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Abstract—The availability of massive earth observing satellite
data provides huge opportunities for land use and land cover
mapping. However, such mapping effort is challenging due to
the existence of various land cover classes, noisy data, and
the lack of proper labels. Also, each land cover class typically
has its own unique temporal pattern and can be identified
only during certain periods. In this article, we introduce a
novel architecture that incorporates the UNet structure with
Bidirectional LSTM and Attention mechanism to jointly exploit
the spatial and temporal nature of satellite data and to better
identify the unique temporal patterns of each land cover class.
We compare our method with other state-of-the-art methods
both quantitatively and qualitatively on two real-world datasets
which involve multiple land cover classes. We also visualise the
attention weights to study its effectiveness in mitigating noise and
in identifying discriminative time periods of different classes. The
code and dataset used in this work are made publicly available
for reproducibility.

Index Terms—Remote Sensing, Spatio-temporal data, Seman-
tic Segmentation

I. INTRODUCTION

Growth in the world’s population and the acceleration of
urbanization are straining already scarce natural resources and
food supplies, which must scale up to keep pace with growing
demand. The consequences of the resulting large-scale changes
include tremendous stresses on the environment, as well as
challenges to our ability to feed the world’s population, that
could be calamitous at the current rate of change if they
are not managed sustainably. Timely information on land use
and land cover changes can provide critical information at
desired spatial and temporal scales to assist in decision making
for development investment and sustainable resource manage-
ment. In particular, mapping crops is a key step towards many
applications, such as forecasting yield, guiding sustainable
management practices and evaluating progress in conservation
efforts.

Recent advances in storing and processing remote sens-
ing data collected by sensors on-board aircrafts or satellites
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Fig. 1. Yearly Normalized Difference Vegetation Index (NDVI) time series
for some land cover classes.

provide tremendous potential for mapping a variety of land
covers. Deep learning on remote sensing has shown promising
results for mapping specific land covers, e.g., plantations [9],
agricultural facilities [5]], roads [26], and buildings [14], by
extracting their distinct spatial and temporal patterns. In par-
ticular, Convolutional Neural Networks (CNN)-based models
have been widely used in automated land cover mapping given
their capacity to capture the spatial correlation, i.e., land covers
are often contiguous over space [12], [16]. Extracting the spa-
tial information also assists in mitigating the noise of remote
sensing data at individual locations (e.g., aerosols). While
CNNs have mostly been used for studying land covers from
a single image, Recurrent Neural Networks (RNN) and Long-
Short Term Memory (LSTM) can take advantage of temporal
patterns [8]], [19] obtained from multi-temporal remote sensing
data. Many land covers, e.g., crops, are indistinguishable at a
single time step but require the modeling of their growing
or seasonal patterns. For e.g. certain crops may look similar
to barren lands or wetlands after they are harvested but look
different in growing season. Thus, successful detection of
these land covers depends on the extraction of their distinctive
temporal patterns. Although these architectures model the
temporal information, majority of them do not consider the



spatial correlation shown by land covers.

Researchers have also built spatio-temporal models for land
cover mapping [7], [9], [13]] and these approaches have shown
encouraging results in isolated scenarios for studying a specific
land cover. However, there is a major challenge that prevents
these approaches from successfully mapping crops in large
regions. In particular, these approaches use CNN and RNN in a
straightforward way without fully exploiting the characteristics
of land covers. Different crops show discriminative signatures
at different points of time [10], [21]]. Moreover, different crops
have different seeding time and harvesting time, depending on
the weather conditions. To highlight these characteristics, we
show the averaged yearly vegetation index for different crops
in Fig. 1| In addition, the images from some time steps may be
affected by natural disturbances (e.g. clouds, weather) or data
acquisition errors which can severely degrade the classification
performance. Thus, identifying these discriminative periods
automatically for different locations and different years and
filtering out the noisy time steps is essential for distinguishing
between different types of crops accurately.

In this paper, we propose Spatio-Temporal segmentation
networks with ATTention (STATT) for automated land-cover
detection. Specifically, the proposed model uses an UNet [|18]]
encoder to embed the spatial information from each image
into a more representative feature space, and then introduces
a Bidirectional Long-Short Term Memory (Bi-LSTM) layer to
capture long-term temporal dependencies and generate spatio-
temporal features. We further use the attention networks to
aggregate the obtained spatio-temporal features at different
time steps. The attention networks help identify the most
relevant time steps for classifying land covers and mitigate
the impact from noisy images by assigning lower weights to
those time steps.

