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Abstract—Acquiring a sufficient amount of training data is
a significant bottleneck for machine learning (ML) based data
analytics. Recently, commoditizing ML models has been proposed
as an economical and moderate solution to ML-oriented data
acquisition. However, existing model marketplaces assume that
the broker can access data owners’ private training data, which
may not be realistic in practice. In this paper, to promote
trustworthy data acquisition for ML tasks, we propose FL-
Market, a locally private model marketplace that protects privacy
against not only model buyers but also an untrusted broker.
FL-Market decouples ML from the need to centrally gather
training data on the broker’s side using federated learning, a
privacy-preserving ML paradigm in which data owners col-
laboratively train an ML model by uploading local gradients
(to be aggregated into a global gradient for model updating).
Then, FL-Market enables data owners to locally perturb their
gradients by local differential privacy and thus further prevents
privacy risks. To drive FL-Market, we propose a deep learning-
empowered auction mechanism for intelligently deciding the
local gradients’ perturbation levels and an optimal aggregation
mechanism for aggregating the perturbed gradients. Our auction
and aggregation mechanisms can jointly maximize the global
gradient’s accuracy, which optimizes model buyers’ utility. Our
experiments verify the effectiveness of the proposed mechanisms.

Index Terms—data trading, incentive mechanism, federated
learning, local differential privacy

I. INTRODUCTION

Machine learning (ML) based data analytics has demon-
strated great success in many domains. Acquiring a sufficient
amount of private data to train ML models usually needs
considerable expenses, especially as data owners are becoming
increasingly aware of the value of their data and the severe
risks from uncontrolled data usage after sharing the data. Con-
sequently, recent efforts have proposed model marketplaces
[1]–[5] where a data broker commercializes data owners’
private data in the form of ML models to facilitate ML-
oriented data acquisition. Since model buyers do not contact
training data directly, this category of business models can
relieve data owners’ concerns about losing control over their
data and thus incentivize data sharing to some extent.

However, data owners still face notable privacy risks in the
existing model marketplaces, which may make them hesitate
to contribute data. Although some works (e.g., [1], [4], [5])
reduce privacy leakage to model buyers by injecting random
noise into ML models using central differential privacy (CDP)
[6], existing works assume that the broker is trusted and au-
thorized to access and control the raw data. This assumption is
unrealistic, considering that many giant companies have been

involved in user data breaches or privacy scandals. Therefore,
we demand a model marketplace that protects privacy against
not only model buyers but also its broker.

Federated learning (FL) [7] has emerged as a promising
paradigm for privacy-preserving ML. Unlike traditional ML
that requires training data to be stored on a centralized server
(e.g., a broker in a model marketplace), FL enables the
clients (i.e., data owners) to collaboratively train a model by
uploading local updates (e.g., gradients) and, meanwhile, to
keep their own training data on the local sides. Since FL
decouples ML from the need to centrally gather training data,
it can largely restrict an untrusted server’s ability to acquire
private information. Even though the local gradients trained on
the raw data can be sensitive [8], many works [9]–[13] suggest
that local differential privacy (LDP) [14] can be combined
with FL to perturb the gradients on the local sides and thus
protect privacy.

Fig. 1: FL-Market allows data owners to control the perturba-
tion level of their gradients in each round of FL training. Those
data owners who contribute more accurate gradients (i.e., with
less noise) will receive higher payments.

In this paper, for the first time, we propose a locally private
model marketplace empowered by FL and LDP, called FL-
Market (Federated Learning Based Locally Private Model
Market), to promote trustworthy data acquisition for ML-based
data analytics. Figure 1 depicts the three parties in FL-Market:
data owners, model buyers, and an FL broker. The FL broker
coordinates FL-based model training and trading between data
owners and model buyers. A model buyer attempts to purchase
ML models with a financial budget. Data owners do not sell
their raw data; instead, they sell locally private gradients per-
turbed by LDP in the training process coordinated by the FL
broker. The perturbation level is controlled by a privacy param-
eter ε, which LDP formally defines as a metric of privacy loss.
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To incentivize contribution, we follow seminal differentially
private data marketplaces [15]–[20] to employ an auction-
based method for pricing gradients. Concretely, we allow each
owner to report (bid) her valuation of privacy loss, named
privacy valuation, and report the maximum tolerable privacy
loss, called privacy budget. Then, the broker uses an auction
mechanism to decide each owner’s privacy parameter and
compensate for the corresponding privacy loss according to her
privacy valuation. The auction should guarantee truthfulness,
which means each data owner (i.e., a bidder) will never obtain
a higher utility by reporting an untruthful privacy valuation and
budget. Finally, the perturbed local gradients are aggregated
into a global gradient by an aggregation mechanism to update
the buyer’s model.

Building this model marketplace calls for an elaborate
mechanism design that enables the auction and aggregation
mechanisms to jointly optimize the global gradient’s utility.
First, in FL-Market, the broker has to aggregate the locally
private gradients considering their various accuracy levels.
Consequently, the aggregation mechanism should factor in
the privacy losses decided by the auction mechanism when
making a decision. Second, the auction mechanism should
properly purchase local gradients to maximize the aggregated
gradient’s utility, which implies that the aggregation decision
feeds back into the auction decision. However, the aggregation
mechanism may fail to provide an analytical solution. In
this case, the utility-maximizing objective of our auction
problem also cannot be expressed in an analytic form, which
makes it extremely challenging to characterize and design an
optimal truthful mechanism. In a nutshell, the need for joint
optimization dramatically increases the complexity of optimal
mechanism design.

Our main contributions are threefold.
• We design a novel privacy-preserving model trading frame-

work, FL-Market, for acquiring locally private ML models
via FL (Section III). In FL-Market, data owners maintain
control of their raw data by FL and enjoy the desired
level of privacy against both the broker and model buyers
using LDP. To the best of our knowledge, FL-Market is
the first locally private model marketplace. On the other
end, we formulate optimization problems for designing the
auction and aggregation mechanisms with the objective of
maximizing the global gradient’s accuracy, which optimizes
model buyers’ utility.

• We propose an optimal aggregation mechanism OptAggr
for FL with personalized LDP parameters (Section IV).
The conventional practice of FL aggregates gradients with
weights proportional to clients’ data sizes (i.e., all sam-
ples are uniformly weighted), which may not be optimal
when the gradients are perturbed to different extents. We
transform the problem of designing an optimal aggregation
mechanism under personalized privacy losses into an equiv-
alent quadratic programming problem. We prove that the
equivalent problem is convex and thus can be solved by off-
the-shelf optimizers. Supported by the optimizers, OptAggr
decides the optimal way to aggregate the gradients.

