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Abstract—Knowledge Distillation (KD) has been considered as
a key solution in model compression and acceleration in recent
years. In KD, a small student model is generally trained from a
large teacher model by minimizing the divergence between the
probabilistic outputs of the two. However, as demonstrated in
our experiments, existing KD methods might not transfer critical
explainable knowledge of the teacher to the student, i.e. the
explanations of predictions made by the two models are not con-
sistent. In this paper, we propose a novel explainable knowledge
distillation model, called XDistillation, through which both the
performance the explanations’ information are transferred from
the teacher model to the student model. The XDistillation model
leverages the idea of convolutional autoencoders to approximate
the teacher explanations. Our experiments shows that models
trained by XDistillation outperform those trained by conventional
KD methods not only in term of predictive accuracy but also
faithfulness to the teacher models.

Index Terms—Explainable Machine Learning, Knowledge Dis-
tillation, Knowledge Transfer, Neural Network Distillation

I. INTRODUCTION

With the extensive deployment of deep neural networks
models (DNNs) on lightweight and low computing resources,
such as mobile devices, or Internet-of-Thing (IoT) devices,
Knowledge Distillation (KD) has been shown as one of the
most promising approaches to transfer knowledge from a large
model, called teacher, to a smaller one, called student, without
loss of predictive power and validity [1], [2]. The core concept
is that the teacher model is utilized during a KD process to
guide the student model by passing on substantial information.
With similar performance, the student models have much less
parameters and can be deployed on less powerful hardware.
KD has been successfully used in several application domains,
such as computer vision and natural language processing [3].

With an increasing alarm by the public and researchers
on the lack of interpretablity of current DNNs, that is, they
have been used as black-boxes with a little explanation,
transferring the explainability is as important as preserving
the predictive accuracy in knowledge distillation. Being able
to adopt the teacher explanations is significantly desirable
because: 1) Explanations provide transparency to the models’
prediction, thereby increasing trustworthiness in using models
[4]. 2) Trustworthiness and faithful explanations can identify
models’ failures and bias when not all possible scenarios are

testable [5], thereby avoiding several shortcuts learning that
existing DNN models have been exhibiting [6].

Fig. 1: The inconsistency between the explanations of the
predictions of the two models.

Unfortunately, while existing KD approaches have been fo-
cused on preserving the performance accuracy, the explanation
on why the model makes its prediction is not transferred from
the teacher to the student model. As most of the existing
teacher models are not interpretable by themselves, we use a
post-hoc explainer SHAP [7] to explain the important features
to the model’s prediction. Figure 1 illustrates an inability of
transferring the explanation knowledge of existing KD models.
As can be seen in Figure 1, the explanations of the teacher
and student models of the same image are inconsistent, using
SHAP.

Along this direction, this paper proposes an effective KD
model, called XDistillation, which not only maintains the
teacher’s performance but also approximates the teacher’s
explanation. Sitting in the heart of XDistillation is a novel
explainable features fusion technique that significantly reduces
the total number of student parameters while ensuring consis-
tency between teachers’ and students’ explanations. Extensive
experiments demonstrate that XDistillation provides consistent
explanations between the teacher and student models while
being on par with existing KD techniques in terms of perfor-
mance accuracy.

The remainder of the paper is structured as follows. Section
II presents the related works. Our proposed XDistillation
model is introduced in Section III while the experimental
analysis are discussed in Section IV. Finally, Section V
concludes our paper.978-1-6654-3902-2/21/$31.00 © 2021 IEEE
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Fig. 2: The overall architecture of XDistillation. The top network illustrates the training phases using two losses functions as
described with more details in section III. The first loss minimizes the inconsistency between the explanations of a teacher
model and our approximated explanations by a novel explainable feature fusion technique. The second loss minimizes the
predictions among the two models. The bottom network depicts the evaluation measures in term of the accuracy performance
and explanations.