We further enhance the detection by fusing spatio-temporal
features extracted at multiple resolutions through the skip
connections. Specifically, for each resolution level (obtained
through the UNet encoder) we use the same weights obtained
from the aforementioned attention network to aggregate the
spatial features extracted by the encoder at multiple time
steps. These aggregated features at different resolutions are
transferred to the UNet decoder to improve the segmentation.

We show the superiority of our method over existing spatio-
temporal learning methods in mapping crops in different re-
gions, including agriculture-intensive areas in US and another
region that is dominated by tree plantations in Africa. We
also showcase the usability of attention weights in filtering
out noisy time steps and also identifying time steps in which
the classes are distinguishable.

Our contributions can be summarized as follows:

« We develop a spatio-temporal segmentation pipeline that
leverages the data available in the form of temporal
satellite imagery.

o« We augment the spatio-temporal segmentation pipeline
using an attention network to identify discriminative time-
periods and reduce the effect of atmospheric noises such
as clouds.

e We release the code and dataset wused in
this work to promote reproducibility (Please
refer to https://drive.google.com/drive/folders/

1CSHjWegXILx3BF-LFRDEOJKTLo-Dghd9M?usp=
sharing).

II. RELATED WORK

a) Land Use and Land Cover mapping: In recent liter-
ature, machine learning techniques, especially deep learning
(DL), have been heavily used for land use and land cover
(LULC) mapping. In particular CNNs [6]], [23]] have been
used to extract representations for both spectral and spatial
information, whereas RNN and LSTM [9] make use of the
temporal information in modeling land cover transitions and
have shown promising performance in sequence labelling.
Land Cover mapping can also be framed as a semantic
segmentation problem [22], [24], [25], where each pixel in an
aerial/satellite image must classified into one of several land
cover classes.

b) Spatio-temporal modeling for LULC changes: To cap-
ture both the spatial and temporal contextual, existing works
commonly follow the end-to-end learning paradigm using a
combination of convolutional and recurrent networks. Shi et
al. [27] proposed a novel ConvLSTM layer which replaced
the standard feed-forward neural network in an LSTM with
a convolutional one. Rufwurm et al. [20] applied a single
ConvLSTM layer to detect cloud obstruction. Another ap-
proach [3]] used a shared CNN to embed the image time-series
and the resulting sequence was fed to an RNN for spatio-
temporal image classification. This approach is inspired by
the LRCN model [2] which has been successfully used for
activity recognition in videos. All these methods have been
focused on the image classification and do not address the
semantic segmentation problem. 3D convolutions is another
method that has been used in land cover classification [7]]
to capture the temporal information of satellite images. The
convolutional approach suffers from the inability to handle
sequences of different lengths.

c) Semantic Segmentation: One of the most fundamental
techniques used in semantic segmentation is the Fully Convo-
luted Network (FCN) [11]] which supplements the output of the
deeper layers with that of the shallower layers to increase the
resolution of the prediction. Researchers have also developed
several variants of FCN such as SegNet [1]], DeconvNet [15]
and UNet [[18]]. Given the effectiveness of UNet in a variety
of segmentation tasks, we adopt UNet as the base of our
proposed method. UNet consists of two paths, contraction
path (encoder) and symmetric expanding path (decoder). The
encoder consists of a stacked set of convolutional and max-
pooling layers, that captures the context and a semantic
understanding of the image. On the other hand, the decoder
consists of convolutional and upconvolutional layers, tasked
with generating precise label maps from the output of the
encoder.
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Fig. 2. A diagrammatic representation of STATT.

III. PROBLEM DEFINITION AND PRELIMINARIES
A. Problem Setting

In this paper, we consider the task of land cover mapping
and frame it as a semantic segmentation problem using the
multi-spectral satellite/aerial image time-series. In particular,
we aim to predict the land cover class I € {1,...,L} for each
pixel in an image. During the training process, we have access
to image time-series and corresponding labels, which can be
described as follows:

o Input image time-series X = [X!,..., XT], where each
Xt e REXWXC ig an aerial/satellite image of size (H, W)
at time ¢ with C multi-spectral channels.

o Labels Y e {¥W}"™V* in one-hot representation,
where L is the number of land-cover classes.