• We propose a novel auction mechanism, DM-RegretNet,
to incentivize data owners to contribute accurate gradients
(Section V). Concretely, to design an optimal mechanism
that jointly optimizes the gradient’s utility with the aggrega-
tion mechanism, we seek support from RegretNet, the state-
of-the-art deep learning-empowered automated mechanism
design technique [21]. However, RegretNet always gener-
ates randomized allocation results for auction items (i.e.,
the privacy losses in our case), which makes it tough to
maximize the global gradient’s accuracy. On the contrary,
DM-RegretNet (Deterministic Multi-Unit RegretNet) yields
deterministic auction decisions jointly with OptAggr and
thus can significantly improve the global gradient’s utility.
Our extensive experiments demonstrate that DM-RegretNet
can achieve better model accuracy and approximate the
truthfulness constraint more closely than RegretNet.

II. PRELIMINARY

Federated learning: FL is a privacy-preserving framework
for collaborative ML. In a typical FL architecture, n data
owners {1, ..., n} collaboratively train an ML model hw(·)
using their datasets {D1, ..., Dn} under the coordination of an
FL server (e.g., the FL broker in FL-Market), where w is a set
of model parameters. The training process consists of multiple
training rounds 1, ..., R. We show a training round r ∈ [R] of
the widely-used FedSGD algorithm [7] as follows.
1) Model broadcasting: The server broadcasts model param-

eters wr with a loss function l(·).
2) Local training: Each data owner i computes a local gra-

dient gi using her local dataset Di = [ri,j ]j∈[di] consisting
of di records. The gradient gi is the mean gradient of the
records, i.e., gi = Er∈Di [∇l(wr; r)].

3) Gradients aggregation: The server collects all the local
gradients and aggregates them into a global gradient g∗ by
averaging, i.e., g∗ =

∑n
i=1

di
d1+...+dn

gi where di denotes
the size of Di.

4) Model updating: The server updates the model parameters
wr by the global gradient, i.e., wr+1 = wr − η · g∗ where
η ∈ R+ is a learning rate.

In addition, gradient clipping is a widely used method for
avoiding the exploding gradient problem [22] where unac-
ceptably large gradients make the training process unstable.
In this paper, we adopt the gradient clipping method clip [23]
that rescales a gradient gi if its norm cannot be covered by a
threshold L, i.e., clip(gi, L) = gi · min(1, L

||gi||1 ). To reduce
notational overload, we let each gi denote the clipped version
in the rest of this paper, i.e.,

gi = Er∈Di
[∇l(wr; r)] ·min(1,

L

||Er∈Di
[∇l(wr; r)]||1

) (1)

Local differential privacy: LDP [14] is a de facto data
privacy definition. In FL, even if data owners maintain their
datasets on the local sides, their private information still can
be inferred from the uploaded gradients by the server [8].
To prevent privacy leakage, data owners can use an LDP
perturbation mechanism M, such as the Laplace mechanism



[6], to perturb the gradients before uploading them, which
ensures that any change to the mechanism’s input does not
significantly affect the output. The protection level of LDP
for owner i is parameterized by εi, which also quantifies her
privacy loss. A smaller εi corresponds to a higher protection
level and a more randomized perturbation. We letMεi denote
a perturbation mechanism that satisfies εi-LDP. Note that if we
perturb a gradient gi byMεi , releasing the perturbed gradient
also satisfies εi-LDP for each record r ∈ Di.

Definition 1 (εi-Local Differential Privacy [14]). Given a
privacy loss εi ≥ 0, a randomized mechanism M satisfies
εi-LDP if for any two inputs x, x′ ∈ Domain(M) and any
output o ∈ Range(M), we have:

Pr[M(x) = o] ≤ exp (εi) · Pr[M(x′) = o]

III. FL-MARKET FRAMEWORK

A. Market Setup

Participants: As shown in Figure 2, there are three parties
in FL-Market: data owners, model buyers, and an FL broker.
A model buyer enters FL-Market to purchase a global gradient
with a financial budget B at each FL training round r to train
her target model hwr . We assume that the buyer already knows
that data owners’ data attributes meet her needs. Data owners
N = {1, ..., n} possess local datasets D = {D1, ..., Dn} that
can be used to compute local gradients g1, ..., gn for training
hwr . To prevent privacy leakage against the FL broker and
model buyers, each owner i perturbs her local gradient gi
using a perturbation mechanism Mεi that satisfies εi-LDP.
The broker mediates between the model buyer and data owners
in the FL process: it arranges the training tasks among data
owners, collects their perturbed local gradients, and aggregates
them into a perturbed global gradient for the buyer. In addition,
the broker sets the payments p1, ..., pn to data owners within
the buyer’s budget B.

Privacy valuation: Inspired by [15], [16], FL-Market re-
quires data owners to report their privacy valuations to price
perturbed gradients. Concretely, each owner i has a valuation
function vi(εi, di) that reflects her valuation of her privacy
loss εi for her di-sized dataset: she will accept a privacy loss
εi for di records if she obtains a payment pi ≥ vi(εi, di).
However, in [15], [16], data owners cannot set the upper
bounds of their privacy losses. To provide better privacy
protection as an incentive, we follow Zheng et al. [24] to
allow each owner i to set a privacy budget ε̄i that denotes the
maximum tolerable privacy loss. In practice, the broker can
provide some instructions to help data owners decide privacy
valuations and budgets, e.g., questionnaires for figuring out
privacy preferences, typical choices for different preferences,
and some analysis of historical transaction data.

Threat model: We assume that all the participants are
honest-but-curious, which means they will not deviate from
the protocol but will attempt to learn information from re-
ceived messages. Note that in an auction, reporting a fake bid
that does not represent the bidder’s real preference is not a

malicious behavior that violates the protocol since the auction
allows bidders to submit arbitrary bids.

B. Trading Framework

We depict the trading framework in Fig. 2 and Alg. 1.
Initially, a model buyer enters FL-Market and specifies a target
model hw(·) with a loss function l(·) for FL. Then, in each
FL training round r, the buyer purchases a global gradient for
model updating by the following steps:

Algorithm 1 Trading Framework of FL-Market

1: A buyer specifies a model hw(·) with a loss function l(·).
2: for each FL training round r do
3: The buyer announces an auction with a financial budget B

and model parameters wr .
4: Data owners report their bids b′ = (b′1, ..., b

′
n).

5: The broker runs Auc(b′, B)→ ε,p.
6: The broker broadcasts wr and data owners compute perturbed

local gradients g̃1, ..., g̃n.
7: The broker runs Aggr(ε,d)→ λ.
8: The broker delivers a global gradient g̃λ =

∑n
i=1 λi · g̃i to

the buyer for model updating.

1) Auction announcement: The buyer asks the FL broker to
announce a procurement auction (where bidders are sellers)
for purchasing gradients, specifying a financial budget B
and model parameters wr.

2) Bidding: Data owners report their bids b′1, ..., b
′
n in the

auction. We assume that each owner i has a real bid
bi = (vi, ε̄i, d̄i) in mind consisting of her valuation function
vi, the maximum privacy budget ε̄i, and the maximum size
of her dataset d̄i. Then, each i reports to the broker a
valuation function v′i, a privacy budget ε̄′i and a data size
di as a reported bid b′i = (v′i, ε̄

′
i, di). If the reported bid

b′i is truthful, then b′i = bi; otherwise, it is a fake bid, i.e.,
b′i 6= bi. We simplify ”reported bid” as ”bid” and denote the
collection of all the bids as a bid profile b′ = [b′1, ..., b

′
n].

