30] J. Shermeyer and A. Van Etten, “The effects of super-resolution on
object detection performance in satellite imagery,” in Proceedings of
the IEEE/CVF Conference on Computer Vision and Pattern Recognition
Workshops, 2019, pp. 0–0. 3

[31] A. Van Etten, “Satellite imagery multiscale rapid detection with win-
dowed networks,” in 2019 IEEE Winter Conference on Applications of
Computer Vision (WACV). IEEE, 2019, pp. 735–743. 3

[32] A. Groener, G. Chern, and M. Pritt, “A comparison of deep learning
object detection models for satellite imagery,” in 2019 IEEE Applied
Imagery Pattern Recognition Workshop (AIPR). IEEE, 2019, pp. 1–10.
3

[33] L. Maaløe, M. Fraccaro, and O. Winther, “Semi-supervised generation
with cluster-aware generative models,” arXiv:1704.00637, 2017. 3

[34] J. Liu, J. Yao, M. Bagheri, V. Sandfort, and R. M. Summers, “A
semi-supervised cnn learning method with pseudo-class labels for
atherosclerotic vascular calcification detection,” in Proceedings of IEEE
International Symposium on Biomedical Imaging, 2019, pp. 780–783. 3

[35] C. Xu, Y. Dai, R. Lin, and S. Wang, “Social image refinement and
annotation via weakly-supervised variational auto-encoder,” Knowledge-
Based Systems, vol. 192, p. 105259, 2020. 3

[36] J. Jeong, S. Lee, J. Kim, and N. Kwak, “Consistency-based semi-
supervised learning for object detection,” in Proceedings of Advances
in Neural Information Processing Systems, 2019, pp. 10 759–10 768. 3

[37] F. Xing, T. C. Cornish, T. Bennett, D. Ghosh, and L. Yang, “Pixel-to-
pixel learning with weak supervision for single-stage nucleus recognition
in ki67 images,” IEEE Transactions on Biomedical Engineering, vol. 66,
no. 11, pp. 3088–3097, 2019. 3

[38] Y. Zeng, Y. Zhuge, H. Lu, L. Zhang, M. Qian, and Y. Yu, “Multi-
source weak supervision for saliency detection,” in Proceedings of the
IEEE Conference on Computer Vision and Pattern Recognition, 2019,
pp. 6074–6083. 3

[39] Y. Shen, R. Ji, S. Zhang, W. Zuo, and Y. Wang, “Generative adversarial
learning towards fast weakly supervised detection,” in Proceedings of the
IEEE Conference on Computer Vision and Pattern Recognition, 2018,
pp. 5764–5773. 3

[40] Y. K. Jang and N. I. Cho, “Generalized product quantization network for
semi-supervised image retrieval,” in Proceedings of the IEEE Conference
on Computer Vision and Pattern Recognition, 2020, pp. 3420–3429. 3

[41] L. Yang, N.-M. Cheung, J. Li, and J. Fang, “Deep clustering by gaussian
mixture variational autoencoders with graph embedding,” in Proceedings
of the IEEE International Conference on Computer Vision, 2019, pp.
6440–6449. 3

http://nrs.harvard.edu/urn-3:HUL.InstRepos:42669767

[42] M. Ehsan Abbasnejad, A. Dick, and A. van den Hengel, “Infinite
variational autoencoder for semi-supervised learning,” in Proceedings
of the IEEE Conference on Computer Vision and Pattern Recognition,
2017, pp. 5888–5897. 3

[43] D. P. Kingma and M. Welling, “Auto-encoding variational bayes,”
arXiv:1312.6114, 2013. 3, 4

[44] K. Li, G. Wan, G. Cheng, L. Meng, and J. Han, “Object detection in
optical remote sensing images: A survey and a new benchmark,” ISPRS
Journal of Photogrammetry and Remote Sensing, vol. 159, pp. 296–307,
2020. 5, 6

[45] T. N. Mundhenk, G. Konjevod, W. A. Sakla, and K. Boakye, “A large
contextual dataset for classification, detection and counting of cars with
deep learning,” in Proceedings of European Conference on Computer

Vision, 2016, pp. 785–800. 5
[46] D. Lam, R. Kuzma, K. McGee, S. Dooley, M. Laielli, M. Klaric,

Y. Bulatov, and B. McCord, “xview: Objects in context in overhead
imagery,” arXiv:1802.07856, 2018. 5

[47] R. G. Congalton and K. Green, Assessing the accuracy of remotely
sensed data: principles and practices. CRC press, 2019. 5

[48] K. Kuzera and R. G. Pontius, “Importance of matrix construction for
multiple-resolution categorical map comparison,” GIScience & Remote
Sensing, vol. 45, no. 3, pp. 249–274, 2008. 5, 7

[49] J. H. Uhl, S. Leyk, C. M. McShane, A. E. Braswell, D. S. Connor, and
D. Balk, “Fine-grained, spatiotemporal datasets measuring 200 years
of land development in the united states,” Earth System Science Data,
vol. 13, no. 1, pp. 119–153, 2021. 5