B. Segmentation network

A segmentation network f(X;;6) aims to predict the label
of each pixel for an image X;. The parameter ¢ is estimated
through a training process on a labeled dataset by minimizing
an objective function of empirical risk, such as the pixel-wise
cross entropy, as follows:

- L X X

i (hyw) k

Lcor(01X,Y) hwlogf (X;;0)F how

(D

where f(XiQ‘g)Z,w is the likelihood of the (h,w)’th pixel

belonging to the class k as predicted by the fully-convolutional

network and (V)5 , = 1 if the (h, w)’th pixel of the image i
belongs to the class k.

IV. METHOD

Traditional segmentation architectures like UNET [18]] are
designed for single image semantic segmentation and thus
fail to capture the temporal information present in the satel-
lite/aerial image time-series. In this section, we describe
the proposed STATT method for land cover mapping (see

Fig. E]) Our method extends the UNet architecture [18|] to
capture the spatial and temporal land cover patterns, identify
discriminative land cover patterns and noisy time periods, and
fuse multi-resolution information through skip connections.

A. Spatio-Temporal modeling

The standard UNet encodes the semantic information of a
single image into a hidden representation, which is then de-
coded to produce the segmentation results along with the help
of skip connections to recover fine-level details. Similarly, in
our proposed architecture, each satellite image Xt € RE*WxC
of a sequence X = [X*,..., XT] is passed through an con-
volutional encoder E( -;0g) to encode the spatial information
of each image into a latent representation Z! € RH xW'xC’,
This results in a sequence of (H',W’) spatial features of
dimension C’ which is represented as Z = [Z',...,Z7] in
dimension T x H x W’ x C’. This ordered set of spatial
features is then passed into a recurrent sequence learning
module to capture the temporal dependencies in the time series
of spatial features. Specifically, given a sequence of input
features Z;; = [Z};,...,Z];], we use an LSTM network to
compute a sequence of hidden states H;; = [H}j, cee Hg;]
Each hidden representation Hfj is generated using the hidden
state H f jﬁl and cell state Cf ;1 from the previous time step and
the input spatial-features using the following set of equations:

FYy =o(WEH T +WEZE)
Iitj = (WHHt ! +WéZitj)
Of =o(WRH ' +WgZZ!)
Gl =tanh(WGH[ " +WgZZl)
Cl =Fhoci'+IoG,
H{; = Oj; © tanh(C};)

i,j€ (H, W) (2

Different crops have specific growing and harvesting pat-
terns, and thus, capturing their specific growing and harvesting



patterns are essential in successful identification. Traditional
LSTMs tend to be biased towards the information provided
by the previous time step. To avoid the previous time step
bias and learn spatio-temporal features at each time step using
sufficient context of growing and harvesting patterns we use a
Bi-LSTM. Specifically, we build two LSTM structures called
the forward LSTM and backward LSTM using eq |2} The two
LSTM structures are the same except that the time-series is
reversed for the backward LSTM. The forward LSTM models
the growing patterns whereas the backward LSTM models the
harvesting patterns of a crop. The spatio-temporal features
at each time step are obtained by concatenating the hidden
representation of both the forward and backward LSTMs
as shown in figure The obtained hidden representations
H = [H',...,HT] capture the spatial information as well
as the temporal information by modeling the change in the
spatial features.

B. Attention based aggregation

The spatio-temporal hidden representations are aggregated
using an attention mechanism which calculates the relevance
scores for each time-step based on their contribution to the
classification performance. Specifically, we use a feed-forward
neural network fp,(-) with parameters 6,4, followed by a
spatial averaging and softmax normalization over all the time
steps, as follows:

(w',w
>

(4,4)€(0,0)

)
feA(Hitj)) 3)

1
o = softmax(ﬁ

Using the obtained attention weights, we combine the
spatio-temporal features H! of all the time steps into an
aggregated spatio-temporal features C, as follows:

T
C = Z ol Ht 4)
t=1

Here the higher value of o' € [0,1] indicates that the
time step ¢ contains critical information for detecting target
land covers. In contrast, the lower value of o! indicates less
importance of the time step ¢, either because this time step
contains much noise or it is out of the discrimiantive period.

