
Training Graph Neural Networks by Graphon

Estimation

Ziqing Hu ∗

zhu4@nd.edu

Yihao Fang ∗

yfang5@nd.edu

Lizhen Lin ∗

lizhen.lin@nd.edu

∗Department of the Applied and Computational Mathematics and Statistics

University of Notre Dame

Notre Dame, IN, USA

Abstract

In this work, we propose to train a graph neural network via resampling from a graphon estimate

obtained from the underlying network data. More specifically, the graphon or the link probability matrix

of the underlying network is first obtained from which a new network will be resampled and used during

the training process at each layer. Due to the uncertainty induced from the resampling, it helps mitigate

the well-known issue of over-smoothing in a graph neural network (GNN) model. Our framework is

general, computationally efficient, and conceptually simple. Another appealing feature of our method is

that it requires minimal additional tuning during the training process. Extensive numerical results show

that our approach is competitive with and in many cases outperform the other over-smoothing reducing

GNN training methods.

Index Terms

Graph neural network, Graphon estimation, Oversmoothing, Resampling.

I. INTRODUCTION

This paper considers an approach for mitigating the well-known problem of over-fitting and

over-smoothing in the training of Graph Neural Networks (GNN)s and lies at the intersection

of graphon estimation and neural network models. GNNs, initially proposed to capture graph

representations in neural networks [21], have witnessed an upsurge for semi-supervised learning

in a variety of tasks including node classification, link predictions, and many others. The goal

of each GNN layer is to transform features while considering the graph structure by aggregating

1

ar
X

iv
:2

10
9.

01
91

8v
1 

 [
cs

.L
G

] 
 4

 S
ep

 2
02

1



information from connected or neighboring nodes. When there is only one graph, the goal of

node classification is to predict node labels in a graph while only a portion of node labels are

available (even though the model might have access to the features of all nodes). Inspired by

the advance of convolutional neural networks [14] in computer vision [13], Graph Convolutional

Network (GCN) [11] employs the spectra of graph Laplacian for filtering signals and the kernel

can be approximated using Chebyshev polynomials or functions [31, 24]. GCN has become a

standard and popular tool in the emerging field of geometric deep learning [1]. However, the

issue of over-fitting arises when an overparametrized model such as the deep neural network, is

applied to a distribution with limited training data, where the learned fits the training data well

but generalizes poorly to the testing data. This can be illustrated briefly by fitting a deep GNN

(more than 4 layers) to small a graph data (e.g., the Cora dataset). On the other hand, the issue

of over-smoothing introduced by [17] towards the other extreme, bringing difficulties to deep

GNN training. Further explained by [24], graph convolutions mix representations of adjacent

nodes and result in all nodes’ representations converging to a stationary subspace or point [18].

This phenomenon is called over-smoothing of node features [20]. By way of illustration, GCN

models with more than 8 layers are observed to converge poorly in our experiments.

To alleviate those two issues, inspired by [28], we propose a new GNN structure with resam-

pling the adjacency matrix in the feed forward propagation via graphon estimation. Graphon, a

function that determines the matrix of edge probabilities, plays an important role in graph theory

and statistics [7, 30]. The estimation of probabilities of network edges from the observed adjacent

matrix, known as ”graphon estimation”, has a wide range of applications to predicting missing

links and network denoising [2, 15]. In our framework, we assume the observed adjacency matrix

A is generated from an underlying probability matrix P so that for i ≤ j, A′ijs are independent

Bernoulli(Pij) trails where Pij are edge probabilities. Consequently, we resample the adjacency

matrix A from the estimated distribution P in the feed forward propagation for each training

epoch. There are several benefits in applying the resampling strategy for training GNN. First,

resampling the adjacency matrix is one way for data augmentation to relieve the over-fitting.

We obtain more graph samples from the underlying distribution under this method. Second,

resampling strategy can be considered as noise addition to the deterministic GNN and which

avoids our nodes’ representations converging to the stationary subspace [18], hence solving the

over-smoothing phenomena. Finally, since we consider the underlying distribution of the graph,

our method is able to achieve a stable result under noisy graphs.

