
User-Entity Differential Privacy
in Learning Natural Language Models
Phung Lai, NhatHai Phan∗

New Jersey Institute of Technology, USA
{tl353, phan}@njit.edu

Tong Sun, Rajiv Jain, Franck Dernoncourt,
Jiuxiang Gu, Nikolaos Barmpalios

Adobe Systems Inc., USA
{tsun, rajijain, dernonco, jigu, barmpali}@adobe.com

Abstract—In this paper, we introduce a novel concept of user-
entity differential privacy (UeDP) to provide formal privacy
protection simultaneously to both sensitive entities in textual data
and data owners in learning natural language models (NLMs).
To preserve UeDP, we developed a novel algorithm, called UeDP-
Alg, optimizing the trade-off between privacy loss and model
utility with a tight sensitivity bound derived from seamlessly
combining user and sensitive entity sampling processes. An
extensive theoretical analysis and evaluation show that our UeDP-
Alg outperforms baseline approaches in model utility under the
same privacy budget consumption on several NLM tasks, using
benchmark datasets.

Index Terms—Differential privacy, natural language models,
entities, user identity

I. INTRODUCTION

Despite remarkable performance in many applications, natu-
ral language models (NLMs), such as GPT models [1, 2, 3], are
vulnerable to privacy attacks because of such attacks’ capacity
to memorize unique patterns in training data [4]. Recent data
training extraction attacks [5] illustrate that sensitive entities,
such as a person’s name, email address, phone number,
physical address, etc., can be accurately extracted from NLM
parameters. These sensitive entities and the language data
memorized in NLMs may identify a data owner - explicitly
by name or implicitly, e.g., via a rare or unique phrase - and
link that data owner to extracted sensitive entities.

Our main goal is to provide a rigorous guarantee that a
trained NLM protects the privacy of sensitive entities in the
training data and the participation information (membership)
of the data owners in learning the model while maintain-
ing high model utility. The simple solution of anonymiz-
ing (including removing/de-identifying) sensitive entities is
insufficient; since the anonymized entities can be matched
with non-anonymized data records in another dataset [6].
Also, the model utility can be notably affected, as shown
in our experimental study. While cryptographic approaches
can be applied to protect privacy, they introduce computation
and resource overhead [7]. Therefore, we proposed to use
differential privacy [8], one of the adequate solutions, given
its formal protection without undue sacrifice in computation
efficiency and model utility.

∗Corresponding author

Differential privacy (DP) provides rigorous privacy protec-
tion as a probabilistic term, limiting the knowledge about a
data record an ML model can leak while learning features of
the whole training set. DP-preserving mechanisms have been
investigated and applied in real-world [9, 10, 11], including
image processing [12], healthcare data [13], financial records
[14], social media [15], and NLMs [16, 17, 18, 19].

However, existing DP protection levels, including sample-
level DP [6, 9, 20, 21], user-level DP [16, 22], element-level
DP [23], and local (feature-level) DP [17, 18, 24, 25], do not
provide the privacy protection level demanded to solve our
problem. Given training data: 1) Sample-level DP protects the
privacy of a single sample; 2) User-level DP protects privacy
of a single data owner, also called a single user, who may
contribute one or more data samples; 3) Element-level DP
partitions data owners’ contribution to the training data into
sensitive elements, e.g., a curse word, which will be protected.
Element-level DP does not provide privacy protection to data
owners; and 4) Local (feature-level) DP protects true values
of a data sample from being inferred. Recently, [18] proposed
local DP-preserving approaches for text embedding extraction
under (word-level) local DP (Eq. 2). However, the privacy
budget in [18] is accumulated over the dimensions of em-
bedding, resulting in an impractical (loose) privacy guarantee
(Appendix D in our supplemental document1).

Therefore, there is a demand for a new level of DP to
protect privacy simultaneously for both sensitive entities in the
training data and the participation information of data owners
in learning NLMs. Motivated by this, we structure our paper
around the following significant contributions.
• We propose a novel notion of user-entity adjacent

databases (Definition 2), leading to formal guarantees of user-
entity privacy rather than privacy for a single user or a single
sensitive entity.
• To preserve UeDP, we introduce a novel algorithm, called

UeDP-Alg, which leverages the recipe of DP-FEDAVG [16] to
protect both sensitive entities and user membership under DP
via the moments accountant [9]. Moments accountant was first
developed to preserve DP in stochastic gradient descent (SGD)
for sample-level privacy. Our federated averaging approach
groups multiple SGD updates computed from a two-level
random sampling process, including a random sample of

1https://www.dropbox.com/s/3ch7m2yskshkkc5/UeDP Supplementary.pdf?dl=0978-1-6654-8045-1/22/$31.00 ©2022 IEEE

ar
X

iv
:2

21
1.

01
14

1v
2

 [
cs

.C
R

]
 9

 N
ov

 2
02

2

https://www.dropbox.com/s/3ch7m2yskshkkc5/UeDP_Supplementary.pdf?dl=0

users and a random sample of sensitive entities. That enables
large-step model updates and optimizes the trade-off between
privacy loss and the model utility through a tight noise scale
bound (Lemma 1 and Theorem 1).
• Through theoretical analysis and rigorous experiments

conducted on benchmark datasets, we show that our UeDP-
Alg outperforms baseline approaches in terms of model utility
on fundamental tasks, i.e., next word prediction and text
classification, under the same privacy budget consumption.
Our code is available2.

II. BACKGROUND

In this section, we revisit NLM tasks, privacy risk, and DP.
For the sake of clarity, let us focus on the next word prediction,
and we will extend it to text classification in Section VI. A
list of sensitive entity categories is summarized in Table I.

a) Next Word Prediction: Let D be a private training
data containing U users (data owners) and a set of sensitive
entities E. Each user u ∈ U consists of nu sentences. Given a
vocabulary V , each sentence is a sequence of words, presented
as x = x1x2 . . . xmu

, where xi ∈ V, (i ∈ [1,mu]) is a word
in x and mu is the length of x. In next word prediction, the
first j words in x, i.e., x1, x2, . . . , xj (∀j < mu), are used
to predict the next word xj+1. Here, xj+1 can be considered
as a label in the next word prediction task. Perplexity PP =
2−

∑
x∈D p(x) log2 p(x) is a measurement of how well a model

predicts a sentence and is often used to evaluate language
models, where p(x) is a probability to predict the next word
xj+1 in x [26]. A lower perplexity indicates a better model.

b) Sensitive Entities and Sentences: Each sensitive entity
e ∈ E consists of a word or consecutive words that must
be protected. For instance, personal identifiable information
(PII) related to an identifiable person, such as person names,
locations, and phone numbers, can be considered sensitive
entities. If a sentence x consists of a sensitive entity e, x
is considered as a sensitive sentence; otherwise, x is a non-
sensitive sentence.