C. Aggregating multi-resolution features through skip connec-
tions

Given the weighted spatio-temporal features C, we build
a convolutional decoder D(-,0p) to generate segmentation
labels. Additionally, we use skip connections as a direct
pathway to fuse spatio-temporal features extracted by the
encoder at multiple resolutions. Specifically, our architecture
has multiple convolution blocks in the encoder and multiple
up-convolution blocks in the decoder. Here these blocks extract
spatial features at different spatial resolutions. For the k*" con-
volution block in the encoder, it outputs multiple intermediate
images (ZF,...,Zk) over multiple time steps. We use the

same attention weights calculated in Eq. ff] and aggregate the
outputs ZF using Eq. [} as follows:

T
Cv=> a'zf 5)
t=1

The obtained spatio-temporal features at the specific reso-
lution (corresponding to k' block) are then merged to the
corresponding layer in the decoder with the same resolution.
The output of the decoder D(C, 6p) is passed through a linear
classification layer f(,6.) followed by a softmax function to
generate class probabilities. This model can be trained using
a pixel-wise cross entropy loss as shown in Eq.

V. EXPERIMENTAL RESULTS
A. Datasets and Implementation details

We evaluate our proposed strategy for spatio-temporal se-
mantic segmentation on two real-world applications of great
societal impacts. In the first example, we investigate crop
mapping in the California, US which has over 30 classes
of crops and vegetables. In the second example, we aim to
map cashew plantation in Benin, which contribute nearly 10%
of the country’s export income. Accurate cashew plantation
mapping provides inventory information of cashew to the
Benin government to assist the distribution of their recent $100
million loan from World Bank, aiming at further developing
the cashew industry. Mapping crops is a key step towards many
applications, such as forecasting yield, guiding sustainable
management practices and evaluating progress in conservation
efforts.

a) DI:: Sentinel based crop mapping for Central
Valley in California, USA In this dataset, we investigate
crop mapping in the US Midwest, the world’s bread basket.
This data set contains multi-spectral images observed by
the Sentinel-2 Constellation for the year 2018 (see the data
release link in Section [). The Sentinel-2 data product has
13 spectral bands |'| at three different spatial resolutions of
10, 20 and 60 metres. We leave out the atmospheric bands
(Band 1, 9 and 10) of 60 metres resolution and re-sample all
the bands to 10 metres using the nearest neighbour method.
The AOI corresponds to the Sentinel tile TI11SKA and has
a wide variety of crop types, resulting in a challenging task
for land cover mapping. We use images for every 15 days
from January to December (in total 24 time steps) with the
size of (10980, 10980). This dataset contains a mixture of
clean and noisy (cloudy) images. For our experiment, we
aim to classify each pixel to a class label | € { corn,
cotton, wheat, alfalfa, tomatoes, grapes,
tree crops, almonds, walnut, pistachio,
grass & wetlands, barren land/idle land,
open water and urban }., where the labels for this data
set are taken from the Cropland Data Layer (CDL) || provided
by United States Department of Agriculture (USDA) as the

Uhttps://developers.google.com/earth-engine/datasets/catalog/
COPERNICUS_S2_SR#bands
“https://nassgeodata.gmu.edu/CropScape/
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ground truth. The CDL layer however is at 30m resolution
and STATT predicts at 10m resolution. To overcome this
we resample the CDL layer to 10m resolution as well, but
this potentially leads to inaccurate and noisy labels at the
spatial boundaries between two classes. To reduce the effect
of noisy labels from CDL caused by resampling, we use a
label cleaning strategy where for each class label we do a 1
pixel erosion followed by removal of connected components
of size less than 10. This removes boundary pixels and also
isolated pixels of a class. We replace the removed pixels with
a new called unknown and do not consider these pixels while
training and testing.

b) D2:: Planet based Cashew tree-crop mapping in
Benin, Africa In this dataset, we aim to map cashew plantation
in Benin, which contribute nearly 10% of the country’s export
income. Benin government is actively looking for inventory
information of cashew to assist the distribution of their recent
$100 million loan from World Bank, aiming at further develop-
ing the cashew industry. This data set contains multi-spectral
monthly composites from Planet Labs E] for a region in Benin,
Africa, where cashew tree crops are a major source of income
for farmers (they contribute nearly 10% of the countries export
income). The images are of size (2700, 2400) pixels, having 4
spectral bands namely red, green, blue and NIR(near infrared)
at a spatial resolution of 3 metres. For our experiment, we
aim to classify each pixel into a class label | € { Forest,
Barren land, Cashew, Urban }. The ground truth was created
using manual annotation over the entire study region using
high resolution Airbus imagery provided by our collaborators
in Benin, Africa El

In both datasets D1 and D2, we divide the whole image into
10 x 10 grids and randomly select 60%, 20%, 20% grids for
training, validation and testing, respectively. For D1 we use an
input patch size of 32 x 32 to output a patch of size 16 x 16
while in D2, we use an input patch size of 64 x 64 to output
a patch of size 60 x 60. The same settings were used for all
baseline experiments and all the methods were trained using
the Adam optimizer with a batch-size of 32.