3) Auction decision: The broker runs an auction mechanism
Auc to decide data owners’ privacy losses and payments.
Formally, an auction mechanism given a bid profile b′ and
a financial budget B yields an allocation of privacy losses
ε = [ε1, ..., εn] and payments p = [p1, ..., pn].

4) Local gradient computing: Given model parameters wr,
each data owner i computes and submits a noisy gradient
g̃i =Mεi(gi) to the broker.

5) Gradients aggregation and model delivery: The FL
broker runs an aggregation mechanism Aggr to aggregate
those noisy gradients into a perturbed global gradient g̃λ.
Finally, the broker returns g̃λ to the model buyer.

Gradients aggregation: In step (5), the broker needs a
“good” strategy to aggregate the collected noisy gradients.
To study the optimality of the aggregation mechanism in our
setting, we generalize the problem as follows. Formally, given
data owners’ perturbed gradients g̃1, ..., g̃n, the broker sets the



Fig. 2: FL-Market Trading Framework.

aggregation weights λ = [λ1, ..., λn] with
∑n
i=1 λi = 1, λi ≥

0,∀i and then computes the perturbed global gradient as:

g̃λ =

n∑
i=1

λi · g̃i. (2)

We note that Equation (2) is a generalization of the weighted
aggregation [7], [25] in the literature. Then, we attempt to
design an optimal aggregation mechanism under personalized
privacy losses. Specifically, we define the aggregation mech-
anism as a function Aggr : R2n → Rn that given privacy
losses ε = [ε1, ..., εn] and data sizes d = [d1, ..., dn] outputs
aggregation weights λ=[λ1, ..., λn] for weighted aggregation.

C. Mechanism Design

In this section, we formulate the problems of designing
the auction mechanism Auc and aggregation mechanism Aggr
(Lines 5 and 7 in Alg. 1, respectively) to instantiate the trading
protocol of FL-Market. The mechanism design should achieve
the following two goals: (1) to provide utility-optimal global
gradients and (2) to prevent untruthful privacy valuations.

Aggregation mechanism: The aggregation mechanism
should optimally aggregate perturbed local gradients to pro-
vide highly usable global gradients for model buyers. Con-
cretely, given local gradients g̃1, ..., g̃n with privacy losses
ε and data sizes d, Aggr should yield optimal aggregation
weights that minimize the error of the global gradient:

min
λ
err(g̃λ; ε,d) = ||g̃λ − g∗||2 = ||

n∑
i=1

λi ·Mεi(gi)− g∗||2

where g∗ =
∑n
i=1

di∑n
j=1 dj

gi is the raw global gradient without
any perturbation. The lower the error err(g̃λ) is, the smaller
the difference between g̃λ and g∗, which also implies that the
buyer will obtain a more accurate global model.

However, the broker cannot calculate the ground-truth error
err(g̃λ) under LDP without the access to g1, .., gn. Hence, we
turn to the error bound ERR(g̃λ) and design the aggregation
mechanism by solving the following problem:

Problem 1 (Error Bound-Minimizing Aggregation).
min

λ=Aggr(ε,d)
ERR(g̃λ; ε,d) = sup

g1,...,gn

err(g̃λ; ε,d)

S.t.: ∀i, λi ∈ [0, 1], and
n∑
i=1

λi = 1

Auction mechanism: Solving Problem 1 alone is still
insufficient to determine a utility-optimal global gradient since
the utility is also affected by the privacy losses purchased for
perturbing the local gradients. That is, the auction mechanism
Auc should take the aggregation mechanism into account
to jointly optimize the (expected) error bound of the global
gradient over all possible bid profiles and financial budgets:

min
ε,p=Auc(b′,B)

E(b′,B)[ERR(g̃λ;λ = Aggr(ε,d))]

=E(b′,B)[ sup
g1,...,gn

||
n∑
i=1

λi · Mεi(gi)− g∗||2]

=E(b′,B)[ sup
g1,...,gn

||Aggr(ε,d) · [Mε1(g1), ...,Mεn(gn)]− g∗||2]

Then, Auc needs to determine appropriate auction results
that prevent untruthful privacy valuations. Concretely, by trad-
ing a global gradient, each data owner i obtains a utility

ui(b
′
i; b
′
−i, B) =

{
pi − vi(εi, di), εi ≤ ε̄i, di ≤ d̄i
−∞, otherwise

where b′−i = (b′1, ..., b
′
i−1, b

′
i+1, ..., b

′
n) denotes the other bid-

ders’ bids. Then, Auc should ensure the following incentives:
• Truthfulness: With the other bidders’ bids b′−i fixed, each

bidder i never obtains a higher utility by reporting a fake bid
b′i 6= bi, i.e., ∀i,∀b′i,∀B, ui(b′i; b

′
−i, B) ≤ ui(bi; b′−i, B).

• Individual rationality (IR): Each bidder i never obtains a
negative utility, i.e., ui(b′i) ≥ 0,∀b′i,∀i.

• Budget feasibility (BF): The payments should be within the
financial budget, i.e.,

∑
i pi ≤ B.

Therefore, we can design the auction mechanism by solving
the following problem.

Problem 2 (Budget-Limited Multi-Unit Multi-Item Procure-
ment Auction).

min
ε,p=Auc(b′,B)

E(b′,B)[ERR(g̃λ;λ = Aggr(ε,d))]

S.t.: ∀i, εi ∈ [0, ε̄′i], truthfulness, IR, and BF.

Problem 2 is a budget-limited multi-unit multi-item pro-
curement auction problem [26] because (1) each data owner’s
privacy loss εi can be seen as a divisible item for procurement
with ε̄′i units available, and (2) the buyer purchases privacy
losses under her financial budget B. To the best of our
knowledge, such a problem has yet to be generally solved in
the literature. Moreover, we have to involve the aggregation



mechanism in minimizing the global gradient’s error bound,
which increases the complexity of optimal mechanism design.
Concretely, the privacy losses affect the aggregation weights
in Problem 1, but the latter also feeds back into the former in
Problem 2, which calls for joint optimization. By solving this
problem, we can obtain an auction mechanism that maximizes
the global gradient’s utility jointly with Aggr.

Computational efficiency: We additionally require that the
auction and aggregation mechanisms (designed by solving
Problems 1 and 2) should finish in polynomial time, which
ensures the efficiency of FL-Market. Note that we design the
mechanisms offline before executing Algorithm 1 rather than
during each FL training round therein.

IV. AGGREGATION MECHANISM: OPTAGGR

In this section, we propose an error-optimal aggregation
mechanism OptAggr by solving a convex quadratic program-
ming problem that we prove is equivalent to Problem 1.