For instance, in Fig. 1, “David Johnson,” “Maine,” “Septem-
ber 18,” and “Main Hospital” are considered sensitive enti-
ties, correspondingly categorized into PII, geopolitical entities
(GPE) (i.e., countries, cities, and states), time, and organization
names. The first and second sentences consisting of the sen-
sitive entities are considered sensitive sentences. Meanwhile,
the third and fourth sentences are non-sensitive since they do
not contain any sensitive entities.

c) Privacy Threat Models: It is well-known that trained
ML model parameters can disclose information about training
data [5, 27], especially in NLMs [5, 16]. Given a data sample
and model parameters, by using a membership inference
attack [28, 29, 30], adversaries can infer whether the training
used the sample or not. In NLMs, adversaries can accurately
recover individual training examples, such as full names, email
addresses, and phone numbers of individuals, using training
data extracting attacks [5]. Accessing to these can lead to
severe privacy breaches.

2https://github.com/PhungLai728/UeDP

TABLE I: Description of sensitive entity categories.

Type Description

Person Person, i.e., people, including fictional
Loc Location, i.e., non-GPE locations, mountain ranges, bodies of water
Org Organization, i.e., companies, agencies, institutions, etc.
Misc Miscellaneous, i.e., entities that do not belong to the person,

location, and organization in CONLL-2003
GPE Geopolitical entity, i.e., countries, cities, states
PII Personal identification information, i.e., name, location, phone, etc.
Date Absolute or relative dates or periods
NoRP Nationalities or religious or political groups
Fac Buildings, airports, highways, bridges, etc.
Product Objects, vehicles, foods, etc. (Not services.)
Event Named hurricanes, battles, wars, sports events, etc.
Law Named documents made into laws
Language Any named language
Work of art Titles of books, songs, etc.
Time Times smaller than a day
Percent Percentage, including “%”
Money Monetary values, including unit
Quantity Measurements, as of weight or distance
Ordinal “First”, “second”, etc.
Cardinal Numerals that do not fall under another type

Fig. 1: User-Entity DP. Data from users is processed to iden-
tify sensitive entities, before being trained by local trainers.
Bounded gradients from local trainers are aggregated at a
server with additive noise. Updated model is sent back to local
trainers for next rounds.

III. DIFFERENT LEVELS OF DP

To avoid these privacy risks, DP guarantees restriction on
the adversaries in what they can learn from the training
data given the model parameters by ensuring similar model
outcomes with and without any single training sample. Let us
revisit the definition of DP, as follows:

Definition 1. (ε, δ)-DP [8]. A randomized algorithm A fulfills
(ε, δ)-DP, if for any two adjacent datasets D and D′ differing
by at most one sample, and for all outcomes O ⊆ Range(A):

Pr[A(D) = O] ≤ eεPr[A(D′) = O] + δ (1)

with a privacy budget ε and a broken probability δ.

https://github.com/PhungLai728/UeDP

The privacy budget ε controls the amount by which the
distributions induced by D and D′ may differ. A smaller ε
enforces a stronger privacy guarantee. The broken probability
δ means the highly unlikely “bad” events, in which an adver-
sary can infer whether a particular data sample belongs to the
training data, happen with the probability ≤ δ.

There are different levels of DP protection in literature
categorized into four research lines, including sample-level DP,
user-level DP, element-level DP, and local (feature-level) DP.
They are different from our goal since we focus on providing
simultaneous protections to data owners and sensitive entities
in textual data. Let us revisit these DP levels and distinguish
them with our goal.

a) Sample-level DP: Traditional DP mechanisms [6, 20,
31] ensure DP at the sample-level, in which adjacent datasets
D and D′ are different from at most a single training sample.
Sample-level DP does not protect privacy for users. That is
different from our goal. We aim at protecting privacy for users
and sensitive entities, which are different from data samples.

b) User-level DP: To protect privacy for users, who may
contribute more than one training sample, rather than a single
sample, [16] proposed a user-level DP, in which neighboring
databases D and D′ are defined to be different from all of
the samples associated with an arbitrary user in the training
set. Several works follow this direction [22, 32]. User-level
DP differs from our goal, since it does not provide privacy
protection for sensitive entities in the training set.

c) Element-level DP: [23] introduce element-level DP, in
which users are partitioned based on sensitive elements, which
are protected in a way that an adversary cannot infer whether
a user has a sensitive element in her/his data, e.g., if a user has
ever sent a curse word in his/her messages or not. Similar to
sample-level DP, element-level DP is different from our goal,
since it does not provide DP protection for users.

d) Local (feature-level) DP: [18] proposed a notion of
word-level local DP for a sentence’s embedding features, in
which two adjacent sentences x and x′ are different at most
one word:

Pr[A(f(x)) = O] ≤ eεPr[A(f(x′)) = O] (2)

where f(x) extracts embedded features of x and A is a
randomized algorithm, such as a Laplace mechanism [6]. In a
similar effort, [17] applied a randomized response mechanism
[24, 33, 34] on top of binary encoding of embedded features’
real values to achieve local DP feature embedding. The ap-
proaches proposed in [17, 18] are different from our goal,
since they do not offer either user-level DP or word-level DP.

IV. USER-ENTITY DIFFERENTIAL PRIVACY

In this section, we focus on answering the question: “Could
we protect sensitive entities and user membership simultane-
ously by leveraging existing levels of DP and how?” Based
upon that, we propose our user-entity DP notion.

A. Sensitive Entities and User Membership

To protect sensitive entities and user membership, a po-
tential approach is to decouple them into separated protection
levels offering by existing DP notions. However, this approach
has limitations as discussed next.

Let us consider a sentence consisting of one or more than
one sensitive entities. We can leverage sample-level DP to
protect the sentence, i.e., each sentence could be a sample,
covering all the sensitive entities under DP. If each user has
only one sentence, then this approach can also protect the
user membership. In practice, one user may contribute many
sentences to the training data. To address this issue, we can
utilize group privacy [6] resulting in an amplification of the
privacy budget proportional to the number of sentences a user
may have in the training data.