B. Architecture details

Due to the different spatial resolutions of the datasets D1
and D2 we found that varying the architecture of STATT
between the two datasets is beneficial. In this section, we
present the details of the architecture used for the datasets.

a) STATT for DI:: Sentinel based crop mapping for
Central Valley in California, USA For this task, we use
three convolutional blocks in our encoder each having two
convolutional layers. Thus there are six convolutional layers
having 64,64, 128, 128,256,256 channels and filters of size
3 x 3. To downsample the the output of the convolutional
blocks we use max-pooling of size 2 x 2 after the first and
second convolutional blocks. In the decoder, we have two
convolutional blocks each of which consists two convolutional

3https://www.planet.com/products/basemap/
4Given the proprietary nature of the Planet Lab composite and the Airbus
imagery, we do not have permission to make this data publicly available.

layers. The four convolutional layers of the decoder have
128, 128, 64, 64 channels respectively. To upsample the output
we add transposed-convolutional layers before the first and
second convolutional block of the decoder having 128,64
channels respectively and kernel size of 2 x 2. Finally we
add a fully-connected layer with input dimension of 64 and
output dimension equal to the number of classes i.e. 14.

b) STATT for D2:: Planet based Cashew tree-crop
mapping in Benin, Africa Since this dataset has a higher
spatial resolution, we use larger input patches for sufficient
spatial context and a deeper architecture for effective cap-
turing of spatial information. Specifically, we use five con-
volutional blocks in our encoder each having two convolu-
tional layers. Thus there are 10 convolutional layers having
16,16, 32, 32,64, 64, 128, 128, 256, 256 channels and filters of
size 3 x 3. To downsample the the output of the convolutional
blocks we use max-pooling of size 2 x 2 after each of the
last but one convolutional blocks. In the decoder, we have
four convolutional blocks each of which consists two convo-
lutional layers. The eight convolutional layers of the decoder
have 128,128,64,64,32,32,16,16 channels respectively. To
upsample the output we add transposed-convolutional layers
before the first and second convolutional block of the decoder
having 128,64, 32,16 channels respectively and kernel size
of 2 x 2. Finally we add a fully-connected layer with input
dimension of 16 and output dimension equal to the number of
classes i.e. 4.

In the above architectures, we use a one-layer bidirectional
LSTM network with 256 hidden units at the bottleneck.

C. Baselines

We compare the performance of our method against the

following baselines:

1) UNet We use a separate single-image UNet architec-
ture firno (XY),i € (1,...,7) to model the spatial
information present in each multi-spectral image time
step. The final prediction of each pixel is obtained by
taking the softmax on the average of the models outputs,

ie., y = softmax(z"'“1 T)TfUN”(X )). This baseline
models the spatial information provided by each image
in the time-series and lacks as it doesn’t model the
temporal information.

2) Bi-LSTM Attn We use a Bi-directional LSTM model
with attention followed by a linear classifier on image
pixel time-series. This baseline don’t model the spatial
and temporal information jointly and uses the spectral
and temporal information while disregarding the spatial
information of the images

3) CALD [10] This baseline method provides one such
solution for joint modeling of the spatio-temporal in-
formation, where the authors use a context-aware LSTM
model which also considers the information provided by
the neighborhood pixels for predicting the class labels
of the pixel of interest.

4) 3D-CNN [7]] We adapt the UNet architecture and replace
the 2D convolution layers of the encoder with 3D CNNs.
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TABLE I
COMPARISON WITH BASELINES IN TERMS OF CROP WISE AS WELL AS MEAN F1 SCORE. THE NUMBERS IN BOLD AND WITH * SYMBOL CORRESPOND TO
THE BEST AND SECOND BEST METHOD FOR EACH ROW RESPECTIVELY. WE ALSO SHOW THE TIME TAKEN FOR TRAINING(FOR 1 EPOCH) AND TESTING
OF BASELINES AND OUR METHOD ON D1.