Error bound decomposition: It is well known that the MSE
error of a random variable consists of its variance and squared
bias. Let σi denote the variance of the local gradient g̃i, and let
Wi = di∑

j∈[n] dj
,∀i. We can decompose the error err(g̃λ; ε,d)

as err(g̃λ; ε,d) = var(g̃λ; ε) + bias2(g̃λ; ε,d) where

var(g̃λ; ε) = var(

n∑
i=1

λig̃i; ε) =

n∑
i=1

(λi)
2σi,

bias(g̃λ; ε,d) = ||E[g̃λ]− E[g∗]||2 = ||
n∑
i=1

λigi −
n∑
i=1

Wigi||2

=||
n∑
i=1

(λi −Wi)gi||2 ≤
n∑
i=1

|λi −Wi| · ||gi||2

=
n∑
i=1

|λi −Wi| · ||Er∈Di
[∇l(wr; r)] ·min(1,

L

||Er∈Di
[∇l(wr; r)]||1

)||2

Because supg1,...,gn bias(g̃λ; ε,d) =
∑n
i=1 |λi − Wi|L, the

objective function of Problem 1 is equal to

min
λ=Aggr(ε,d)

ERR(g̃λ; ε,d) =

n∑
i=1

(λi)
2σi + (

n∑
i=1

|λi−Wi|L)2.

Problem transformation: We further transform Problem
1 into a convex quadratic programming problem. First, to
minimize the error bound, any data owner i with εi = 0
must be allocated a zero-valued weight λi = 0 by an optimal
solver because its gradient g̃i has an infinite variance σi. For
simplicity, we assume that only the first k ≤ n data owners
have positive privacy losses without loss of generality. Then,
we let x = [λ1, ..., λk] and replace the terms |λi−Wi|,∀i ∈ [k]
with auxiliary variables y = [y1, ..., yk] with the constraints
yi ≥ −(λi −Wi), yi ≥ λi −Wi,∀i ∈ [k]. Consequently, we
have the following quadratic programming problem [27].

Problem 3 (Equivalent problem of Problem 1).

min
x,y

1

2

[
x
y

]T [
Diag([σ1, ..., σk]) 0

0 Uni(L2)k×k

] [
x
y

]
S.t.:

[
Uni(1)k×1

Uni(0)k×1

]T [
x
y

]
= 1,

[
Ik −Ik
−Ik −Ik

] [
x
y

]
≤
[
W
−W

]

Algorithm 2 Aggregation Mech.: OptAggr
Input: privacy losses ε1, ..., εn, data sizes d1, ..., dn
Output: aggregation weights λ1, ..., λn

1: return λi = Wi, ∀i if εi = 0,∀i
2: For each data owner i with εi = 0, let λi = 0
3: For each data owner j with εj > 0, calculate the variance σj ;

then compute λj , ∀j using an optimizer that solves Problem 3.
4: return λ1, ..., λn

where Ik is a k × k identity matrix, Uni(a)m×n is an
m × n matrix where all the elements are equal to a ∈
R, Diag([σ1, ..., σk]) is a k × k diagonal matrix with
Diag([σ1, ..., σk])[i][i]=σi,∀i ∈ [k], and W =[W1, ...,Wk].

Because Problem 3 is a convex quadratic programming
problem, it can be well solved by many existing solvers in
polynomial time, e.g., the SCS solver [28] to be used in
our experiments. Note that there is no existing analytical
solution to Problem 3 to the best of our knowledge. Hence,
we propose the OptAggr mechanism that (1) allocates zero-
valued aggregation weights to those data owners with zero-
valued privacy losses and (2) then computes other data owners’
aggregation weights by solving Problem 3 with a polynomial-
time optimizer, as depicted in Algorithm 2.

Proposition 1. Problem 3 is a convex quadratic programming
problem and is equivalent to Problem 1.

Proof. Let Q =
[
Diag([σ1, ..., σk]) 0

0 Uni(L2)k×k

]
and A =[

Diag([
√
σ1, ...,

√
σk]) 0

0 Uni( L√
k

)k×k

]
. Because Q = ATA, Q

is a positive semidefinite matrix. Therefore, Problem 3 is a
convex quadratic programming problem.

For each yi, a solver for Problem 3 will find the lowest value
of yi as possible. Therefore, if λi −Wi ≥ 0, the constraint
yi ≥ λi −Wi is equivalent to yi = λi −Wi and implies yi ≥
−(λi −Wi); if λi −Wi ≤ 0, the constraint yi ≥ −(λi −Wi)
is equivalent to yi = −(λi −Wi) and implies yi ≥ λi −Wi.
Therefore, the constraints yi ≥ λi−Wi and yi ≥ −(λi−Wi)
are equivalent to yi = |λi −Wi|. Therefore, we conclude that
Problem 3 is equivalent to Problem 1.

V. AUCTION MECHANISM: DM-REGRETNET

In this section, we design a truthful mechanism that maxi-
mizes the global gradient’s utility jointly with the OptAggr
mechanism. Since OptAggr does not provide an analytical
solution to Problem 3, the objective function also cannot
be expressed in an analytic form, which makes it extremely
difficult to characterize and design an optimal truthful mech-
anism. To design a truthful mechanism that optimizes the
nonanalytical objective, we turn to an automated mechanism
design approach that achieves an auction objective by ML. We
also propose a traditional auction mechanism in Appendix B.

RegretNet: We seek support from RegretNet [21], the state-
of-the-art automated mechanism design framework for multi-
item auctions. As depicted in Figure 5, RegretNet consists of
two deep learning networks: an allocation network and a pay-
ment network. Both the networks take as input data owners’



Fig. 3: M-RegretNet. Fig. 4: DM-RegretNet.

Fig. 5: RegretNet.

bid profile b′ and the buyer’s financial budget B but output
allocation probabilities zi ∈ (0, 1),∀i and payments p1, ..., pn,
respectively. Therefore, RegretNet is a randomized auction
mechanism: the allocation result of each data owner’s privacy
loss is a binary random variable εi with Pr[εi = ε̄′i] = zi
and Pr[εi = 0] = 1 − zi.1 Then, the truthfulness constraint
is approximately guaranteed by model training: the violation
degree of truthfulness is quantified as a regret penalty in the
training objective function to be minimized.

Problems with RegretNet: RegretNet may perform poorly
in our auction problem. First, RegretNet can only auction
single-unit items and output binary auction results. That is,
under RegretNet, the allocation result of each data owner i’s
privacy loss (i.e., the item εi) is either to purchase the whole
unit (i.e., εi = ε̄′i) or not to purchase any privacy loss (i.e.,
εi = 0). However, we should support trading a portion of the
privacy budget ε̄′i to flexibly optimize the global gradient’s
utility. Second, some extra variance from the randomness
of the allocation results by RegretNet might be introduced
into the perturbed local gradients. Third, also because of the
allocation randomness, RegretNet cannot treat the (expected)
error bound minimization function as the objective function for
model training. Intuitively, RegretNet always allocates zero-
valued privacy losses for all data owners with probability
Pr[ε1 = ... = εn = 0] =

∏n
i=1(1 − zi), which means that

the expected error bound of the perturbed global gradient g̃λ
remains infinite and cannot be minimized.