Instead of group privacy, another potential solution is
applying user-level DP on top of the sample-level DP to
protect both sentence and user membership. In the sample-
level DP, we can clip and inject Gaussian noise into the
gradient derived from each sentence [9]. Meanwhile, in the
user-level DP, an additional Gaussian noise is injected into the
aggregation of gradients, each of which derived from a single
user [16]. Although this combination of sample - user levels
can cover both sensitive entities and user membership under
DP protection, it has disadvantages. First, some sentences are
sensitive and other sentences are not. Protecting all (sensitive
and non-sensitive) sentences or removing all the sensitive
sentences from the training data may cause significant model
utility degradation. Second, different sentences may consist of
different types and numbers of sensitive entities. Under the
same sampling probability for training as in [9] for sample-
level DP, these sentences expose different privacy risks to user
identity and sensitive entities.

To address these issues, instead of the sentence level, one
can work at the word level by extracting embedded features
for every words in the training data. Embedded features
of sensitive entities are randomized by local DP-preserving
mechanisms [34]. The randomized embedded features are
aggregated with embedded features of non-sensitive words
to train NLMs. Then, user-level DP can be applied to clip
gradients derived from each user’s data with adding Gaussian
noise into the aggregation of these gradients. However, this
approach suffers from a remarkable model utility degradation.
Local DP provides rigorous privacy protection but it comes
with a cost in terms of utility [35]. Then, adding the user-
level DP adversely affects the utility.

The root cause of these limitations is that the combination of
sentence-level DP and user-level DP notions does not capture
the correlation between sensitive entities and user membership
in unifying notion of DP. Meanwhile, working with word-
level embedded features under local DP introduces expensive
model utility costs. Therefore, there is a demand for a unifying
notion of DP and an optimal approach to protect both sensitive
entities and user membership in training NLMs.

B. UeDP Definition

To preserve privacy for both users and sensitive entities in
NLMs, we propose a new definition of user-entity adjacent
databases, as follows: Two databases D and D′ are user-entity
adjacent if they differ in a single user and a single sensitive
entity; that is, one user u′ and one sensitive entity e′ are present
in one database (i.e., D′) and are absent in the other (i.e., D).
Together with the absence of all sentences from the user u′

in D, all sentences (across users) consisting of the sensitive
entity e′ are also absent in D. This is because one user can
have multiple sentences, and one sensitive entity can exist in
multiple sentences for training. The definition of our user-
entity adjacent databases is presented as follows:

Definition 2. User-Entity Adjacent Databases. Two databases
D and D′ are called user-entity adjacent if: ‖U − U ′‖1 ≤ 1
and ‖E−E′‖1 ≤ 1, where U and E are the sets of users and
sensitive entities in D, and U ′ and E′ are the sets of users
and sensitive entities in D′.

Given the user-entity adjacent databases, we present our
UeDP in the following definition.

Definition 3. (ε, δ)-UeDP. A randomized algorithm A is
(ε, δ)-UeDP if for all outcomes O ⊆ Range(A) and for all
user-entity adjacent databases D and D′, we have:

Pr[A(D) = O] ≤ eεPr[A(D′) = O] + δ (3)

with a privacy budget ε and a broken probability δ.

V. PRESERVING UEDP IN NLMS

UeDP provides rigorous privacy protection to both users
and sensitive entities; however, the practicability of UeDP
preservation depends on the reliability of sensitive entity
detection from the training text data. In practice, misidenti-
fying sensitive entities can introduce extra privacy risks. In
addition to addressing this challenge, we focus on bounding
the sensitivity of an NLM under UeDP and addressing the
trade-off between privacy loss and model utility.

A. Misidentifying Sensitive Entities

Identifying all the sensitive entities typically requires in-
tensive manual efforts [36]. We are aware of this issue in
real-world applications. Fortunately, there are several ways to
automatically identify sensitive entities in textual data, such as:
1) Using Named Entity Recognition (NER) [37, 38]; and 2)
Using publicly available toolkits for detecting named entities
or PII in text, e.g., spaCy [39], Stanza [40], and Microsoft
Presidio3. These approaches and toolkits are user-friendly
and reliable to reduce manual efforts in identifying sensitive
entities and information. We found that the results from spaCy
cover over 94% of sensitive information identified by Amazon
Mechanical Turk (AMT) workers in a diverse set of datasets
used in our experiments. More information about identifying
sensitive entities is available in Appx. A.

3https://microsoft.github.io/presidio/

Although effective, the small error rate (i.e., u 6%) from
these techniques introduces a certain level of privacy risk, that
means, some sensitive entities may be misidentified to be non-
sensitive, and vice-versa. Classifying non-sensitive entities to
be sensitive entities does not incur any extra privacy risk.
Meanwhile, classifying one (or more than one) sensitive entity
to be non-sensitive in a sentence introduces two issues, as
follows: (1) There may be sensitive sentences misidentified
to become non-sensitive sentences. In order words, given a
set of non-sensitive sentences detected by NER tools, we
do not know which sentence is truly non-sensitive; and (2)
Given a sensitive sentence x, some sensitive entities in x may
not be identified by NER tools. Preserving UeDP in NLMs
by directly using the results of NER tools will expose these
misidentifying sensitive sentences and entities unprotected.

B. Preserving UeDP

To address the problem of sensitive entity misidentification
in preserving UeDP, our key idea is:

(1) Extending UeDP by considering each sentence, identi-
fied to be non-sensitive using NER tools [39, 40], in the private
training dataset as a single type of sensitive entity. We denote
this extended set of sensitive entities as S. The private dataset
D now consists of U users and a (sufficient) set of sensitive
entities E ∪ S that will be protected.

(2) Upon forming the sufficient set of sensitive entities,
we propose a two-step sampling approach to strictly preserve
UeDP in NLMs. In our approach, at a training round t, we
sample a set of users from U and a set of sensitive entities
from E ∪ S. We use sentences in the training data of the
sampled users consisting of the sampled sensitive entities to
train NLMs. In this sampling approach: (i) If a sensitive
sentence x is not sampled for training, i.e., due to the fact
that some sensitive entities in x are not identified by NER
tools, x is not used for training at the round t; thus avoiding
privacy risks exposed by x; and (ii) If the sensitive sentence
x is sampled for training, then the sensitive entities in x,
which are not identified by NER tools, are protected since
x is protected under DP.

By covering all possible cases of sensitive entity misidenti-
fication, we strictly preserve UeDP without having additional
privacy risks. The pseudo-code of our algorithm is in Alg. 1.