II. RELATED WORK

Knowledge Distillation. The concept of knowledge distill-
ing relates to the idea of model compression, where a teacher
model guides the student model while retaining a high degree
of generality [1]. Since then, there have been studies on various
methods of knowledge distillation to improve the student
model. Zagoruyko et al. in [8] proposed the use of attention
maps where Heo et al. [9] utilize the activated neurons to
distill only the valuable information to a student model, and
Tung et al. [10] follow activation patterns of neurons between
a teacher and student model. Yet, no prior attempts have been
made to distill the explanations from a teacher a student to
improve both a student’s performance and explanations.

Explainable Artificial Intelligence (XAI). One of the ma-
jor deficiencies to the deployment of DNN models is the lack
of transparency [11]. The black-box structure of these models
permits strong predictions. However, they cannot be explained
explicitly. This problem has initiated a new discussion about
explainable AI [12]. The purpose of employing interpretability
in AI models is to verify the model predictions and the
important features that contribute to these predictions can be

interpretable to end-users [11], [12] whereas preserving a high
degree of accuracy performance in the same time.

Two popular types of methods have been presented
in the literature to tackle the interpretability needs: (1)
backpropagation-based such as CAM [13] and GradCAM
[14]. (2) perturbation-based such as occlusion analysis [15],
LIME [16], and SHAP [7]. On the one hand, predictions
and explanations in backpropagation-based methods are both
generated by the same fundamental technique. Those methods
use the properties of Convolutional Neural Networks (CNNs)
by utilizing the activations of the models convolution layers
to describe the relation of the input to the output [14]. On the
other hand, the perturbation-based methods address the impact
of the input perturbations on the output to identify important
features for explanations.

Autoencoders (AEs) Using an autoencoder is a common
technique for ensuring that the input and output are as com-
parable as possible [17]. The autoencoder is a form of neural
network that is capable of learning a compressed version of
the input data in unsupervised manner. Autoencoders have
been made significant contributions to the field’s application



and research including dimensionality reduction [17], image
improvement [18] and detection of outliers [19]. Recently,
different variant of AEs has been proposed such as convo-
lutional autoencoders (CAE) [20] and denoising autoencoders
(DAE) [21]. One of the primary benefits of AEs is their ability
to approximate any function. However, no attempt has been
made previously to approximate the explanations of model
predictions

In this paper, we select well-known explainers from
backpropagation-based and perturbation-based categories to
use them during the training and testing phases, as it describes
later in Sections III and IV. Particularly, for the first category,
GradCAM is chosen as it is computationally efficient (requir-
ing only a single forward and backward pass via a network).
For a particular decision, GradCAM gives a value to each
neuron utilizing gradient information that flows into the CNN’s
last convolutional layer [14]. LIME and SHAP are selected
from the second category as providing users with explanations
in the form of feature importance score has been seen as a
successful technique [7], [16].

III. THE PROPOSED MODEL

We design a simple but effective model, called XDistillation,
which provides explanation-distillation from the teacher to
increase the performance and enhance the explainability of
the student. Figure 2 shows an overview of XDistillation
where the key functionalities are explainable features fusion
component, how the interpretable features output of this fusion
component is fed into Convolutional neural networks (CNNs)
via concatenation layers, and how to constrain the signal
outputs from CNN (feature reduction-FR in Figure 2 ) to allow
more explainability freedom from the explainable fusion part.

Due to an importance of the explainable features fusion
component, we first describe it in section III-A. Section III-B
presents the overall picture of the distillation technique, includ-
ing the feature reduction in a CNN structure, concatenation
layers, and the details of the training phases.

A. Explainable Features Fusion

The goal of the explainable features fusion component is
to first extract the explanation features from a teacher model
and then approximate those valuable features. The explainable
fusion component includes a reliable explainer and CAE as
illustrated in Figure 4.

Since existing teacher models work in a black-box manner
without explicitly explaining why they make their decisions,
we will use post-hoc explainers, such as SHAP, LIME,
GradCAM, to extract important features that contribute to
the model’s output prediction, called explanations. Next, we
leverage the idea of convolutional autoencoder (CAE) [20] to
learn and transfer the explanations of the teacher to the student.