M-RegretNet: To solve the first problem with RegretNet, we
extend the allocation network of RegretNet and propose M-
RegretNet (Multi-Unit RegretNet). As shown in Figure 3, like
RegretNet, M-RegretNet has an allocation (payment) network

1The concrete privacy loss εi to be used to perturb the local gradient is a
sample of the random variable. To reduce notational overload, we use εi to
denote the random variable in Section V.

with multiple fully connected hidden layers, each of which
has multiple hidden nodes with tanh activations. However, it
does not take the reported bids as input. Instead, for each
data owner i, we transform her reported bid b′i = (v′i, ε̄

′
i, di)

into M sub-bids b′i|1, ..., b
′
i|M and then input them into M-

RegretNet, where b′i|m = (v′i(
m·ε̄′i
M , di),

m·ε̄′i
M , di),∀m ∈ [M ].

Regarding the payment network, it first generates budget frac-
tions p̄0, ..., p̄n and then output payments pi = p̄i ·B, ∀i ∈ [n].
Because the budget fractions are output by a softmax activation
function, the sum of the payments

∑
i∈[n] pi never exceeds the

financial budget B, which ensures BF. Then, the allocation
network outputs zi = [zi0, zi1, ..., ziM ] for each data owner i,
where zi0 denotes the probability of data owner i losing the
auction, and zim is the probability of data owner i winning
with her sub-bid b′i|m. Since each owner i should win with
at most one sub-bid, we apply softmax activation functions to
ensure that

∑M
m=0 zim = 1,∀i. Therefore, the allocation result

for each data owner i is a random variable εi with M+1 pos-
sible values, i.e., Pr[εi =

m·ε̄′i
M ] = zim,∀m ∈ {0, 1, ...,M}.

When M = 1, M-RegretNet reduces to a budget-feasible
version of RegretNet; when M ≥ 2, it enables the buyer to
only purchase a part of each data owner’s privacy budget.
In addition, when M increases, it becomes easier for M-
RegretNet to approximate the truthfulness and IR guarantees
since it has more possible values to allocate as privacy losses.

DM-RegretNet: To address the second and third problems
with RegretNet, we further propose DM-RegretNet that outputs
deterministic allocation results. DM-RegretNet deploys M-
RegretNet as a module to determine allocation probabilities
z1, ...,zn and payments p1, ..., pn. Then, it realizes determin-
istic allocation results by processing the vector of allocation
probabilities zi = [zi0, ..., ziM ] into a one-hot vector; by such
a process, there is only one one-valued allocation probability
for each data owner i, and thus each privacy loss εi is
deterministic. Formally, it is

εi = [0,
1 · ε̄′i
M

, ...,
M · ε̄′i
M

] · one hot(argmax(zi)) (3)

where one hot(·) is a function that takes as input an integer
m ∈ [0,M ] and outputs an (M + 1)-length one-hot vector
where the m-th element equals 1 and the others are zero-
valued. However, the function one hot(argmax(·)) is non-
differentiable, which makes the networks untrainable.



Algorithm 3 Auction Mech.: DM-RegretNet

Input: (reported) bid profile b′ = (b′1, ..., b
′
n), financial budget B,

the number of sub-bids M , training=False
Output: privacy losses ε1, .., εn, payments p1, ..., pn

1: Transform each data owner i bid b′i = (v′i, ε̄
′
i, di) into M sub-bids

b′i|1, ..., b
′
i|M , where b′i|m = (v′i(

m·ε̄′i
M

, di),
m·ε̄′i
M

, di), ∀m ∈ [M ]
2: Input sub-bids, privacy budgets, and financial budget into

M-RegretNet to obtain z1, ..., zn, p1, ..., pn where zi =
[zi0, ..., ziM ]

3: if training == True then
4: ε̂i = [0,

1·ε̄′i
M
, ...,

M·ε̄′i
M

] · softmax(zi
τ

), ∀i
5: return ε̂1, ..., ε̂n, p1, ..., pn
6: else
7: εi = [0,

1·ε̄′i
M
, ...,

M·ε̄′i
M

] · one hot(argmax(zi)),∀i
8: return ε1, ..., εn, p1, ..., pn

To realize deterministic allocation results while ensuring
trainable networks, we apply the soft argmax trick [29] to DM-
RegretNet. Then, as shown in Alg. 3, for the model inference
phase, DM-RegretNet obtains deterministic allocation results
by Equation (3); for the model training phase, it uses the
following differentiable estimator to approximate Equation (3):

ε̂i = [0,
1 · ε̄′i
M

, ...,
M · ε̄′i
M

] · softmax(zi/τ)

where τ is a smoothing parameter that controls the tradeoff
between the estimator’s approximation accuracy and smooth-
ness. If we use a smaller τ , the estimator ε̂i will approach the
truth but become harder to optimize.

Then, to further promote the approximation accuracy, we
introduce the deterministic allocation constraint when training
DM-RegretNet, which requires that softmax(zi/τ) should
be a one-hot vector. Consider a vector zU = [zU0 , ..., z

U
M ]

with uniform allocation probabilities, i.e., zUm = 1
M+1 ,∀m ∈

[0,M ]. Obviously, for a vector z = [z0, ..., zM ] of allocation
probabilities, the squared Euclidean distance between z and
zU is maximized only when z is a one-hot vector:

sup
z

∑
m∈[0,M ]

(zm − zUm)2 = (1−
1

M + 1
)2 +M(0−

1

M + 1
)2 =

M

M + 1

Then, we formalize the deterministic allocation constraint over
the vector z′i = [z′i0, ..., z

′
iM ] = softmax(zi/τ) as:

davi(θ) = E(b,B)[
M

M + 1
−

∑
m∈[0,M ]

(z′im − zUm)2] = 0.

where θ is the network parameters of DM-RegretNet. We note
that z′i is determined by the network parameters θ and the
input (b, B) to DM-RegretNet.

Training DM-RegretNet: We train DM-RegretNet by solv-
ing Problem 2. Concretely, given a (real) bid profile b and a
financial budget B, we can obtain a global gradient:

g̃λ,θ = Aggr(ε̂,d) · [Mε̂1(g1), ...,Mε̂n(gn)]

where the estimated privacy losses ε̂ = [ε̂1, ..., ε̂n] are affected
by the network parameters θ. The training objective thus is
to find the optimal network parameters that minimize the

expected error bound E(b,B)[ERR(g̃λ,θ;λ = Aggr(ε̂,d))].
Then, we relax the truthfulness constraint and quantify the

violation degree of truthfulness for data owner i by the ex-
pected regret (normalized by the expected valuation of her al-
located privacy loss cθi (bi; b−i, B) =

∑M
m=1 z

′
im · vi(m·ε̄iM , d̄i)

under parameters θ):

rgti(θ) = E(b,B)[
max(0,maxb′i u

θ
i (b
′
i; b−i, B)− uθi (bi; b−i, B))

cθi (bi; b−i, B)
]

where uθi is data owner i’s utility function under network pa-
rameters θ. Similarly, the violation degree of the IR constraint
can be measured by the expected IR violation:

irvi(θ) = E(b,B)[
max(0,−uθi (bi; b−i, B))

cθi (bi; b−i, B)
]

Therefore, we have the following optimization problem.