At each iteration t, we randomly sample U t users from
U , Et detected sensitive entities from E, and St extended
sensitive entities from S, with sampling rates qu, qe, and
qs, respectively (Lines 8 and 10). Then, we use all sensitive
sentences in Etu ∪ Stu consisting of the sensitive entities in
Et and St belonging to the selected users in U t for training.
Like [16], we leverage the basic federated learning setting in
[41] to compute gradients of model parameters for a particular
user, denoted as ∆t+1

u,E (Line 11). Here, we clip the per-
user gradients so that its l2-norm is bounded by a predefined
gradient clipping bound β (Lines 20 - 29). Next, a weighted-
average estimator fE+ is employed to compute the average
gradient ∆t+1 using the clipped gradients ∆t+1

u,E gathered
from all the selected users (Line 13). Finally, we add random

https://microsoft.github.io/presidio/

Gaussian noise N (0, Iσ2) to the model update (Line 15).
During the training, the moments accountant M is used to
compute the T training steps’ privacy budget consumption
(Lines 16 - 18).

To tighten the sensitivity bound, our weighted-average esti-
mator fE+ (Line 13) is as follows:

fE+(U t, Et) =

∑
u∈Ut wu∆t+1

u,E

quWu(qeWe + qsWs)
(4)

where ∆t+1
u,E =

∑
e∈Et

u
we∆u,e+

∑
s∈St

u
ws∆u,s, and wu, we,

and ws ∈ [0, 1] are weights associated with a user u, a detected
sensitive entity e, and an extended sensitive entity s.

These weights capture the influence of a user and sensitive
entities to the model outcome. ∆u,e and ∆u,s are the param-
eter gradients computed using the sensitive entities e ∈ E and
s ∈ S. In addition, Wu =

∑
u∈U wu, We =

∑
e∈E we, and

Ws =
∑
s∈S ws.

Since E[
∑
e∈Et

u
we +

∑
s∈St

u
ws] = qeWe + qsWs, the

estimator fE+ is unbiased. The sensitivity of the estimator
S(fE+) is computed as: S(fE+) = maxu′,e′‖fE+({U t ∪
u′, (Et∪St)∪e′})−fE+({U t, Et∪St})‖2. S(fE+) is bounded
in the following lemma.

Lemma 1. If for all users u we have ‖∆t+1
u,E ‖2 ≤ β, then

S(fE+) ≤ (qu|U |+1) max(wu)β
quWu(qeWe+qsWs) .

Proof. If for all users ‖∆t+1
u,E ‖2 ≤ β, then

S(fE+) =

∑
u∈Ut∪u′ wu

(∑
e∈Et

u
we(
∑

s consists of e ∆u,s)
)

quWu(qeWe + qsWs)

+

∑
u∈Ut∪u′ wu

(∑
s∈St

u
ws∆u,s

)
quWu(qeWe + qsWs)

+

∑
u∈Ut∪u′ wu

[
we′(

∑
s consists of e′ ∆u,s)

]
quWu(qeWe + qsWs)

−

∑
u∈Ut wu

(∑
e∈Et

u
we(
∑

s consists of e ∆u,s)
)

quWu(qeWe + qsWs)

−

∑
u∈Ut wu

(∑
s∈St

u
ws∆u,s

)
quWu(qeWe + qsWs)

≤
∑
u∈Ut∪u′ [(wu)β]

quWu(qeWe + qsWs)
≤ (qu|U |+ 1) max(wu)β

quWu(qeWe + qsWs)
(5)

Consequently, Lemma 1 holds.

Once the sensitivity of the estimator fE+ is bounded, we can
add Gaussian noise scaled to the sensitivity S(fE+) to obtain
a privacy guarantee. By applying Lemma 1, the noise scale σ
becomes:

σ = zS(fE+) =
z(qu|U |+ 1) max(wu)β

quWu(qeWe + qsWs)
(6)

The noise scale σ in Eq. 6 is tighter than the noise scale in
existing works [16, 22] proportional to the number of sensitive
entities used in the training process (i.e., qeWe + qsWs).

1: Input: Dataset D, set of sensitive entities E, extended set of
sensitive entities S, sampling rates qu, qe, and qs, clipping
bound β, a hyper-parameter z, and number of iterations T

2: Initialize model θ0 and moments accountant M
3: wu ← min(nu

ŵu
, 1) for all users u

4: we ← min(ne
ŵe
, 1) for all sensitive entities in E

5: ws ← min(ns
ŵs
, 1) for all extended sensitive entities in S

where nu, ne, and ns are the number of sentences in user u,
the number of sentences containing sensitive entities e ∈ E, the
number of sensitive entities in S, and ŵu, ŵe, and ŵs are
per-user sentence cap, per-entity sentence cap, and per-entity
entity cap.

6: Wu ←
∑
u∈U wu, We ←

∑
e∈E we, Ws ←

∑
s∈S ws

7: for t ∈ T do
8: U t ← sample users with probability qu
9: for each user u ∈ U t do

10: Etu ∪ Stu ← sensitive entities (belonging to the user u)
consisting of sensitive entities Et sampled from E with
probability qe and extended sensitive entities St sampled
from S with probability qs

11: ∆t+1
u,E ← Local-Update(u,Etu ∪ Stu, θt,ClipFn)

12: end for
13: ∆t+1 ←

∑
u∈Ut wu∆t+1

u,E
quWu(qeWe+qsWs)

14: σ ← z(qu|U|+1) max(wu)β
quWu(qeWe+qsWs)

15: θt+1 ← θt + ∆t+1 +N (0, Iσ2)
16: M.accum_priv_spending(z)
17: end for
18: print M.get_priv_spent()
19: Output: (ε, δ)-UeDP θ, M
20: Local-Update(u,Etu ∪ Stu, θ0, ClipFn):
21: θ ← θ0

22: B ← u’s data split into size B batches
23: for batch b ∈ B do
24: ∀e ∈ Etu : ∆u,e ←

∑
sentence s (∈b) consists of e5l(θ, s)

25: ∀s ∈ Stu ∩ b : ∆u,s ←5l(θ, s)
26: ∆u,E ←

∑
e∈Et

u
we∆u,e +

∑
s∈St

u
ws∆u,s

27: θ ← θ0 − η∆u,E
28: end for
29: return ClipFn(θ − θ0, β)
30: ClipFn(∆, β): return π(∆, β)← ∆ ·min

(
1, β

‖∆‖

)
Algorithm 1: UeDP-Alg

Therefore, we can inject less noise into our model under the
same privacy budget while improving our model utility.