Unfortunately, the current representation of explanations
from existing explainers such as SHAP, LIME, GradCAM is
not ready for us to feed into CAEs. Furthermore, CAEs were
designed to imitate its images input as nearly as possible to
its output, not to approximate and extract important features

Fig. 3: The output of convolutional autoencoder after feeding
the SHAP explanation. The CAE trained on the original
SHAP representation. We can observe the sparsity issue on
the left images. Hence, the CAE fails to mimic the desired
explanations.

to predictions with the lowest possible number of parameters.
We will address these two challenges in sections III-A1 and
III-A2 accordingly.

1) New Representation for Explanations

For the sake of simple demonstration, we will use SHAP
as an explainer for our model as SHAP is one of the state-of-
the-arts among existing explainers [7]. In our experiments, we
will demonstrate the use of our new explaining representation
for other explainers.

The current SHAP representation cannot be approximated
by CAEs due to a sparsity issue, as shown in Figure 3.
The sparsity issue occurs when the available explanations
among the channels are not enough for the CAE to mimic the
explanations. Therefore, the CAE fails because decisions of
filling those empty areas with SHAP explanations (positively
or negatively) cannot be taken randomly. In particular, SHAP
explainer does not work smoothly with RGB (Red, Green,
and Blue) images. The issue is far different for RGB images
in comparison to grayscale images. Figure 5 shows SHAP
explanation on top of trained VGG16 model [22] for a random
image from CIFAR-10 dataset [23]. As can be seen, the SHAP
values are quite sparse and spread between the channels. For
each channel, most values are zeros, making the issue like
a high-dimensional classification problem. Additionally, the
non-zero values are quite high (e.g., −5, +3, etc). In other
words, a sparse representation of data is a representation in
which few parameters or coefficients are not zero, and many
are (strictly) zero.

To overcome the sparsity issue while preserving this XAI
goal, we divide an image into smaller superpixels, given the
SHAP values. For each superpixel patch, we sum all SHAP
values within that patch. The superpixel in this way will
describe an actual effect of SHAP values that we will have



Fig. 4: The overall architecture of the explainable features fusion component. Given an explanation image as input, the
fusion component generates the approximated explanation, consisting two main functionalities: (1) a new representation for
explanations and (2) an approximation of an image explanations using convolutional autoencoder.

Fig. 5: The sparsity issue of SHAP values. We can observe the
sparsity issue between RGB channels for SHAP explanations
of the two images. Also, the SHAP explanation of the truck
image on the third column does not reveal clear information
whether the used model classified the image correctly since
the positive and negative values are mixed.

Fig. 6: The new representation of SHAP values. We can
observe the improvement of the SHAP explanation of the
two images using the new representation. Moreover, we can
visually say that the truck image on the third column is
classified correctly as the SHAP values react positively with
the truck in the image.

on the model’s output (either negative or positive). Figure
6 shows the new representation which solves the sparsity
issue. The two images in Figure 6 were classified correctly
by training the VGG16 model. Then, the SHAP explanations
of the two images segmented with different patches (images in

the second column). The new representation of SHAP in the
third column clearly demonstrates different dominant areas in
the image either positively or negatively, reflecting the model’s
confidence in classifying those images. For instance, the model
was certain that the object in the first image is a truck, as
we can see from the positive SHAP values for most patches.
However, the model doubts the object in the second image to
be a fork.

Fig. 7: Non adequate SHAP segmentation.

In order to do a proper superpixel segmentation to handle
the sparsity issue, we adopt a simple linear iterative clustering
(SLIC) algorithm [24], which is a local k-mean cluster of
5D pixels. SLIC takes the desired number of approximately
equally-sized superpixels k as input and clusters them using a
new distance measure that takes superpixel size into account.