| | CLASS(Percentage) | Count || UNet Bi-LSTM Attn  CALD  ConvLSTM  3D-CNN [ STMean  STATT |
Barren Land (13.77) 2139439 0.6913 0.4662 0.6571 0.7486 0.6860 0.7498%* 0.7761
Urban (11.97) 1859910 0.8282 0.5869 0.6918 0.8110 0.8143 0.8705 0.8690*
Grapes (11.58) 1799302 0.8013 0.7959 0.7103 0.7441 0.8359 0.8477* 0.8493
Almonds (10.79) 1676985 0.8357 0.7684 0.7640 0.8407* 0.8389 0.8283 0.8426
Grass (10.22) 1588288 0.7859 0.7315 0.7582 0.7862 0.7595 0.8124* 0.8290
Tree crops (09.77) 1517775 0.7770 0.7137 0.6443 0.7118 0.7952 0.8064* 0.8249
Corn (07.73) 1200614 0.8172 0.9223 0.9105 0.9332 0.9217 0.9220 0.9262*
D1 Cotton (07.04) 1093876 0.9335 0.9519 0.9575 0.9623 0.9696 0.9586 0.9676*
Pistachio (05.17) 802644 0.6702 0.5821 0.5875 0.6808 0.8202%* 0.7921 0.8358
Alfa Alfa (03.87) 600932 0.8438 0.7971 0.6148 0.8098 0.8706 0.8907 0.8798*
Tomatoes (03.07) 477757 0.7046 0.8891 0.9069 0.9244* 0.9149 0.8803 0.9406
Walnut (02.42) 376654 0.8457 0.5984 0.4758 0.7511 0.8666 0.8456 0.8477*
Wheat (02.20) 342596 0.3228 0.7522 0.6594 0.7369 0.7397 0.6887 0.7431*
Water (0.40) 62738 0.6967 0.5566 0.5649 0.5700 0.5650 0.6533 0.6756*
MEAN 15539510 0.7539 0.7223 0.7074 0.7865 0.8142 0.8247* 0.8434
Tree crops (51.63) 2071563 0.8264 0.8180 0.8197 0.8864 0.8751 0.8969* 0.9103
Barren Land (30.75) 1233691 0.7723* 0.6742 0.6521 0.7362 0.7263 0.7337 0.7832
D2 Cashew (17.10) 685997 0.6782 0.7817 0.7572 0.7865 0.7929 0.8019* 0.8410
Urban (0.53) 21304 0.5513 0.4395 0.4349 0.4807 0.4555 0.5586* 0.5857
MEAN 4012555 0.7071 0.6716 0.6660 0.7225 0.7124 0.7478%* 0.7800
TRAIN TIME(in sec/epoch) 11040 517 4668 3833 1812 1141 1154
TEST TIME(in sec) 4008 176 1848 546 321 241 245

We use the same configuration of filter size as used by
the authors in their evaluation. The skip connections in
the UNet are replaced by an average skip connection
of the multi-temporal outputs. 3D-Convolutions only
consider L temporally adjacent frames (e.g. L = 3)
and this problem is addressed to an extent by temporal
pooling. However, this does not allow the modeling of
temporal evolution of crops.

ConvLSTM [27] We adapt the UNet architecture and
replace the convolution layers of the encoder with the
ConvLSTM layers proposed by the authors. Since this
methods used an LSTM network at each convolution
layer, this results in a model with a significantly large
number of parameters making training and testing slow
when compared to other baselines.

5)

D. Predictive Performance

The mean F1 score along with the class-wise F1 score for all
the algorithms are reported in Table[l] We also report the scores
for a variation of STATT, namely STMean, where instead of
using attention to aggregate the spatio temporal featues we
take the mean of the features and pass it to the decoder. We
also report the number of pixels of each class along with
their percentage of the total. We observe that STATT achieves
the best or the second best performance for most land cover
classes (and the best mean F1-score). It can also be seen that
the incorporation of both spatial and temporal information
leads to an increase in F1 score in both datasets. On one
hand, UNet has worse performance than the spatio-temporal
models because it uses only spatial data for prediction and
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Fig. 3. Mean Fl-score vs Train and Test time for various methods

lacks temporal modeling. On the other hand, the Bi-LSTM
Attn approach performs the classification at the pixel level
by focusing only on the temporal information, disregarding
the spatial correlation. Hence, the predicted maps can con-
tain more errors at individual pixels, resulting in degraded
performance. 3D-CNN is one of such methods which exploit
both the spatial and temporal information. Since the 3D-CNN
model uses convolution in the time-dimension to model the
temporal information, it does not track long-term changes but
only considers a few temporally adjacent frames. ConvLSTM
models the long-term temporal information using LSTMs but
lacks due to its inability to model the discriminative time-
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periods for different land covers.