In extreme cases, that is also true: (1) E is empty, which
means there are no detected sensitive entities. Given a fixed
set of training data, while E is empty, S becomes larger (i.e.,
covering the whole dataset), resulting in a larger value of Ws.
Therefore, we obtain a larger value of qsWs (with a pre-
defined qs), enabling us to reduce the noise scale under the
same UeDP guarantee. That is an advantage compared with
the naive approach that only uses detected sensitive entities
E in the training process (i.e., ignoring the term qsWs in Eq.
6). If E is empty, the naive approach will have no sentences
for training; and (2) S is empty, that is, every sentence in the
data consists of at least one detected sensitive entity e ∈ E.
Similarly, given a fixed set of training data, if S is empty, then
E and We become larger. It enables us to obtain a larger value
of qeWe (with a pre-defined qe), which results in smaller noise

scale while maintaining the high model utility.
UeDP Guarantee. Given the bounded sensitivity of the

estimator, the moments accountantM [9] is used to get a tight
bound on the total UeDP privacy consumption of T steps of
the Gaussian mechanism with the noise N (0, Iσ2) (Line 15).

Theorem 1. For the estimator fE+ , the moments accountant
of the sampled Gaussian mechanism correctly computes UeDP
privacy loss with the scale z = σ/S(fE+) for T training steps.

Proof. At each step, users, detected sensitive entities in E,
and extended sensitive entities in S are selected randomly
with probabilities qu, qe, and qs, respectively. For fE+ , if the
l2-norm of each user’s gradient update, using the sampled
sensitive entities in Etu ∪ Stu, is bounded by S(fE+), then
the moments accountant can be bounded by that of the
sampled Gaussian mechanism with sensitivity 1, the scale
z = σ/S(fE+), and sampling probabilities qu, qe, and qs.
Thus, we can apply the composability as in Theorem 2.1 [9]
to correctly compute the UeDP privacy loss with the scale
z = σ/S(fE+) for T steps.

VI. EXPERIMENTAL RESULTS

We conducted an extensive experiment, both in theory and
on benchmark datasets, to shed light on understanding 1)
the integrity of sensitive entity identification, 2) the interplay
among the UeDP privacy budget (ε, δ), different types of sensi-
tive entities (i.e., organization, location, PII, and miscellaneous
entities), and model utility, and 3) whether considering the
extended set of sensitive entities S will improve our model
utility under the same UeDP protection.

a) Baseline Approaches: We evaluate our UeDP-Alg
in comparison with both noiseless and privacy-preserving
mechanisms (either user level or entity level), including: (1)
User-level DP [16], which is the state-of-the-art DP-preserving
model closely related to our work; (2) De-Identification [42],
which is considered as a strong baseline to protect privacy
for sensitive entities. Although sensitive entities are masked
to hide them in the training process, De-Identification does
not offer formal privacy protection to either the data owners
or sensitive entities; and (3) A Noiseless model, which is a
language model trained without any privacy-preserving mech-
anisms. In addition, we consider the naive approach, which is a
variation of our algorithm, called UeDP-Alg fE . As a baseline,
the estimator fE is computed without taking the extended set
of sensitive entities S into account (Appx. B, Supplementary4).
This is further used to comprehensively evaluate our proposed
approach. In our experiment, our algorithms and baselines, i.e.,
UeDP-Alg, User-level DP, and De-Identification, are applied
on the noiseless model in the training process. As in the
literature review [18, 23], there are no other appropriate DP-
preserving baselines for UeDP protection.

b) Evaluation Tasks and Metrics: Our experiment con-
siders two tasks: (1) next word prediction and (2) text classi-
fication. For the next word prediction, we employ the widely
used perplexity [43]. The smaller perplexity is, the better

model is. For the text classification, we use the test error rate
as in earlier work [44]. Test error rate implies prediction error
on a test set, so it is 1 - the test set’s accuracy. The lower the
test error rate is, the better model is.

c) Data and Model Configuration: For the reproducibil-
ity sake, all details about our datasets and data processing are
included in Appx. C (Supplementary4). We carried out our
experiment on three textual datasets, including the CONLL-
2003 news dataset [37], AG’s corpus of news articles4, and our
collected Security and Exchange Commision (SEC) financial
contract dataset. The data breakdown is in Table II.

For the next word prediction, we employ a GPT-2 model
[2], which is one of the state-of-art text generation models.
To make the work easily reproducible, we use a version
of the pretrained GPT-2 that has 12-layer, 768-hidden, 12-
heads, 117M parameters, and then fine-tune with the afore-
mentioned datasets as our Noiseless GPT-2 model. For the
text classification, we fine-tune a Noiseless BERT (i.e., BERT-
Base-Uncased5) pre-trained model [45] that has 12-layer, 768-
hidden, 12-heads, and 110M parameters with an additional
softmax function on top of the BERT model. Adam optimizer
is used with the learning rate is 10−5. Gradient clipping bound
β = 0.1 and the scale z = 2.5. The sampling rates for users,
detected sensitive entities, and extended sensitive entities qu,
qe, and qs are 0.05, 0.5, and 1.0.

To test the effectiveness and adaptability of our mechanism
across models, we also conducted experiments with an AWD-
LSTM model [46], which has a much fewer parameters
compared with GPT-2 and BERT. In AWD-LSTM model, we
use a three-layer LSTM model with 1, 150 units in the hidden
layer and an embedding input layer of size 100. Embedding
weights are uniformly initialized in the interval [−0.1, 0.1]
with dimension d = 100 and other weights are initialized
between [− 1√

H
, 1√

H
], where H is the size of all hidden layers.

The values used for dropout on the embedding layer, the
LSTM hidden-to-hidden matrix, and the final LSTM layer’s
output are 0.1, 0.3, and 0.5, respectively. Gradient clipping
bound β = 0.1 and the scale z = 2. The sampling rates qu,
qe, and qs are 0.05, 0.5, and 1.0 (note that qs is 0.6 in the
text classification task). SGD optimizer is used. In the text
classification with the AG dataset, a softmax layer is applied
on top of the AWD-LSTM with the output dimension is 4,
corresponding to four classes in the AG dataset. The same
sets of sensitive entity categories are used for all models in
the next word prediction and the text classification tasks.

d) Evaluation Results: To answer our evaluation ques-
tions, we conducted the following experiments: (1) examining
how the sensitive entities detected by the entity recognition
spaCy [39] covers the sensitive information clarified by AMT
workers, (2) comparing estimators fE , fE+ , and User-level
DP; (3) investigating the interplay between privacy budget and
model utility; (4) studying the impacts of different sensitive

4http://groups.di.unipi.it/∼gulli/AG corpus of news articles.html
5https://huggingface.co/transformers/pretrained models.html

http://groups.di.unipi.it/~gulli/AG_corpus_of_news_articles.html
https://huggingface.co/transformers/pretrained_models.html

TABLE II: Breakdown of CONLL-2003, AG, and SEC datasets.