2



Our work is organized as follows. Section II reviews some related work. Section III provides

an overview of some background information such as GNN and GCN. The proposed algorithm

is described in section IV and a series of experiments are performed in section V to evaluate our

proposed method’s efficiency and sensitivity to hyper-parameters. Finally, the work is concluded

in section VI.

II. RELATED WORKS

A. GRAPH NEURAL NETWORK

Most graph neural networks, as mentioned above, are treating the related graph as ground-truth

deterministic structure between nodes, but often the graph itself may be subjected to random per-

turbation or theoretical assumptions that might lead to unreliable results given the uncertain graph.

[27] firstly propose a Bayesian version GCN (BGCN) to incorporate the potential uncertainty

presented in the graph. Similarly, [4] extend the BGCN to include the node features and adopt

the variational inference method to estimate the posterior distribution which achieve comparable

result under adversarial attack setting. However, due to the computation complexity, it’s not easy

to apply the model on large datasets. Based on bilevel programming, [6] proposes a method

for jointly learning the graph structure and network parameter via constrained optimization.

From over-smoothing alleviation perspective, [10] propose Graph DropConnect (GDC) method

to alleviate the over-smoothing issue in GCN by resampling the graph for each node feature and

show that DropOut [22], DropEdge [20] and Node Sampling [3] are special cases of GDC with

respect to different settings. However, there is no theoretical guarantee that GDC can reduce

the over-smoothing issue. Finally, similar to our work, [29] propose a two-step procedure for

data augmentation in graph neural network. They firstly use graph auto-encoder (GAE) [12] to

estimate the edge probability which is used for resampling in later procedure. Then, combining

the resampled graph with original graph, they applied another graph neural network to learning

the embedding of nodes. However, their emphasis is very different from ours as we focus on

reducing over-smoothing issue in a deep graph neural network.

B. GRAPHON ESTIMATION

Graphon estimation is an important component of our proposed procedure for training the

GNNs. A prominent estimator of the graphon is the so-called USVT (Universal Singular Value

Thresholding) estimator [2]. USVT is a general procedure for estimating the entries of a large

3



structured matrix, given a noisy realization of the matrix. This includes estimating the link

probability matrices which is our case of interest. The key idea behind USVT is to threshold the

singular values of the observed matrix at an universal threshold which essentially approximates

the rank of the population matrix, and then compute an approximation of the population matrix

using the top singular values and vectors. A recent work by [28] proposes a statistically consistent

and computationally efficient method for estimating the link probability matrix by neighborhood

smoothing. More specifically, given an adjacent matrix A, the link probability Pij between node

i and j is estimated by

P̂ij =
1

2

(∑
i′∈N (vi)

Ai′j

|N (vi)|
+

∑
j′∈N (vj)

Aij′

|N (vj)|

)
, (1)

where N (vi) is a certain set of neighboring nodes of node vi (which consists of the nodes that

have similar connection patterns as node vi). Rather than simply choosing connected node as

neighbours, the neighbour is selected by the following criteriaN (vi) =
{
i′ 6= i : d̃ (i, i′) ≤ qi(h)

}
where distance d̃2 (i, i′) is defined as d̃2 (i, i′) = maxk 6=i,i′ |〈Ai − Ai′ , Ak·〉| /n and qi(h) is the

h-th sample quantile of the set
{
d̃ (i, i′) : i′ 6= i

}
.

Typically for large networks USVT is more scalable than the neighborhood-smoothing ap-

proach. There are several other methods for graphon estimations, e.g., by fitting a stochastic

blockmodel [23]. These methods can also be used in our proposed GNN training algorithm.

III. NOTATION AND BACKGROUND

A. Notation

Let G = (V , E) represent the input graph with node set V of size N and edge set E where

vi ∈ V and (vi, vj) ∈ E . N(vi) denotes all the neighbours connected to node vi. We denote the

X = {x1, · · · ,xN} ∈ RN×f as the node feature matrix and A ∈ {0, 1}N×N as the adjacency

matrix. Let D be the diagonal matrix with node degrees di =
∑N(vi)

i=1 Ai,j as its entries. I is the

identity matrix.