Selecting a value k is important. By experiment, k should
be in a range of [3, 20]. If k < 3, we will have large patches
for an image as it is shown in the left image in Fig. 7 which
merge the SHAP positive and negative values, and therefore
we cannot know what parts contribute to which areas. On the
other hand, if k > 20, we will have the same sparsity issue for
some parts of the image as shown in the right image of Fig.
7. In our experiments shown in Section IV, we set k = 19.

2) Convolutional Autoencoder (CAE)

Preliminaries and Notations. Generally, convolutional au-
toencoders (CAEs) are a form of neural networks that consist
of two parts: (1) encoder, which learns to encode the important
information of an input into compressed latent representation.
(2) decoder, which reconstructs the input again from the
latent representation [20]. Mathematically, CAE maps an input
x ∈ Rd to a latent representation h ∈ Rl, where usually d > l.
The latent representation of the i-th feature map for a single-
channel input x is given by



hi = σ
(
x ∗ Wi + bi

)
(1)

where the bias b is applied to the entire map, σ is an
activation function, W is the trainable weights and ∗ denotes
2D convolution layer.

Current Usages and Limitation. The most popular use
of CAE is feature extractor for classification [20]. This can
be done in two ways: (1) Eq. (1) is used to preserve the
most important information from an input via a convolution
layer. Then, the latent representation is used with different
CNNs for a classification task. (2) the encoder (Eq. (1)) and
decoder (reconstruction in CAEs [20]) parts are used, but with
replacing some of the convolution layers in the decoder part
with fully connected layers to do the classification task.

Since the primary goal of using CAEs is not to do the clas-
sification task, most of current CAEs use the fully connected
layers as part of their frameworks which increase the total
number of parameters. If naively applying this approach, the
number of parameters in a student model significantly exceeds
that of a teacher model. Also, using existing modified CAEs to
do the classification task requires us to use Softmax on the last
layer, which makes us lose critical information of explanations.

Our Proposed CAE. To overcome the limitations, we first
adopt the convolutional autoencoder as an image transfor-
mation function. The input of the auto-encoder x will be
an image, and instead of a reverse mapping function, its
purpose is to approximate the SHAP explanations of the
teacher model t(x), which will be a convolutional neural
network. Our objective here is to reconstruct (approximate)
SHAP explanation of the teacher model as it is shown in
Figure 4.

We use Eq. (1) to calculate the latent representation of the
i-th feature map for a single-channel input x. The estimation
of the SHAP values eT of t(x) (the first part of the training
phase in Figure 2) is approximated as follows:

eCAE = σ

(∑
i∈H

hi ∗ W̃i + b

)
(2)

where W̃ denotes the flip operations over the dimension
weights and H is a set of latent feature map.

We use different rule of thumbs to preserve the parameters
constraint for teacher-student model while allowing CAE to
approximate SHAP explanations successfully at the same
time. First, the non-linearity data processing is the primary
goal of an activation function after each layer [25]. Be-
cause convolution/deconvolution operations are multiplications
in nature, our visualization revealed that the result of the
convolution/deconvolution operations (the values of feature
maps) increased sharply from layer to layer, preventing the
CAE model from converging during training. Thus, the use of
hyperbolic tangent activation functions, which constrain the
resulting values of feature maps to the interval [-1,1], sets
appropriate limits on the values of feature maps at the end of
the decoder part as well as maintaining the SHAP valuable
information since SHAP values will be within the range for

a model that outputs a probability [26], and provides good
convergence of the whole model.

Second, the basic structure of the autoencoder is extended
by changing the completely connected layers to convolution
layers in the convolutional autoencoder because (1) leveraging
convolutional operations not only for slower training time
and chances of reducing overfitting but also maintaining a
reasonable total number of parameters. For instance, the total
number of parameters for the small CAE version in Table
I (Section IV) are reduced from 279, 872 to only 1077. (2)
The 2D image structure is ignored by fully connected AEs
or partially by fully connected layers in CAEs. This not only
creates redundancy in the parameters while handling inputs of
exact magnitude.