Moreover, ConvLSTM has a much larger number of param-
eters, which requires more training data and higher computa-
tional cost. Compared with these approaches, STATT models
the spatial correlation and the temporal progression while
identifying the discriminative time-periods. Moreover, STATT
has much fewer parameters and thus can perform well even
in the data scarcity scenario. The benefit of the attention
mechanism can be sensed by comparing the performance of
STMean and STATT.

Figure [3] shows a scatterplot to demonstrate the compu-
tational efficiency of our approach, in which we compare
Train and Test time on D1 along with the Mean F1-Score
of the approach. It can be observed that ST-ATT is able to
obtain higher prediction performance (F1 score) at relative
low computational cost among the spatio-temporal methods.
ConvLSTM tends to take about 10 times more time than S7-
ATT, which generally takes half the time taken by 3D-CNN.
Note that the high runtime of UNet is due to the fact that the
model need to be applied to each time step independently.

1) Segmentation Results:

Figure [ shows predicted segmentation maps on randomly
selected patches along with ground-truth labels from CDL
and high resolution google satellite images. We highlight the
important areas using arrows for easy reference. Row 1, 2
and 3 shows of example from the Sentinel dataset (D1).
The first row consists of an area of land with various crop
varieties. Bi-LSTM Attn results in a predicted map that is
not spatially smooth which highlights the quality of maps

produced by spatio-temporal methods over their pixel-based
counterparts. Moreover, STATT is best able to produce a
spatially continuous and correctly classified output, as can be
observed by arrow 1. There are also errors in other methods
such as ConvLSTM and 3D-CNN in the almond fields, which
can be observed in the top part of the field.

The second row shows another crop patch on which STATT
produces the cleanest prediction map. The other methods
suffer from false predictions of urban within the barren area.
ConvLSTM manages to produce false urban but gives false
grapes which can be observed in the top right corner of
the field. In this field as well, one can observe that the
prediction map of Bi-LSTM Attn is not continuous, as seen
by speckles of Cotton within a field of Tomatoes. Another
interesting detection of STATT is the fact that it identifies a
water reservoir, marked by arrow 2, which is not shown even
in the groundtruth USDA labels.

The third row shows a patch of grapes and almonds. As
observed by arrows 3 and 4, STATT produces the best map,
correctly distinguishing between classes like grapes, tree crops
and almonds. We notice that ConvLSTM and 3D-CNN predict
wrong crop classes at arrow 4 and produce noncontinuous
maps at arrow 3.

Similarly, in the fourth row we show an example from the
Planet dataset (D2). Due to lack of convolutional layers in
CALD, the predicted map produced is not spatially smooth
spatially smooth due to the lack of spatial contextual infor-
mation. 3D-CNN and ConvLSTM produce maps which show
confusion between Tree Crops and Cashew as denoted at
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Fig. 5. Impact of noisy images on the predictive performance for multiple land covers. The x-axis shows the percentage of noisy time-steps in the time-series
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arrows 5 and 6. From the qualitative analysis of the predicted
maps, it can be seen that STATT not only detects challenging
classes but also has less false positives when compared to the
baselines.

E. Robustness to Noisy Images

STATT can reduce the effect of noisy time-steps by as-
signing low attention weights to the noisy time-steps. We
demonstrate this empirically in Figure [5] by increasing the
number of noisy images from 0% to 50%. In particular, we
manipulate image sequence in D1 by replacing the clean
images with Sentinel images containing noise (cloud and other
atmospheric disturbances) from the same time-period. We
report the change in the mean F1 score as well as the F1 score
of an example class from each type, CROP(Cotton), TREE-
CROPS(Pistachio) and COVER-CROP(Alfa-Alfa). From the
results in Figure[5] we observe that the mean and class-wise F1
score of both STATT and 3D-CNN decreases with the increase
in noise percentage. However, because of the use of attention
based aggregation, the performance of STATT is only slightly
affected compared to the drop in F1 score (both mean and
class-wise) of 3D-CNN.

F. Visualization of Attention Weights

Here we visualize the obtained attention weights to verify
the effectiveness of the attention mechanism in identifying the
discriminative period specific to a land cover and thus helps
distinguish between different land covers. In Figure [6] we plot
the attention weights assigned to each time-step for the cotton
class(in red). To verify the attention weights, we show the
satellite image corresponding to three time-steps(3, 12 and 22).
In the first image(02/06/2018), the crop is not yet planted and
thus the farm is indistinguishable from a barren patch of land
nearby which verifies the low attention weight. In the second
satellite image(06/26/2018) it can be easily observed that the
cotton is fully grown and thus it can be easily distinguished
from a barren patch of land and thus the attention weight is
the highest for this time-step. Finally, in the last time-step, the
crop is harvested leaving the land barren which explains the
low attention weight.