B. Graph Neural Networks

The Graph Neural Networks (GNN) can be seen as an extension of NN that learns the

embedding of the data in graph domains [21]. The basic idea can be written by a local transition

function as, for each node vi, . . . , vn,

xl
vi
= fl(x

l−1
vi
,xl−1

N(vi)
;Wl) (2)

4



where xl−1
N(vi)

represents all the neighbouring information of node vi at the lth layer. The xl
vi

and

Wl are the embedding of node vi and the model parameters at l-th layer, respectively.

The Graph Convolutional Network (GCN) developed in [11] is one of the variants of GNN

with the message passing mechanism as the graph signal filter in graph Fourier space, which

can be written in matrix form as:

X l = σ
(
ÃX l−1W l

)
, (3)

where σ is a element-wise nonlinear activation function such as ReLU(x) = max(x, 0), W l is

a f l × f l−1 parameter matrix that needs to be estimated. Ã denotes the normalized adjacency

matrix defined by Ã = (D + I)−1/2(A+ I)(D + I)−1/2.

IV. METHOD

In this section, we introduce the methodology of graphon estimation in training of generic

GNNs. Moreover, we also propose and implement its layer-wise variant where we resample

the adjacent matrix A from the estimated distribution P for each layer in the model. We also

illustrate how our graphon estimation technique can alleviate over-smoothing and over-fitting

issues.

A. Resampling strategy

For the given graph G = (V , E) with adjacency matrix A, we apply the neighbouring smoothing

method (NBS) [28] that was described in Section II to estimate the underlying link probability

matrix P , denoted as P̂ (see equation (1)). Other graphon estimation methods can also be used. At

each training epoch, we resample a new adjacency matrix Â from the estimated link probability

matrix P̂ element-wisely following Bernoulli distribution:

Âij ∼ Bern(P̂ij), 1 ≤ i, j ≤ n. (4)

We replace A with Â in equation (4) during training. The original A is utilized for validation

and test.

B. Layer-wise variant

Besides resampling the adjacency matrix Â for the whole propagation, we can resample Âl

independently from Equation 4 for each l-th layer. In particular, different l-layer could have

different matrix Âl and additional randomness and augmentation of the original data could be

brought to our training process. We compare its performance with the vanilla resampling strategy

in Section V.

5



C. Alleviating over-smoothing and over-fitting

Over-fitting occurs when an overparametrized model is utilized to fit a distribution with

limited training data. To prevent this issue, we first estimate the underlying graphon of the input

graph. Our resample strategy works as a data augmentation technique by generating different

realizations of the input data from the underlying distribution. On the other hand, the over-

smoothing phenomenon indicates that the node features would converge to the fixed point as the

network depth increases [17]. Furthermore, [18] has extended the original explanation to a more

general framework by considering the non-linear activation function in the GCN propagation.

Instead of converging to the fixed point, the node features will converge to a subspace related to

the eigenspace of the graph adjacency matrix. The key point of the theory illustrates that when the

same adjacency matrix is utilized for all layers, the whole dynamic system will go closer to the

corresponding eigenspace as the number of layers increases under specific assumptions. To avoid

the phenomena, our proposed method draws random adjacency matrices from the underlying

graphon in training, which helps the dynamic system escape from the subspace. Different from

other random sampling methods like DropEdge and DropNode, the graphon estimation method

is able to detect the underlying graphon and provide a robust estimator with statistical bounds.

Consequently, our proposed method enables us to train deep GNNs more effectively, notably

when the input graphs are noisy.

V. EXPERIMENTS

In this section, we evaluate the proposed resampling algorithm on several datasets through

different network architectures. A summary of datasets and their splitting settings are provided.

All the experiments are conducted by Pytorch [19] and Pytorch Geometric [5].

A. Datasets

The summary statistics of the data are shown in Table I. We follow three different data-

splitting settings for semi-supervised tasks on these datasets. The first setting comes from [26],

named ‘public’, in which 20 samples for each cluster are randomly drawn for training, 500 for

validation, and 1000 for the test. For the next split in [3], named ‘complete’, 1708 samples are

selected for training, 500 for validation and 500 for test. The last setting comes from [16], named

‘full’, which chooses all of the samples for training except for 500 nodes for the validation and

500 nodes for the test. For graphon estimation, we use the whole dataset and pre-compute it

before running the network model.