Dataset |V| # of sentences # of users # of sensitive sentences

CONLL-2003 8,882 14,040 946 Org Loc Person Misc All
5,187 5,433 4,406 3,438 11,176

AG 30,000 112,000 7,536 Org Loc GPE PII All
58,177 39,988 18,506 42,683 67,157

SEC 12,651 5,188 1,592 Org Loc GPE PII All
1,955 273 60 357 2,166

(a) CONLL-2003 dataset (b) AG dataset (c) SEC dataset

Fig. 2: Next word prediction results using the GPT-2 model. (The lower the better)

entity categories in E on the privacy budget and model utility;
and (5) confirming our results in the text classification task.

Our result is as follows:
• Integrity of sensitive entities. Our work utilizes spaCy

[39], one of the state-of-the-art large-scale entity recognition
systems, to identify sensitive entities for evaluation purposes
on datasets that do not have ground-truth sensitive entities,
including the AG and SEC datasets. For CONLL-2003, we
consider the labels of four sensitive entity types (i.e., location,
person, organization, and miscellaneous) from NER as the
ground truth. To evaluate the integrity of identified sensitive
entities, we conducted a clarification on AMT. We found that
the results from spaCy cover over 94% of sensitive information
as identified by AMT workers. We recruited master-level
AMT workers for a high quality of results, and we provided
detailed guidance before AMT workers conducted the task.
Each sentence was assigned to 3 workers to mitigate bias
and subjective views. Consequently, our experiments using the
spaCy identified sensitive entities are solid.
• Comparing Estimators fE , fE+ , and User-level DP. In

this analysis, we set qu = 0.05, qe = 0.5, qs = 1, z = 2, and
compute privacy budget ε at δ = 10−5 (a typical value of δ in
DP) as a function of the training steps T . Fig. 4 shows curves
of using different estimators and the User-level DP with all
entities in CONLL-2003, AG, and SEC datasets.

Our UeDP-Alg with fE+ achieves a notably tighter privacy
budget compared with fE and the User-level DP in all scenar-
ios in CONLL-2003, AG, and SEC datasets. The key reason
is that typically detected sensitive entities in E appear rarely
in a dataset compared with extended sensitive entities. Thus,
using only sensitive entities in E identified by the spaCy in
training will cause information distortion, which can damage
model utility and a loose privacy budget.

User-level DP consumes a much higher privacy budget
ε compared with both of our estimators fE+ and fE . For

instance, at T = 50, the values of ε in all entities of fE+
and fE , and the value of ε of the User-level DP in: (1) the
CONLL-2003 dataset are 0.52, 0.62, and 1.18; (2) the AG
dataset are 0.50, 0.75, and 1.48; and (3) the SEC dataset are
0.40, 0.71, and 1.40, respectively.

Significantly, the privacy budget (ε) gap between User-level
DP, fE , and fE+ is proportionally increased to the number of
steps T . That means the more training steps T , the larger
ε our model can save compared with User-level DP. That
is a promising result in the context that our model provides
DP protection for both users and sensitive entities, compared
with only protection for users in User-level DP. We observe a
similar phenomenon on different sensitive categories.
• Privacy Budget (ε, δ)-UeDP and Model Utility. From

our theoretical analysis, fE+ is better than the estimator fE .
Therefore, for the sake of simplicity, we only consider UeDP-
Alg fE+ instead of showing results from both estimators. From
now, UeDP-Alg is used to indicate the use of our estimator
fE+ . Fig. 2 illustrates the perplexity as a function of the
privacy budget ε for an GPT-2 model trained on a variety
of sensitive entity categories in UeDP, User-level DP, and
De-Identification. The noiseless GPT-2 (for the next word
prediction) and BERT (for the text classification) models are
considered an upper-bound performance mechanism without
offering any privacy protection.

In the CONLL-2003 dataset (Fig. 2a), there are NER
labels for person, location, organization, and miscellaneous
entities; therefore, we choose these types as sensitive entity
categories to protect in UeDP-Alg. UeDP-Alg achieves a
better perplexity compared with User-level DP under a tight
privacy budget ε ∈ [0.18, 0.20]. Also, from ε = 0.185 (a tight
privacy protection), our UeDP-Alg achieves a better perplexity
than De-Identification. In fact, at ε = 0.185, our UeDP-Alg
achieves 35.09 for person, 35.34 for organization, 35.57 for
miscellaneous, and 36.79 for location entities, compared with

(a) AG dataset

(b) AG dataset with varying qs

Fig. 3: Text classification results on the AG dataset using the
BERT model. With qs = 0.0, the test error rate is 75% in all
cases. (The lower the better)

52.01 in User-level DP. When spending more privacy budget
(ε ≥ 0.195), both UeDP-Alg and User-level DP converge at
a very competitive perplexity level, approaching the upper-
bound Noiseless GPT-2. For instance, at ε = 0.20, there
are significant perplexity drops given UeDP-Alg and User-
level DP mechanisms, i.e., our UeDP-Alg is 29.24 for person,
29.35 for miscellaneous, 29.58 for organization, and 29.75 for
location entities. Meanwhile, the perplexity values of User-
level DP, De-Identification, and the noiseless GPT-2 model
are 30.15, 38.30, and 27.13.

Results on AG and SEC datasets (Figs. 2b and 2c) further
strengthen our observations. In AG and SEC datasets, we
applied spaCy to identify different sensitive entity categories,
such as GPE, location, organization, and PII (i.e., person
and location information). UeDP-Alg achieves better results
compared with User-level DP in all considering sensitive
entity categories and privacy budgets, and outperforms De-
Identification in most cases. That is promising and consistent
with our previous analysis. For instance, in the AG dataset, at
ε = 0.19, our UeDP-Alg achieves 25.33 for location, 25.72
for PII, 25.77 for organization, and 26.01 for GPE entities,
compared with 36.05 in User-level DP. De-Identification ob-
tains 35.90, and the upper bound result in the noiseless GPT-
2 model is 24.98. Similarly, in the SEC dataset (Fig. 2c), at
ε = 0.19, UeDP-Alg achieves perplexity of 20.98 in GPE,
21.12 in PII, 21.22 in location, 21.50 in organization, and
21.33 in all entities, compared with 36.07 in User-level DP,
and 34.07 in De-Identification. In AG and SEC datasets, at a
tight privacy budget, i.e., ε = 0.19, our UeDP-Alg has better
perplexity values than the De-Identification, approaching the
noiseless GPT-2 model.