Problem 4 (DM-RegretNet Training Problem).
min
θ

E(b,B)[ERR(g̃λ,θ;λ = Aggr(ε̂,d))]

S.t.: rgti(θ) = 0,∀i (Truthfulness)

irvi(θ) = 0,∀i (Individual Rationality)

davi(θ) = 0,∀i (Deterministic Allocation)

We can empirically estimate the expected error bound and
those violation degrees from some training data and solve an
empirical version of Problem 4 to train DM-RegretNet. The
details can be checked in Appendix A. The training data can
be drawn from a known distribution or historical data. Note
that DM-RegretNet is trained offline before the execution of
Algorithm 1; in each FL training round, the trained auction
model makes a model inference to decide the auction result,
which efficiently finishes in polynomial time.

VI. EVALUATION

A. Setup

Research questions: We investigate the following research
questions through experiments.
• RQ1: How does the proposed auction mechanism DM-

RegretNet perform compared with the baselines (explained
below) in terms of minimizing the error bound?

• RQ2: Can OptAggr outperform the conventional aggregation
method in FL?

• RQ3: How does DM-RegretNet approximately guarantee the
truthfulness and IR constraints?

• RQ4: Does increasing M benefit approximating the truth-
fulness and IR guarantees?
Baselines: We compare OptAggr with the conventional

aggregation method ConvlAggr [7], which allocates positive
aggregation weights only to those data owners with nonzero
privacy losses, and the weights are proportional to their data
sizes. Regarding auction, we compare DM-RegretNet with
RegretNet [21] and M-RegretNet.2

2Our code, data, and trained models are available at https://github.com/
teijyogen/FL-Market. We use the CVXPY [30] and cvxpylayers [31] libraries
to implement the OptAggr aggregation mechanism.

https://github.com/teijyogen/FL-Market
https://github.com/teijyogen/FL-Market


Fig. 7: Effect of financial budget on error bound. Fig. 8: Invalid gradient rate.

Fig. 9: Model accuracy over FL training rounds. Fig. 10: Effect of parameter M .

FL settings: We use real data to train FL models. We
choose logistic regression classifiers as FL models and use the
NSL-KDD [32] datasets for 5-class classification with 125973
training samples and 22544 test samples. We distribute the
training samples among 1000 data owners to form their local
datasets using the following partition methods:

• IID: We follow [33] to draw all the local datasets from the
same distribution, and their sizes follow a power law.

• Non-IID: We follow [34] to allocate each class of samples
among clients according to the Dirichlet distribution.

We set the learning rate η = 0.01 and the threshold L = 1.0
for gradient clipping and perturb local gradients by the Laplace
mechanism [6].

Auction settings: For each run of the experiment, we
simulate 100 rounds of FL and generate 1000 data owners;
in each round, we randomly select 10 data owners as bidders
in the auction. To simulate various types of bids, we let
each bidder randomly select a basic valuation function from
four provided: a linear function vL(εi, di) = 2 · di · εi,
a quadratic function vQ(εi, di) = di · (εi)

2, a square-root
function vS(εi, di) = 2 · di ·

√
εi, and an exponential function

vE(εi, di) = di · (exp(εi) − 1), which are natural choices
considered in [16]; these functions are directly proportional to
the data size di because it is natural to model the valuation of a
dataset as the sum of the valuations of the data records therein.
Then, we consider each owner’s valuation function to be a
randomly selected rate α ∈ [0.5, 1.5] of the selected function,
e.g., vi(εi, di) = α · vL(εi, di). Finally, we randomly generate
each data owner’s privacy budget ε̄i ∈ [0.5, 2.0], which is
in line with those commonly used in the differential privacy
research community. For DM-RegretNet and M-RegretNet, we
set M = 8 by default. We train all the auction models on
102, 400 bid profiles with 50 epochs.

Evaluation metric: To evaluate the utilities of the global
gradients, we use as evaluation metrics the expected empirical
error bound ˆERR, the model accuracy (i.e., the percentage
of correctly predicted examples), and the invalid gradient rate
(i.e., the frequency of sampling zero-valued privacy losses for
all data owners). Then, to evaluate the truthfulness and IR
guarantees of the auction mechanisms, we use the empirical
regret ˆrgti and empirical IR violation ˆirvi as the metrics. The
definitions of the above metrics can be found in Appendix A.

B. Experimental Results

Incentive mechanisms comparison (RQ1): First, we test
the auction mechanisms’ performance in minimizing the error
bound. We vary the financial budget factor B̄ and let the
budget B = B̄ ·

∑
i∈[n] vi(ε̄i, d̄i). As shown in Figure 7,

our DM-RegretNet can generate global gradients with a lower
error bound in expectation. When the financial budget factor
increases and exceeds 1.0, which means the budget covers the
gross valuation of the bidders’ privacy budgets, the error bound
may still be able to decrease since the payments made by a
truthful auction mechanism are usually much higher than the
winners’ valuations. We note that since the randomized mech-
anisms RegretNet and M-RegretNet may sample zero-valued
privacy losses for all data owners, which results in invalid
global gradients with infinite error, we only take the error
bound of valid gradients into account. That means that even
if Figure 7 shows that RegretNet results in low error bounds,
it actually frequently generates invalid gradients with infinite
error, while our DM-RegretNet based mechanisms never do,
which is depicted in Figure 8. For the rest experiments, we
sample the budget factor uniformly at random from [0.1, 2.0].
We also test the model accuracy over 100 FL training rounds.
As shown in Figure 9, in both cases, DM-RegretNet makes
better auction decisions that result in more accurate models.



TABLE I: Comparisons of the violation degrees of truthfulness
and IR of RegretNet-based mechanisms. At each box, the two
numbers are the empirical regret and IR violation, respectively.

IID Non-IID
RegretNet 0.9351, 0.1684 0.8164, 0.3864
M-RegretNet 0.7715, 0.1508 0.6652, 0.2020
DM-RegretNet+ConvlAggr 0.0617, 0.0251 0.0516, 0.0210
DM-RegretNet+OptAggr 0.0556, 0.0265 0.0428, 0.0259

Aggregation mechanisms comparison (RQ2): As depicted
in Figure 7, under each auction mechanism, our OptAggr
aggregation mechanism can always generate global gradients
with a lower error bound in expectation than ConvlAggr.
In addition, Figure 9 shows that model buyers can obtain
more accurate models using global gradients aggregated by
OptAggr. Therefore, OptAggr outperforms ConvlAggr.

Incentive guarantees (RQ3).: Table I illustrates the viola-
tion degrees of truthfulness and IR of those RegretNet-based
auction mechanisms. The empirical regrets and IR violations
under DM-RegretNet are significantly lower than those under
RegretNet and M-RegretNet, which means that DM-RegretNet
has stronger abilities to approximate the truthfulness and
IR constraints. DM-RegretNet has this advantage because
it is a deterministic mechanism that universally guarantees
truthfulness and IR, while RegretNet and M-RegretNet are
randomized mechanisms that approximate the two constraints
by expectation.