A sample of successful SHAP approximation by the fusion
component is shown in Figure 4 where SHAP explainer is first
employed on top of a correct prediction of the teacher model
for a plane image. The new representation of SHAP values
is then prepared as described in Section III-A1 and passed to
our new CAE, which produces the explainable features that
describe the plane visually, as it can be seen in Figure 4.

B. XDistillation Model

We are now ready to describe the rest of our proposed XDis-
tillation model. Figure 2 demonstrates the overall architecture
of XDistillation model, which consists of (1) explainable
feature fusion component, and (2) CNN model. We use the
first component, our CAE model, to transfer the explanations
knowledge from a teacher model to the CNN model. Ad-
ditionally, we use the feature reduction FR to allow more
explainabiilty freedom associated with the first component.

For a given image x, a teacher model generates a vector of
prediction scores

st(x) =
[
st1(x), s

t
2(x), . . . , s

t
u(x)

]
,

where t refers to the teacher model, x is the input and u is the
value of the scores which are then transformed to probabilities:

ptu(x) =
exps

t(x)∑
j exp

stj(x)
.

Since the trained neural networks generate probability dis-
tributions with peaks that might be less instructive, we utilize
the method in [1] for temperature scaling to ”Smooth” those
probabilities:

p̃tu(x) =
exps

t
u(x)/τ∑

j exp
stj(x)/τ

, (3)

where τ > 1 is a temperature hyperparameter.
Similarly, the CNN model inside the XDistillation model in

Figure 2 also returns a smooth output denoted by p̃s(x) where
s refer to the CNN model.

Figure 2 illustrates 2 training phases of XDistillation. In the
first training phase, SHAP explainer is used to obtain ground
truth explanations of t(x). Following that, We train CAE using



the Mean Absolute Error (MAE) as follows (LXD loss in
Figure 2 ):

LXD =
1

2n

n∑
i=1

(eCAEi
− eTi

) , (4)

where eCAEi is described in Eq. (2) and eT is the ground
truth explanations of t(x). The weights are then updated with
classic backpropagation with stochastic gradient descent.

With the trained CAE model, we feed its output to a CNN;
the resulting representations are flattened and concatenated
before they are used as an input of the classifier part of the
model. An illustration of our architecture can be found in
Figure 2.

In the second training phase, we use the knowledge distil-
lation loss (LKD loss in Figure 2) which can be defined as
follows:

LKD = −τ2
∑
b

ptu(x) log p
s
u(x) (5)

We extended the objective function with feature reduction
FR for the last layer after the concatenation ca. In combination
with the knowledge distillation loss defined in Equation 5, this
yields the total loss function:

L = Lcls + (1− α)LKD + FR(λ||c||22) (6)

where λ is signal controller hyperparameter, and c is the
weight of last layer of the concatenation part. The feature
reduction FR adds coefficient squared magnitude to the loss
function as penalty term in last layer (concatenation layer as
it is shown in Figure 2). The cross entropy function is defined
as:

Lcls = −
M∑
a=1

y log(p(ya))

where M is the number of classes, y is the truth labels and
p(ya) is the softmax probability for ath class.

The λ in FR acts as a signal gate controller between
the incoming signals from both CNN and the feature fusion
component. In other words, if λ = 0, then the signals pass
the gate without constraints. However, if λ is large, then
the incoming signals from the fusion component have more
freedom to pass the gate and feed into the CNN model with
implicit interpretable features.

Therefore, we increase the feature reduction value to con-
strain the coming signals from the CNN model, which com-
putes various kinds of features in an image such as edges,
curves. This gives more freedom to approximated explanations
from the explainable fusion component. Those features carry
important explanations features of the teacher model. Then
we merge the approximated SHAP explanation features of the
teacher model with CNN features as follow:

The operation of concatenation layer in the context of
tensors, is the operation of joining tensors along one dimen-
sion using Linear layer. In particular, given x ∈ IRnxg and

y ∈ IRmxg, where x is CAE features, and y is CNN features.
The resulting tensor after concatenation ca will then be:

cat(x, y) = [x1, ..., xn, y1, ..., ym]

where xi ∈ IR1xg

and yi ∈ IR1xg

Figure 2 illustrates the details of XDistillation. It is crucial
to note that in Xdistillation at the testing phase, we use the
frozen weights of the CAE because the CAE trains separately
and only once. The purpose behind using the pre-trained CAE
and not train it with CNN model is that: (1) reducing the
training time of using our model with different types of student
models. (2) providing flexibility to our method to be used with
various explainers without retraining the CAE. Training the
explanations of only one explainer, SHAP values, for teacher
model in Figure 4 and then use it in XDistillation improves
the explanation output of the proposed model, which is similar
to the actual explanations of the teacher model.

IV. EXPERIMENTAL ANALYSIS

In the following experiments, we analyze XDistillation in
terms of predictive accuracy and explanation similarity (testing
phase in Figure 2). In this section, we first describe our
experimental setup and description of testing datasets. Next,
we show the benefits of the explanation infusion step on
the predictive performance of different models and compare
XDistillation with other state-of-the-art distillation methods in
term of test accuracy. Finally, we evaluate the consistency
of the student model’s explanations generated by different
knowledge distillation methods.

TABLE I: The hyper-parameters Details of the convolutional
autoencoders

CAE Model Type Kernel size Stride Padding #parameters

Small CAE Conv2d 3 1 1077
MaxPool2d 2 2

Conv2d 3 1
MaxPool2d 2 2

ConvT 2 2
ConvT 2 2

Large CAE Conv2d 4 2 1 198,796
Conv2d 4 2 1
Conv2d 4 2 1
Conv2d 4 2 1
ConvT 4 2 1
ConvT 4 2 1
ConvT 4 2 1
ConvT 4 2 1

A. Experiment Setting

Dataset. Our experiments are conducted on MNIST [27]
and CIFAR-10 [23] datasets. The MNIST dataset contains
images of 28 × 28 grayscale hand-written digits. In our
experiments, the training-testing split is 60, 000 : 10, 000. On
the other hand, CIFAR-10 consists of 60, 000 32× 32 colour
images in 10 classes, with 6000 images per class. There are
50, 000 training images and 10, 000 test images.



TABLE II: Model Generalization

Dataset autoencoder Model Accuracy % #parameters

MNIST Small CAE Teacher(LeNet5) 99 61,701
Baseline student(Net) 97 8,297

KD (Net) 98 8,297
Xdistillation (Net) 98 17,386

CIFAR-10 Large CAE Teacher (VGG16) 93.78 14,728, 266
Baseline student(VGG7) 89.2 2,781,386

KD (VGG7) 90.2 2,781,386
Xdistillation (VGG7) 90.9 3,521,276

CIFAR-10 Large CAE Teacher(VGG16) 93.78 14,728, 266
Baseline student (VGG11) 92 9,231,114

KD (VGG11) 92.41 9,231,114
Xdistillation (VGG11) 92.59 9,624,598

Teacher Models. In our experiments, the teacher models
are implemented using LeNet5 [28] and VGG16 architecture
[22] for the MNIST and CIFAR-10 dataset respectively. The
LeNet is trained using MSE loss and Adam optimizer with
learning rate 0.001 and number of epochs 150. In CIFAR-
10, our training included data augmentations with random
horizontal flips and random crops of size 32 with a possible
padding of 4 pixels. The training utilizes with a batch size
of 128 for 500 epochs. The optimizer is stochastic gradient
descent with a momentum of 0.9 and a learning rate schedule
of 0.1, 0.01 and 0.001 starting from the epochs 0, 150 and 250
respectively. The models’ accuracy and number of parameters
are shown in Table III.

Student Models. The student models in our experiments
are smaller LeNet5 for MNIST and VGG7 [22] for CIFAR-
10. Their testing accuracy and number of parameters can
also be found in Table III. The student models are trained
using some state-of-the-art distillation knowledge techniques,
including knowledge distillation (KD) [1], attention transfer
(AT) [8], neural selective transfer (NST) [29], and activation
boundary (AB) [9].