VI. STATT AT WORK

In Sec [V] we demonstrated the performance of the proposed
method STATT on test regions in the US and Benin, Africa.
For the success of such deep learning methods in the task
of RS-based crop mapping, existence of large-scale bench-
marking datasets is essential. The availability of remotely-
sensed satellite images provides tremendous opportunity to
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create such datasets. However, the availability of high-quality
labels at desired temporal and spatial resolution still re-
mains a challenge. Although, the United States Department of
Agriculture (USDA) provides a publicly available land-cover
classification map annually at 30m resolution for the conter-
minous Unites States (CONUS), there are several challenges
highlighted in [4]}, [I7]. The proposed methods is a part of
a generalized framework presented in [4] for creating such
large-scale datasets at a desired year and temporal frequency.
Specifically, in additions to other processing steps, STATT uses
the spatial and temporal information to generate better quality
labels using the noisy CDL as initial labels.

The dataset presented in [4] covers the entire California
Central Valley Crop Belt of 44,000 sq. km and provides
pixel-wise labels covering 29 classes at a spatial resolution
of 10m along with biweekly remotely-sensed images from the
Sentinel-2 for the year 2018. Extensive validation of the crop-
map product via quantitative and qualitative metrics using both
manual as well as automated methods are provided to show the
superiority of the labels over CDL. Such datasets are crucial
for the generalization of deep learning methods and the success
of deep learning in RS tasks such as land-cover mapping.

VII. CONCLUSION AND FUTURE WORK

Our proposed STATT architecture highlights the advantages
of bringing in both spatial and temporal aspects of data for land
cover mapping, especially in capturing the spatial correlation

and temporal progression for each land cover. The experimen-
tal results on real world datasets have shown the superiority of
STATT over its counterparts. Attention based mechanism helps
in boosting the overall performance, especially in scenarios
where the images are affected by clouds and other atmospheric
disturbances. It also identifies the discriminative time-periods
which is essential in identifying different land-covers. We
believe that with these advances, such techniques have a
huge potential in applications such as yield estimation, crop
insurance, and improving management practices to maximize
yield. The method is also a key component of the framework
used in developing a crop-map product [4]], which is much
more comprehensive than the state-of-the-art CDL labels in
the diverse region of California Central Valley.

The proposed scheme can be extended along many direc-
tions. Traditional machine learning models treat each land
cover separately but do not take into account the similarities
amongst a large number of land cover classes. Land cover
classes have a semantically meaningful hierarchy among them,
e.g., corn and cotton are examples of crops, whereas peaches,
grapes and almonds belong to the tree crop category. Standard
practice of training neural networks via stochastic gradient
descent do not account for the semantically meaningful orga-
nizations of the classes. Failure to capture such land cover
relationships can raise two issues: 1) The distribution of
different land covers can be highly biased and thus deep
learning models can learn a poor representation for those land



cover classes that appear less commonly in training data; 2)
Given the hidden representation learned by the deep learning
model, class confusion (misclassification) can happen between
any classes that are close in the hidden space. However, in
practice it may cause a more serious outcome if misclassifica-
tion occurs across different high-level classes, e.g., crops vs.
grassland, compared with misclassification within a high-level
class, e.g., corn vs. soybean. Such hierarchical relationships
can be encoded in the form of a topology graph. Specifically,
we can add a regularization penalty in addition to the standard
cross-entropy loss, where the aim is to make the embeddings
(i.e. the output of the decoder) of two pixels to be similar if
they belong to the same super-class. This can be done in the
form of graph regularization, where we construct an output
graph G with the pixels as nodes. For two nodes (i,j) € V,
the edge weight E(,j) is higher if they belong to the same
super-class, and thus we want the embeddings (e;, e;) of these
pixels to be similar as shown,

1
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where, Lap(G) is the Laplacian matrix for the output graph
G. For efficient computation and faster run-time, in each
epoch we can randomly select R pixels for each super-class
to construct this output graph. The model is thus trained
according to the objective:

1
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where, )\ is a hyper-parameter to balance the cross-entropy
loss and the hierarchical loss.
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