Parameter effects (RQ4): We vary the value of parameter
M ∈ {1, 2, 4, 8, 16} to test its effects on the truthfulness
and IR guarantees. For each value, we train 10 instances
of M-RegretNet and test them to obtain the average result.
Figure 10 shows that under M-RegretNet, an increase in M
decreases both the regret and IR violation, which demonstrates
our intuition that a larger M can enhance the abilities of M-
RegretNet to approximate the truthfulness and IR guarantees
as it has more possible values to allocate as privacy losses.

VII. RELATED WORK

Incentive mechanisms for FL: Many incentive mechanisms
[36]–[43] have been proposed to encourage participation in FL
by providing appropriate rewards for data owners’ contribu-
tions. The contributions can be evaluated in various ways. For
example, Zhan et al. [42] consider the data size, the most basic
measurement of data, for contribution evaluation. Then, from
a cost-covering perspective, Jiao et al. [36] propose an auction
mechanism where data owners can bid their computational and
communication costs in providing their FL training services.
Similarly, Sarikayar et al. [39] regard the CPU computational
costs as their contributions. Then, Richardson et al. [37]
evaluate data owners’ influences on the model accuracy to
decide their rewards. The Shapley value is also adapted into an
FL version by Wang et al. [38] to value data owners’ influence.
Data quality is another natural choice. Since the data quality
is known only to data owners, to ensure the contribution of
high-quality data, Kang et al. [40] design different types of
rewarding contracts to distinguish data owners such that the

FL server can infer the data quality based on the contracts they
select. In this way, the rewards are essentially determined by
the data quality. In addition, both the works of Kang et al.
[41] and Zhang et al. [43] employ some reputation metric to
remove unreliable data owners from FL. However, none of the
above mechanisms considers privacy protection, which is also
a critical incentive. To fill this gap, we propose an auction-
based incentive mechanism that protects data owners’ privacy
and compensates them according to their privacy preferences.

FL under LDP: Some efforts [9]–[13], [44]–[46] have
devoted to designing FL frameworks under LDP. Since the data
perturbation under LDP may substantially reduce the utility
of FL models, these authors mainly focus on how to reduce
the perturbation level while still providing appropriate privacy
guarantees. Concretely, to relieve the utility problem that the
noise that LDP injects into a gradient should be proportional
to its size, Liu et al. [11] propose an FL framework to
perturb only the top-k important dimensions of the gradient
and thus can its utility. Then, Liu et al. [12] and Girgis et al.
[46] employ the shuffle model [47] in their FL frameworks
to amplify the privacy guarantee under the same level of
noise injection. Then, Sun et al. [10] propose a more secure
LDP mechanism that can extend the difference between the
perturbed data and its original value while introducing lower
variance. There are also works on designing LDP-based FL
frameworks for specific ML tasks [9], [13], [44]. While prior
works address the utility problem under LDP by relaxing the
privacy guarantee or elaborately injecting noise, we tackle it
from an incentive perspective, i.e., by incentivizing data own-
ers to contribute more privacy loss, which can also increase
utility. In addition, Zhao et al. [45] propose an LDP-based
FedSGD algorithm, which is similar to our protocol in privacy
protection; however, they assume uniform privacy losses for
all data owners and thus do not consider different perturbation
levels when aggregating gradients.

VIII. CONCLUSION AND FUTURE WORK

In this paper, we propose FL-Market to facilitate trustworthy
data acquisition for ML-based data analytics. Our mechanisms
can incentivize data sharing by providing preferred levels of
local privacy and compensation for data owners and optimizing
model buyers’ utility. FL-Market opens up new possibilities
for ML-oriented data acquisition and initiates a new direction
toward designing locally private model marketplaces. There
are several interesting future directions. One question is how
to guarantee that the auction decisions are arbitrage free
against strategic buyers. Another question is how to apply and
optimize FL-Market in specific learning tasks.
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APPENDIX A
TRAINING DM-REGRETNET

Consider a training sample S = (S1, ..., ST ) consisting of T
batches. Each batch St = ((b(1)), B(1)), ..., (b(K), B(K))), t ∈
[T ] has K pairs of real bid profiles and financial budgets,
and each profile b(k), k ∈ [K] consists of a valuation function
v

(k)
i , a privacy budget ε̄(k)

i , and a data size d̄(k)
i . Then, at each

training iteration t, we can estimate rgti(θt) by the empirical
regret:

ˆrgti(θ
t) =

1

K

K∑
k=1

max(0, uθ
t

i (b
∗(k)
i ; b

(k)
−i , B

(k))− uθti (b
(k)
i ; b

(k)
−i , B

(k)))

cθ
t

i (b
(k)
i ; b

(k)
−i , B

(k))

where θt represents the network parameters at training iter-
ation t and b

∗(k)
i is a bid that approximately maximizes i’s

utility and is searched through J updates of the following
optimization process:

b
′(k)
i ← b

′(k)
i + γ∇b′iu

θt

i (b′i; b
(k)
−i , B

(k))|
b′i=b

′(k)
i

Similarly, we estimate irvi(θt) by the empirical IR violation:

ˆirvi(θ
t) =

1

K

K∑
k=1

max(0,−uθti (b
(k)
i ; b

(k)
−i , B

(k)))

cθ
t

i (b
(k)
i ; b

(k)
−i , B

(k))

Let [z
(k)
i0 , ..., z

(k)
iM ] denote the allocation probabilities for

data owner i given bid profile b(k) and financial budget
B(k) under network parameters θt, and let [z

′(k)
i0 , ..., z

′(k)
iM ] =

softmax(
[z

(k)
i0 ,...,z

(k)
iM ]

τ ). Then, we have the empirical deter-
ministic allocation violation ˆdavi(θ

t) to estimate davi(θt):

ˆdavi(θ
t) =

1

K

K∑
k=1

[
M

M + 1
−

∑
m∈[0,M ]

(z
′(k)
im −

1

M + 1
)2]

Finally, we should derive an empirical version of the
expected error bound E(b,B)[ERR(g̃λ,θ;λ = Aggr(ε̂,d))].
Let ε̂

(k)
1 , ..., ε̂

(k)
n denote the estimated privacy losses

determined by DM-RegretNet for bid profile b(k)

and financial budget B(k). Given aggregation weights
λ̂

(k)
1 , ..., λ̂

(k)
n = Aggr([ε̂(k)

1 , ..., ε̂
(k)
n ], [d̄

(k)
1 , ..., d̄

(k)
n ]) and

W
(k)
i =

d̄
(k)
i∑

j∈[n] d̄
(k)
j

,∀i, we have the empirical expected error

bound:

ˆERR(θt) =
1

K

K∑
k=1

sup
g1,...,gn

||
n∑
i=1

λ̂
(k)
i ·L

L

ε̂
(k)
i

(gi)−
n∑
i=1

W
(k)
i gi||2

We can solve Problem 4 by the augmented Lagrangian
method and minimize the following Lagrangian function: 3

C(θt;φtrgt, φtirv, φtdav)

=n · ˆERR(θt) +

n∑
i=1

φtrgt,i · ˆrgti(θ
t) +

ρrgt
2

(

n∑
i=1

ˆrgti(θ
t))2

3When training RegretNet and M-RegretNet, we minimize the negated em-
pirical privacy loss ˆNPL(θt) = − 1

K·n
∑K
k=1

∑n
i=1W

(k)
i E[ε

(k)
i ] instead

of ˆERR(θt), where E[ε
(k)
i ] is the expected privacy loss of the i-th data

owner of the k-th bid profile at the t-th batch.