6



TABLE I

CITATION NETWORK DATASETS SUMMARY

Dataset Nodes Edges Classes Features

Citeseer 3,327 4732 6 3,703

Cora 2,708 5,429 7 1,433

Pubmed 19,717 44,338 3 500

B. Architectures

We employ 3 different widely used GNN architectures in our experiment: GCN[11], Graph-

SAGE[9] and JK-NET[25] with layers ranging from 2 to 16. Note that, for JK-NET, the number

of layers doesn’t include the concatenation and output layer. For the hidden layer dimension,

we follow the same 64-dimension setting with [11]. We choose ReLU function as our activation

function between each layer and the cross entropy as our loss function.

C. Optimization

We initialize the weight parameters through Xavier uniform initialization. All of the data are

row-wise normalized accordingly [8]. The model is trained for 1000 epochs with a learning rate

start from 0.001 and decreased at epoch, 300 and 600 with decay rate 0.5. The Adam optimizer

is used without any penalty term.

D. Results

Due to limited space, we only attach the result of ‘Public’ splitting setting, which is given

in Table II. We let the ‘Resampling’ represents our original algorithm while the ‘Layerwise’

represents the layer-wise variant of our method. We pick the best result of ‘Dropedge’ in each

setting where the dropping rate ranging from 0.2 to 0.8. The reported value are the average and

stand deviation over 10 runs in Table II. Also, we apply the early stopping to keep track of

the validation loss, if the loss stops decreasing for several epochs. As shown by the numerical

results in the table, our Resampling method or its layerwise variant performs the best in most of

the settings for all three datasets and three different GNN architectures considered. Precisely, we

consider a 8-layer GCN with/without Resampling (Layerwise) on the Citation dateset. In term of

the loss evolution among different methods, our Resampling method or the layerwise variant is

able to alleviate both overfitting and oversmoothing issues as shown in Figure 1. Similar patterns

are observed in other splitting settings. The results demonstrate the effectiveness of our proposed

7



methods in comparing with other state-of-art methods. In comparing with other methods, like

Dropedge, which requires multiple comparisons to determine the appropriate Dropedge rate, our

approach requires minimal additional tuning. Once the estimation of graphon is completed, we

can re-use it without any further modification.

(a) Cora - Training (b) CiteSeer - Training (c) PubMeb - Training

(d) Cora - Validation (e) CiteSeer - Validation (f) PubMed - Validation

Fig. 1. The training and validation loss of GCNs on the public split of Citation datasets. We implement the original 8-layer GCN

(in blue), with resampling (in red) and with layerwise variant (in green). The original 8-layer GCN comes up with the overfitting

issue in several epochs with low training loss but high validation loss on all datasets. Furthermore, the validation of the original

8-layer GCN diverges significantly in all cases due to over-smoothing issue. In contrast, our Resampling and layerwise variant

(in green), alleviates both overfitting and oversmoothing issues and achieves smaller validation errors in notably for Cora and

PubMed Fig. 1d and 1f. We utilize early stop technique in training around 100 epochs to achieve the best performance in Table

II. Here we show the loss within 400 epochs for a complete comparison.

VI. CONCLUSION

In this work, we introduced a novel and efficient graphon estimation technique for training

deep Graph Neural Networks. Our proposed method augments the input graph to alleviate over-

fitting and over-smoothing by drawing random adjacency matrix from the estimated graphon.

Considerable experiments on Cora, Citeseer and Pubmed on different splits have agreed that our

graphon estimation method is able to promote the performance of several popular GNNs, like

8



TABLE II

THE TEST ACCURACY OF DIFFERENT METHODS IN ‘PUBLIC’ SETTING

Cora
GCN Original Resampling Layerwise Dropedge Dropout 0.2

2-Layers 79.74± 0.006 80.30± 0.004 76.53± 0.015 80.16± 0.005 80.56± 0.006

4-Layers 76.91± 0.020 77.15± 0.016 74.46± 0.013 78.93± 0.014 78.95± 0.012

8-Layers 68.76± 0.060 70.93± 0.040 69.16± 0.020 71.38± 0.031 71.52± 0.028

16-Layers 59.36± 0.039 59.43± 0.025 65.31± 0.037 60.50± 0.027 64.48± 0.026

GraphSage Original Resampling Layerwise Dropedge Dropout 0.2
2-Layers 76.80± 0.007 78.16± 0.006 78.08± 0.005 52.06± 0.034 77.05± 0.010