• Sensitive Entity Categories. In all datasets (Figs. 2 and
9, Appx. E, Supplementary4), the more sensitive sentences
to protect, the higher the privacy budget is needed, and the
lower performance the model achieves (i.e., higher perplexity
values). For instance, in the SEC dataset, the number of
sensitive sentences in each category is as follows: 60 in GPE,
273 in location, 357 in PII, 1, 955 in organization, and 2, 166
in all entities. After 500 steps, the values of ε are 0.19 in
GPE, 0.24 in location, 0.26 in PII, 0.73 in organization, 0.81
in all entities, and 4.08 in User-level DP (Fig. 4). At ε = 0.18
(Fig. 2c), we obtain perplexity values of 42.63 in GPE, 43.21
in location, 43.30 in PII, 43.70 in organization, 43.77 in all
entities, and a 583.06 in User-level DP.
• Text classification. Fig. 3a shows that our UeDP-Alg

achieves lower test error rates in terms of text classification
on the AG dataset than baseline approaches in most cases
across different types of sensitive entities under a very tight
UeDP protection (ε ∈ [0.18, 0.19]). This is a promising result.
When ε is higher, the test error rates of both UeDP-Alg and
User-level DP drop, approaching the noiseless BERT model’s
upper-bound result.
• Extended Sensitive Entities. To shed light into the

impact the extended sensitive entity sampling rate qs on model
utility under UeDP protection, we varied the value of qs from
0 to 1 in all datasets and tasks. Figs. 3b, 5, and 7 show
that considering extended sensitive entities (i.e., qs > 0)
significantly improves model utility (i.e., perplexity or test
error rate) compared with only considering sensitive entities
e ∈ E (i.e., qs = 0). However, different tasks on different
datasets may have different optimal values of qs. This opens
a new research question on how to theoretically approximate
the optimal value of qs.

Results on the AWD-LSTM model (Figs. 6 and 7) further
strengthen our observations. In our experiments, the AWD-
LSTM model generally obtains comparable results with the
GPT-2 model for next word prediction at a higher privacy
budget range (i.e., ε ∈ [0.5, 3.0] in the AWD-LSTM model
compared with ε ∈ [0.18, 0.2] in the GPT-2 model). This is
because the GPT-2 model is pretrained on large-scale datasets,
so that it is easily adapted to the idiosyncrasies of a target task
(i.e., next word prediction) compared with the AWD-LSTM
model trained from scratch.

VII. CONCLUSION AND FUTURE WORK

In this paper, we developed a novel notion of user-entity
DP (UeDP), protecting users’ participation information and
sensitive entities in NLMs. By incorporating user and sensitive
entity sampling in the training process, we addressed the trade-
off between model utility and privacy loss with a tight bound
of model sensitivity. Theoretical analysis and rigorous experi-
ments show that UeDP-Alg outperforms baselines in next word
prediction and text classification under UeDP protection.

In practice, the list of sensitive entities and users can
grow over time. Periodically updating the list of users and
sensitive entities may incur extra privacy and computational

(a) CONLL-2003-all entities (b) AG-all entities (c) SEC-all entities

Fig. 4: Privacy budget of UeDP-Alg fE , UeDP-Alg fE+ , and User-level DP as a function of iterations in CONLL-2003, AG,
and SEC datasets. UeDP-Alg fE+ achieves a tighter privacy budget compared with UeDP-Alg fE and User-level DP.

(a) CONLL-2003 dataset (b) AG dataset (c) SEC dataset

Fig. 5: Next word prediction results using the GPT-2 model with varying extended sensitive entities sampling rate qs in training.
(The lower the better)

(a) CONLL-2003 dataset (b) AG dataset (c) SEC dataset

Fig. 6: Next word prediction results using the AWD-LSTM model. (The lower the better)

(a) CONLL-2003 (b) AG (c) SEC

Fig. 7: Next word prediction results using the AWD-LSTM model with varying extended sensitive entities sampling rate qs in
training. (The lower the better)

cost. Therefore, we will focus on preserving UeDP given a
growing list of users and sensitive entities in our future work.

ACKNOWLEDGEMENT

This work is partially supported by grants NSF IIS-2041096,
NSF CNS-1935928, NSF CNS-1850094, and unrestricted gifts
from Adobe System Inc.

REFERENCES

[1] A. Radford, K. Narasimhan, T. Salimans, and I. Sutskever,
“Improving language understanding by generative pre-training,”
2018.

[2] A. Radford, J. Wu, R. Child, D. Luan, D. Amodei, I. Sutskever
et al., “Language models are unsupervised multitask learners,”
OpenAI blog, vol. 1, no. 8, p. 9, 2019.

[3] T. Brown, B. Mann, N. Ryder, M. Subbiah, J. Kaplan, P. Dhari-
wal, A. Neelakantan, P. Shyam, G. Sastry, A. Askell et al.,
“Language models are few-shot learners,” NeurIPS, vol. 33, pp.
1877–1901, 2020.

[4] N. Carlini, C. Liu, Ú. Erlingsson, J. Kos, and D. Song, “The
secret sharer: Evaluating and testing unintended memorization
in neural networks,” in USENIX, 2019, pp. 267–284.

[5] N. Carlini, F. Tramer, E. Wallace, M. Jagielski, A. Herbert-
Voss, K. Lee, A. Roberts, T. Brown, D. Song, U. Erlingsson
et al., “Extracting training data from large language models,”
in USENIX, 2021, pp. 2633–2650.

[6] C. Dwork, A. Roth et al., “The algorithmic foundations of
differential privacy.” FnT-TCS, vol. 9, pp. 211–407, 2014.

[7] A. Al Badawi, L. Hoang, C. Mun, K. Laine, and K. Aung,
“Privft: Private and fast text classification with homomorphic
encryption,” IEEE Access, vol. 8, pp. 226 544–226 556, 2020.

[8] C. Dwork, F. McSherry, K. Nissim, and A. Smith, “Calibrating
noise to sensitivity in private data analysis,” in Theory of
Cryptography Conference, 2006, pp. 265–284.

[9] M. Abadi, A. Chu, I. Goodfellow, H. McMahan, I. Mironov,
K. Talwar, and L. Zhang, “Deep learning with differential
privacy,” in CCS, 2016, pp. 308–318.

[10] N. Phan, Y. Wang, X. Wu, and D. Dou, “Differential privacy
preservation for deep auto-encoders: an application of human
behavior prediction,” in AAAI, vol. 16, 2016, pp. 1309–1316.

[11] R. Shokri and V. Shmatikov, “Privacy-preserving deep learning,”
in CCS, 2015, pp. 1310–1321.

[12] H. Phan, M. Thai, H. Hu, R. Jin, T. Sun, and D. Dou, “Scal-
able differential privacy with certified robustness in adversarial
learning,” in ICML, 2020, pp. 7683–7694.