+

n∑
i=1

φtirv,i · ˆirvi(θ
t) +

ρirv
2

(

n∑
i=1

ˆirvi(θ
t))2

+

n∑
i=1

φtdav,i · ˆdavi(θ
t) +

ρdav
2

(

n∑
i=1

ˆdavi(θ
t))2

where φtrgt, φ
t
irv, φ

t
dav ∈ Rn are vectors of Lagrange multi-

pliers and ρrgt, ρirv, ρdav > 0 are fixed hyperparameters that
control the quadratic penalties. Finally, the network parameters
of DM-RegretNet are updated at each iteration t as:

θt+1 ← θt − ψ∇θC(θt;φtrgt, φtirv, φtdav)

and the Lagrange multipliers are updated every Q iterations
as:

If t mod Q = 0 : ∀i,φt+1
rgt,i ← φtrgt,i + ρrgt · ˆrgti(θ

t)

φt+1
irv,i ← φtirv,i + ρirv · ˆirvi(θ

t)

φt+1
dav,i ← φtdav,i + ρdav · ˆdavi(θ

t)

In our experiments, we fine-tune and set the hyperparam-
eters as follows: T = 100, K = 1024, J = 100, Q = 10,
γ = 0.1, ψ = 0.001, and φ1

rgt,i = φ1
irv,i = φ1

dav,i = 1.0;
the allocation (payment) network consists of 2 hidden layers
and 100 hidden nodes per layer. We train each model for
50 epochs. In addition, we set ρrgt = ρirv = ρdav = 1.0
at the first epoch of training and increase ρrgt, ρirv in steps
of 1.0 at the end of every epoch. We note that since we
only need the bid profiles and financial budgets to train DM-
RegretNet, which are assumed to be nonprivate, fine-tuning the
hyperparameters of DM-RegretNet does not cause any privacy
leakage.

APPENDIX B
ALL-IN: SINGLE-MINDED AUCTION MECHANISM

We propose an auction mechanism All-in for single-minded
data owners, each of whom has a step valuation function

vi(εi, di) =

{
Vi, εi ∈ (0, ε̄i], di ∈ (0, d̄i]

0, εi = 0 or di = 0
where Vi > 0 is a

constant set by i. Therefore, we can use Vi and V ′i to represent
the real valuation vi and the reported valuation v′i, respectively.
Such cases are common in practice because some data owners
are just willing to sell all their small datasets and privacy
budgets at a single round of auction or only focus on whether
their private information is leaked rather than how much is
leaked. Obviously, each data owner i can only have two kinds
of auction results: (1) win the auction with εi = ε̄′i or (2) lose
the auction with εi = 0.

To meet the demands of single-minded bidders, we can
design a truthful mechanism using Myerson’s characterization
[48], which indicates that the monotonicity and critical pay-
ment properties imply truthfulness. Concretely, monotonicity
requires that a winner should still win if she re-reports a higher
privacy budget, a larger data size, and/or a lower valuation with
other bidders’ bids fixed; the critical payment property ensures
that winners are paid the maximum possible payments (i.e.,
critical payments) and hence that they have no incentive to



misreport bids. However, the limited financial budget makes
the problem more difficult because the winner selection should
depend on the payments, which in turn depend on the selection
results. Hence, we should carefully identify budget-feasible
critical payments.

Algorithm 4 Auction Mech.: All-in

Input: (reported) bid profile b′ = (b′1, ..., b
′
n), financial budget

B
Output: privacy losses ε1, .., εn, payments p1, ..., pn

1: Calculate the unit valuations on privacy budgets:
∀i, vuniti =

V ′
i

di·ε̄′i
2: Sort data owners in ascending order of vuniti

3: Initialize the winner set W = ∅ and critical unit payment
punit = 0

4: for each data owner i in the sorted order do
5: If vuniti ≤ B∑

j∈W∪{i} dj ·ε̄′j
, add i into W and update

critical unit payment punit = B∑
j∈W∪{i} dj ·ε̄′j

6: Calculate privacy losses: ∀i, εi = ε̄′i if i ∈ W; otherwise
εi = 0

7: Calculate payments: ∀i, pi = di · εi · punit
8: return ε1, ..., εn, p1, ..., pn

To capture the interdependency between the winner selec-
tion and payment decision, All-in takes the payments into
account when selecting winners. Concretely, to guarantee
monotonicity, All-in selects data owners in ascending order
of their unit valuations vuniti =

V ′
i

di·ε̄′i
; intuitively, if a owner

i decreases her valuation V ′i , increases her data size di,
and/or increases her privacy budget ε̄′i, she stays at the same
position or moves to a former position in the order. Then, the
winner selection procedure is to find the last owner whose
unit valuation vuniti is covered by the critical unit price

B∑
j∈W∪{i} dj ·ε̄′j

. In this design, the winners’ payments that
exhaust the financial budget B are critical because if a winner
i claims a higher unit valuation vunit

′

i > punit to gain a higher
payment, she definitely loses the auction due to the violation
of BF. Therefore, truthfulness is ensured.

Proposition 2. All-in satisfies truthfulness, IR, and BF.

Proof. All-in satisfies IR because the critical unit payment
punit is no lower than each winner i’s unit valuation vuniti .
Then, we prove that All-in satisfies truthfulness. Let V ′i be the
reported Vi, Ui = ui(bi; b

′
−i, B) and U ′i = ui(b

′
i, b
′
−i, B). For

each data owner i, we should discuss four cases as follows.
1) ε̄′i > ε̄i and/or di > d̄i: Obviously, data owner i has no

incentive because U ′i = −∞.
2) ε̄′i< ε̄i and/or di < d̄i: In the worst case, the critical unit

payment is punit
′

= B∑
j∈W dj ·ε̄′j

. Then, we have U ′i = di·ε̄′i·

punit
′−Vi =

B·di·ε̄′i∑
j∈W dj ·ε̄′j

−Vi < B·d̄i·ε̄i∑
j∈W/i dj ·ε̄′j+d̄i·ε̄i

−Vi =

Ui.
3) ε̄′i = ε̄i, di = d̄i and V ′i > Vi: If V ′

i

di·ε̄′i
is higher than the

critical unit payment punit = B∑
j∈W/i dj ·ε̄′j+d̄i·ε̄i

, she loses

the auction; otherwise, her utility does not change because
the critical payment is unchanged.

4) ε̄′i = ε̄i, di = d̄i and V ′i < Vi: Her utility does not change
because of the unchanged critical payment.
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