4-Layers 78.41± 0.012 78.51± 0.013 77.01± 0.014 43.21± 0.067 79.34± 0.010

8-Layers 75.79± 0.014 74.45± 0.021 74.58± 0.025 52.62± 0.075 76.90± 0.012

16-Layers 72.61± 0.020 71.63± 0.016 69.84± 0.028 34.21± 0.095 67.18± 0.022

JK-Net Original Resampling Layerwise Dropedge Dropout 0.2
2-Layers 47.83± 0.032 65.32± 0.007 65.89± 0.023 52.52± 0.041 48.34± 0.021

4-Layers 49.58± 0.037 63.56± 0.019 63.49± 0.016 44.66± 0.060 51.37± 0.025

8-Layers 49.77± 0.017 62.89± 0.025 60.88± 0.016 32.31± 0.077 55.94± 0.029

16-Layers 56.72± 0.027 59.02± 0.046 52.89± 0.027 27.46± 0.075 57.46± 0.025

CiteSeer
GCN Original Resampling Layerwise Dropedge Dropout 0.2

2-Layers 68.12± 0.008 68.40± 0.006 67.66± 0.010 68.69± 0.005 68.62± 0.009

4-Layers 65.61± 0.024 64.92± 0.018 65.26± 0.016 65.48± 0.015 65.46± 0.016

8-Layers 55.29± 0.029 52.36± 0.041 60.63± 0.030 55.89± 0.037 55.83± 0.043

16-Layers 48.06± 0.027 47.46± 0.025 51.39± 0.015 48.39± 0.030 51.41± 0.024

GraphSage Original Resampling Layerwise Dropedge Dropout 0.2
2-Layers 65.21± 0.013 67.74± 0.012 68.20± 0.012 50.64± 0.037 66.19± 0.007

4-Layers 64.80± 0.017 67.01± 0.017 67.28± 0.012 38.25± 0.085 64.96± 0.017

8-Layers 57.55± 0.048 62.06± 0.026 63.29± 0.023 44.23± 0.037 58.53± 0.043

16-Layers 50.08± 0.053 56.56± 0.032 56.94± 0.028 30.59± 0.043 44.30± 0.031

JK-Net Original Resampling Layerwise Dropedge Dropout 0.2
2-Layers 38.94± 0.019 51.71± 0.018 52.83± 0.026 45.40± 0.032 40.04± 0.023

4-Layers 39.83± 0.020 50.86± 0.022 51.16± 0.023 38.51± 0.049 41.74± 0.021

8-Layers 37.76± 0.027 48.91± 0.023 48.26± 0.015 27.53± 0.046 41.59± 0.029

16-Layers 43.01± 0.027 44.04± 0.032 43.02± 0.027 25.55± 0.035 44.35± 0.015

PubMed
GCN Original Resampling Layerwise Dropedge Dropout 0.2

2-Layers 76.37± 0.003 76.45± 0.003 74.88± 0.019 76.59± 0.003 76.69± 0.002

4-Layers 76.75± 0.004 76.76± 0.006 75.75± 0.011 77.03± 0.007 76.94± 0.006

8-Layers 74.26± 0.020 73.78± 0.027 76.41± 0.011 75.11± 0.033 75.28± 0.026

16-Layers 71.86± 0.022 73.70± 0.021 72.34± 0.021 73.15± 0.017 73.07± 0.021

GraphSage Original Resampling Layerwise Dropedge Dropout 0.2
2-Layers 74.93± 0.006 77.34± 0.004 76.62± 0.007 69.21± 0.023 75.24± 0.006