XDistillation Model. To train XDistillation, we first use
SHAP [7], LIME [16] and GradCAM [14] explainers to
generate the teacher’s explanations. Then, the explanations are
transformed as described in section III-A1 and the convolu-
tional autoencoder as described in section III-A2 is trained
based on these transformed explanations. The autoencoder is
trained using the L1 loss and the Adam optimizer with a
learning rate of 0.001. The detail of the large CAE is shown
in Table I. The CNNs used in XDistillation have the same
architecture and parameters as the student models. The CNN
is trained using the loss Eq. (6). We typically use α = 0.9 and
temperature τ = 1.

One key parameter that determines XDistillation’s perfor-
mance is the choice of the regularized parameter λ controlling
the model’s signal from the CNN and the CAE as described
in equation (6). Figure 8 shows the accuracy of XDistillation
during training with different values of λ. In the following
experiments, we use λ = 5e− 4.

Fig. 8: The testing accuracy of XDistillation during training
with different regularized parameter λ (equation 6)

TABLE III: Performance Comparison

Model Accuracy % #parameters

Teacher 93,78 14,728, 266
Baseline student 89.2 2,781,386

Knowledge distillation (KD) 90.2 2,781,386
Attention transfer (AT) 90 2,781,386

Neural selective transfer (NST) 89.47 2,781,386
Activation boundary (AB) 89.36 2,781,386

Xdistillation 90.9 3,521,276

B. Results

Predictive performance. We first demonstrate the advan-
tage of the explanation infusion step via CAE by comparing
the test accuracy of XDistillation models with the baseline
student models and the KD models. As shown in Table II,
the introduction of the CAE generally increases the overall
predictive accuracy of the student models.

Table III shows the predictive performance of the XDistilla-
tion model and compares it with other distillation knowledge
methods. We can see that XDistillation outperform the other
models in term of performance with an accuracy of 90.9%. The
second close model to ours is the KD with 90.2% accuracy,
whereas the performance of the remaining models was below
90%. Generally, the accuracy improved in comparison to the
baseline student model and other state-of-the-art methods.



Fig. 9: GradCAM representations where the red color indicates
the important features

TABLE IV: Scoring Distance

XXXXXXXXMSE
Explainer SHAP GradCAM LIME

KD 0.027 0.025 0.006
AT 0.040 0.239 0.014

NST 0.037 0.246 0.015

AB 0.033 0.199 0.014

Xdistillation (our) 0.026 0.024 0.006

Explanation consistency. We now examine the ability
of XDistillation model in providing consistent explainable
features to the teacher model. Here, we use SHAP, GradCAM
and, LIME explainers for our evaluation. Since there are some
differences in the representation of the explainers’ output. In
particular, GradCAM proliferates as heatmap over an image,
shown in Figure 9. On the other hand, LIME explainer
utilizes quickshift segmentation approach [30]. Thus, for a fair
comparison, we apply the explanation’s transformation step
described in subsection III-A1 onto GradCAM and the SLIC
segmentation procedure on LIME.

Given explanations of the same input of the same pre-
dictions from two models, we use the mean square error
(MSE) [31] to measure the similarity between the two expla-
nations. Table IV reports the average MSE on 10, 000 pairs
of explanations in CIFAR-10 experiments. In general, we can
observe that the explanations of XDistillation are more similar

TABLE V: Scoring explanations

XXXXXXXXModel
Explainer SHAP GradCAM LIME

KD 68.3% 56.1% 50.1%

AT 67.9% 52.1% 44.3%

NST 67.6% 58.6% 44.4%

AB 67.3% 55.6% 44.7%

Xdistillation (our) 70.5% 62% 54.4%

to the teacher than other methods.
Since different explainers return different representations,

beside MSE, we also measure the explanation consistency
by measuring the overlapping area of explained super-pixels
returned by each explainer. Specifically, for all correctly
classified inputs by both teacher and student models, we
collect the k most important super-pixels of the corresponding
explanations and compute the sign(x) function as follows:

h(x) =

{
1 where sign(M(x)) = sign(T (x))

0 otherwise

where M(x) is the explanation value of overlapping SLIC
super-pixels patch that classified correctly by the student
model, T (x) is the explanation number of overlapping SLIC
super-pixels patch that classified correctly by the teacher
model, and sign(.) is a function where it returns 1 if the
explanation segments of the teacher and the student have same
sign. We then compare the counts of the correct explanation
patches h(x) for both models, our XDistillation and other KD,
based on the baseline model (VGG7), with normalization.