4-Layers 74.60± 0.009 76.38± 0.010 74.67± 0.006 64.24± 0.046 75.56± 0.010

8-Layers 74.72± 0.013 74.17± 0.015 74.06± 0.015 69.36± 0.029 76.24± 0.012

16-Layers 73.20± 0.019 74.11± 0.018 73.64± 0.011 56.57± 0.061 75.59± 0.017

JK-Net Original Resampling Layerwise Dropedge Dropout 0.2
2-Layers 58.43± 0.020 70.88± 0.010 69.92± 0.018 60.35± 0.037 59.61± 0.031

4-Layers 59.64± 0.043 69.24± 0.013 68.94± 0.020 55.36± 0.070 59.26± 0.020

8-Layers 57.49± 0.037 69.09± 0.017 65.10± 0.024 46.28± 0.057 58.59± 0.029

16-Layers 57.43± 0.034 60.98± 0.042 54.73± 0.042 46.55± 0.080 58.30± 0.025

9



GCN, JKNet and GraphSAGE, in particular for the network with deep layers. To the best of

our knowledge, this is the first work utilizing graphon estimation on Graph Neural Networks.

We also aim to exploit the theoretical analysis and large scale graph training of GNNs, with a

variety of graphon estimation methods in the future work.

ACKNOWLEDGMENT

This research is partially supported by NSF grants DMS Career 1654579, DMS 1854779 and

DMS 2113642.

REFERENCES

[1] Michael M Bronstein et al. “Geometric deep learning: going beyond euclidean data”. In:

IEEE Signal Processing Magazine 34.4 (2017), pp. 18–42.

[2] Sourav Chatterjee. “Matrix estimation by Universal Singular Value Thresholding”. In: The

Annals of Statistics 43.1 (Feb. 2015). ISSN: 0090-5364. DOI: 10.1214/14-aos1272. URL:

http://dx.doi.org/10.1214/14-AOS1272.

[3] Jie Chen, Tengfei Ma, and Cao Xiao. “Fastgcn: fast learning with graph convolutional

networks via importance sampling”. In: arXiv preprint arXiv:1801.10247 (2018).

[4] Pantelis Elinas, Edwin V Bonilla, and Louis Tiao. “Variational inference for graph convo-

lutional networks in the absence of graph data and adversarial settings”. In: arXiv preprint

arXiv:1906.01852 (2019).

[5] Matthias Fey and Jan Eric Lenssen. “Fast graph representation learning with PyTorch

Geometric”. In: arXiv preprint arXiv:1903.02428 (2019).

[6] Luca Franceschi et al. “Learning discrete structures for graph neural networks”. In: Inter-

national conference on machine learning. PMLR. 2019, pp. 1972–1982.

[7] Chao Gao, Yu Lu, and Harrison H. Zhou. “Rate-optimal graphon estimation”. In: The

Annals of Statistics 43.6 (2015), pp. 2624–2652. DOI: 10.1214/15-AOS1354. URL: https:

//doi.org/10.1214/15-AOS1354.

[8] Xavier Glorot and Yoshua Bengio. “Understanding the difficulty of training deep feed-

forward neural networks”. In: Proceedings of the thirteenth international conference on

artificial intelligence and statistics. 2010, pp. 249–256.

[9] William L Hamilton, Rex Ying, and Jure Leskovec. “Inductive representation learning on

large graphs”. In: Proceedings of the 31st International Conference on Neural Information

Processing Systems. 2017, pp. 1025–1035.

10

https://doi.org/10.1214/14-aos1272
http://dx.doi.org/10.1214/14-AOS1272
https://doi.org/10.1214/15-AOS1354
https://doi.org/10.1214/15-AOS1354
https://doi.org/10.1214/15-AOS1354


[10] Arman Hasanzadeh et al. “Bayesian graph neural networks with adaptive connection sam-

pling”. In: International conference on machine learning. PMLR. 2020, pp. 4094–4104.

[11] Thomas N Kipf and Max Welling. “Semi-supervised classification with graph convolu-

tional networks”. In: arXiv preprint arXiv:1609.02907 (2016).

[12] Thomas N Kipf and Max Welling. “Variational graph auto-encoders”. In: arXiv preprint

arXiv:1611.07308 (2016).