Table V shows the overlapping-score of XDistillation and
other methods. As can be seen, our proposed model has
more similar explanations to the teacher model in comparison
to knowledge distillation methods and baseline model. For
instance, the overlap area of GradCAM for XDistillation
method improved by about 6% compare to the second close
model to our method in term of the explanation performance
which means our model is more similar to the teacher model.
For reference, Figure 11 provides examples of explanations of
some predictions generated by SHAP, LIME and GradCAM
along with the corresponding overlapping-scores.

Fig. 10: Occlusion Analysis

Occlusion Analysis. Occlusion analysis is a simple method
for understanding which parts of an image are most important
for a model. Small perturbations of the data can be used
to measure a network’s sensitivity to occlusion in different
regions of the data. The process for an occlusion experiment
is as follows: we first mask part of an image before feeding
it into three different trained models, including the (VGG16),
our proposed model, and KD (VGG7) [1]. Then, we draw a
heatmap of class scores for each masked image. Lastly, we
slide the masked area to a different spot and repeat the step
process again until we cover all the images. The reasoning
behind all these is that if the class score for a partially occluded
image is different than the true class, then the occluded area
was likely very important.



Fig. 11: We use SHAP, LIME and GradCAM to compare the overlap area of teacher, student and our proposed method to a
original image for topK: 2



Figure 10 shows samples of the occlusion for the three
models. In our human-subjective test, we apply the experiment
for randomly 30 samples for each model whose predictions
made correctly. thirty users were asked to choose which two
of the three models are most likely similar to each other based
on heatmap features. 18 out of 30 select the most likely models
to each other are the teacher and XDistillation model where
5 individuals choose XDistillation and KD model. We can
observe that the the most important features captured by the
two models, teacher and XDistillation, are most likely similar
to each other.

V. CONCLUSION

Knowledge distillation (KD) tackles the issue of transferring
knowledge from a vast and complicated neural network to
a smaller one. The standard methodology reduces the KD
divergence between a teacher and student model’s outputs.
However, current KD techniques ignore an important infor-
mation of an explanatory network of the teachers. In this
paper, we present XDistillation, explanatory model that mim-
ics teacher explanations. We show experimentally that our
proposed model outperforms the existing KD techniques. The
Xdistillation method offers the ability to eliminate incoherence
of the explanations between the teacher and the student
patterns apart from current KD strategies.

ACKNOWLEDGMENT

This work was supported in part by the National Science
Foundation Program on Fairness in AI in collaboration with
Amazon under award No. 1939725.

REFERENCES

[1] G. Hinton, O. Vinyals, and J. Dean, “Distilling the knowledge in a
neural network,” in NIPS Deep Learning and Representation Learning
Workshop, 2015.

[2] S. Han, J. Pool, J. Tran, and W. J. Dally, “Learning both weights and
connections for efficient neural network,” in NIPS, 2015.

[3] J. H. Cho and B. Hariharan, “On the efficacy of knowledge distillation,”
in Proceedings of the IEEE/CVF International Conference on Computer
Vision, 2019, pp. 4794–4802.

[4] R. Alharbi, M. N. Vu, and M. T. Thai, “Evaluating fake news detection
models from explainable machine learning perspectives,” in ICC 2021-
IEEE International Conference on Communications. IEEE, 2021, pp.
1–6.

[5] A. B. Arrieta, N. Dı́az-Rodrı́guez, J. Del Ser, A. Bennetot, S. Tabik,
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