[13] Alex Krizhevsky, Ilya Sutskever, and Geoffrey E Hinton. “Imagenet classification with

deep convolutional neural networks”. In: Advances in neural information processing sys-

tems. 2012, pp. 1097–1105.

[14] Yann LeCun et al. “Gradient-based learning applied to document recognition”. In: Pro-

ceedings of the IEEE 86.11 (1998), pp. 2278–2324.

[15] Jing Lei. “A goodness-of-fit test for stochastic block models”. In: The Annals of Statistics

44.1 (2016), pp. 401–424. DOI: 10.1214/15-AOS1370. URL: https://doi.org/10.1214/15-

AOS1370.

[16] Ron Levie et al. “Cayleynets: Graph convolutional neural networks with complex rational

spectral filters”. In: IEEE Transactions on Signal Processing 67.1 (2018), pp. 97–109.

[17] Qimai Li, Zhichao Han, and Xiao-Ming Wu. “Deeper insights into graph convolutional

networks for semi-supervised learning”. In: Thirty-Second AAAI conference on artificial

intelligence. 2018.

[18] Kenta Oono and Taiji Suzuki. “On asymptotic behaviors of graph cnns from dynamical

systems perspective”. In: (2019).

[19] Adam Paszke et al. “Pytorch: An imperative style, high-performance deep learning li-

brary”. In: Advances in neural information processing systems. 2019, pp. 8026–8037.

[20] Yu Rong et al. “Dropedge: Towards deep graph convolutional networks on node classifi-

cation”. In: arXiv preprint arXiv:1907.10903 (2019).

[21] Franco Scarselli et al. “The graph neural network model”. In: IEEE Transactions on Neural

Networks 20.1 (2008), pp. 61–80.

[22] Nitish Srivastava et al. “Dropout: a simple way to prevent neural networks from overfit-

ting”. In: The journal of machine learning research 15.1 (2014), pp. 1929–1958.

[23] Patrick J Wolfe and Sofia C Olhede. “Nonparametric graphon estimation”. In: arXiv

preprint arXiv:1309.5936 (2013).

11

https://doi.org/10.1214/15-AOS1370
https://doi.org/10.1214/15-AOS1370
https://doi.org/10.1214/15-AOS1370


[24] Zonghan Wu et al. “A comprehensive survey on graph neural networks”. In: IEEE trans-

actions on neural networks and learning systems 32.1 (2020), pp. 4–24.

[25] Keyulu Xu et al. “Representation learning on graphs with jumping knowledge networks”.

In: International Conference on Machine Learning. PMLR. 2018, pp. 5453–5462.

[26] Zhilin Yang, William Cohen, and Ruslan Salakhudinov. “Revisiting semi-supervised learn-

ing with graph embeddings”. In: International conference on machine learning. 2016,

pp. 40–48.

[27] Yingxue Zhang et al. “Bayesian graph convolutional neural networks for semi-supervised

classification”. In: Proceedings of the AAAI Conference on Artificial Intelligence. Vol. 33.

01. 2019, pp. 5829–5836.

[28] Yuan Zhang, Elizaveta Levina, and Ji Zhu. Estimating network edge probabilities by

neighborhood smoothing. 2017. arXiv: 1509.08588 [stat.ML].

[29] Tong Zhao et al. “Data augmentation for graph neural networks”. In: arXiv preprint

arXiv:2006.06830 (2020).

[30] Z. Zhao, L Chen, and L Lin. “Change-point detection in dynamic networks via graphon

estimation”. In: arXiv preprint arXiv:1908.01823 (2019).

[31] Jie Zhou et al. “Graph neural networks: A review of methods and applications”. In: arXiv

preprint arXiv:1812.08434 (2018).

12

https://arxiv.org/abs/1509.08588

	I Introduction
	II RELATED WORKS
	II-A GRAPH NEURAL NETWORK
	II-B GRAPHON ESTIMATION

	III Notation and Background
	III-A Notation
	III-B Graph Neural Networks

	IV Method
	IV-A Resampling strategy
	IV-B Layer-wise variant
	IV-C Alleviating over-smoothing and over-fitting

	V Experiments
	V-A Datasets
	V-B Architectures
	V-C Optimization
	V-D Results

	VI Conclusion