[13] M. Zia, M. Khan, and H. El-Sayed, “Application of differential
privacy approach in healthcare data–a case study,” in IIT, 2020.

[14] N. Wu, F. Farokhi, D. Smith, and M. A. K., “The value
of collaboration in convex machine learning with differential
privacy,” IEEE Symposium on Security and Privacy (SP), 2020.

[15] N. Li, W. Qardaji, and D. Su, “On sampling, anonymization,
and differential privacy or, k-anonymization meets differential
privacy,” in ASIA CCS, 2012, pp. 32–33.

[16] H. McMahan, D. Ramage, K. Talwar, and L. Zhang, “Learning
differentially private recurrent language models,” ICLR, 2017.

[17] L. Lyu, Y. Li, X. He, and T. Xiao, “Towards differentially private
text representations,” in ACM SIGIR, 2020, pp. 1813–1816.

[18] L. Lyu, X. He, and Y. Li, “Differentially private representation
for nlp: Formal guarantee and an empirical study on privacy
and fairness,” EMNLP, 2020.

[19] E. Bagdasaryan, O. Poursaeed, and V. Shmatikov, “Differential
privacy has disparate impact on model accuracy,” in NeurIPS,
2019, pp. 15 479–15 488.

[20] A. Roth, “Buying private data at auction: the sensitive sur-
veyor’s problem,” ACM SIGecom Exchanges, vol. 11, no. 1,
pp. 1–8, 2012.

[21] R. Bassily, A. Smith, and A. Thakurta, “Private empirical risk
minimization: Efficient algorithms and tight error bounds,” in
FOCS, 2014, pp. 464–473.

[22] S. Ramaswamy, O. Thakkar, R. Mathews, G. Andrew,
H. McMahan, and F. Beaufays, “Training production language
models without memorizing user data,” arXiv, 2020.

[23] H. Asi, J. Duchi, and O. Javidbakht, “Element level differential
privacy: The right granularity of privacy,” arXiv, 2019.

[24] U. Erlingsson, V. Pihur, and A. Korolova, “Rappor: Random-
ized aggregatable privacy-preserving ordinal response,” in CCS,
2014, pp. 1054–1067.

[25] J. Duchi, M. Jordan, and M. Wainwright, “Minimax optimal
procedures for locally private estimation,” JASA, vol. 113, 2018.

[26] T. Mikolov, A. Deoras, S. Kombrink, L. Burget, and
J. Černockỳ, “Empirical evaluation and combination of ad-
vanced language modeling techniques,” in ISCA, 2011.

[27] C. Dwork, “Differential privacy: A survey of results,” in TAMC,
2008, pp. 1–19.

[28] R. Shokri, M. Stronati, C. Song, and V. Shmatikov, “Mem-
bership inference attacks against machine learning models,” in
IEEE Symposium on Security and Privacy, 2017, pp. 3–18.

[29] A. Salem, Y. Zhang, M. Humbert, P. Berrang, M. Fritz, and
M. Backes, “Ml-leaks: Model and data independent membership
inference attacks and defenses on machine learning models,”
NDSS, 2019.

[30] S. Yeom, I. Giacomelli, M. Fredrikson, and S. Jha, “Privacy risk
in machine learning: Analyzing the connection to overfitting,”
in CSF, 2018, pp. 268–282.

[31] X. Pan, M. Zhang, S. Ji, and M. Yang, “Privacy risks of general-
purpose language models,” in IEEE SP, 2020, pp. 1314–1331.

[32] P. Kairouz, H. B. McMahan, B. Avent, A. Bellet, M. Bennis,
A. N. Bhagoji, K. Bonawitz, Z. Charles, G. Cormode, R. Cum-
mings et al., “Advances and open problems in federated learn-
ing,” Foundations and Trends in Machine Learning, vol. 14, no.
1–2, pp. 1–210, 2021.

[33] T. Wang, J. Blocki, N. Li, and S. Jha, “Locally differentially
private protocols for frequency estimation,” in USENIX, 2017,
pp. 729–745.

[34] P. Arachchige, P. Bertok, I. Khalil, D. Liu, S. Camtepe, and
M. Atiquzzaman, “Local differential privacy for deep learning,”
IoT-J, vol. 7, no. 7, pp. 5827–5842, 2019.

[35] S. Wagh, X. He, A. Machanavajjhala, and P. Mittal, “Dp-
cryptography: marrying differential privacy and cryptography
in emerging applications,” CACM, vol. 64, pp. 84–93, 2021.

[36] Z. Yang and Z. Liang, “Automated identification of sensitive
data from implicit user specification,” Cybersecurity, vol. 1,
no. 1, pp. 1–15, 2018.

[37] E. Sang and F. De Meulder, “Introduction to the conll-2003
shared task: Language-independent named entity recognition,”
CoNLL, 2003.

[38] L. Derczynski, E. Nichols, M. van Erp, and N. Limsopatham,
“Results of the WNUT2017 shared task on novel and emerging
entity recognition,” in W-NUT, 2017, pp. 140–147.

[39] M. Honnibal and I. Montani, “Spacy 2: Natural language
understanding with bloom embeddings, convolutional neural
networks and incremental parsing,” To appear, vol. 7, no. 1,
pp. 411–420, 2017.

[40] P. Qi, Y. Zhang, Y. Zhang, J. Bolton, and C. Manning, “Stanza:
A python natural language processing toolkit for many human
languages,” ACL System Demonstration, 2020.

[41] H. McMahan, E. Moore, D. Ramage, and B. y Arcas, “Fed-
erated learning of deep networks using model averaging,”
arXiv:1602.05629, 2016.

[42] F. Dernoncourt, J. Lee, O. Uzuner, and P. Szolovits, “De-
identification of patient notes with recurrent neural networks,”
JAMIA, vol. 24, no. 3, pp. 596–606, 2017.

[43] T. Mikolov, S. Kombrink, L. Burget, J. Černockỳ, and S. Khu-
danpur, “Extensions of recurrent neural network language
model,” in ICASSP, 2011, pp. 5528–5531.

[44] J. Howard and S. Ruder, “Universal language model fine-tuning
for text classification,” ACL, p. 328–339, 2018.

[45] J. Devlin, M. W. Chang, K. Lee, and K. Toutanova, “Bert:
Pre-training of deep bidirectional transformers for language
understanding,” NAACL-HLT, 2019.

[46] S. Merity, N. S. Keskar, and R. Socher, “Regularizing and
optimizing LSTM language models,” ICLR, 2018.

[47] C. Dwork and J. Lei, “Differential privacy and robust statistics,”
in STOC, 2009, pp. 371–380.

APPENDIX

A. Sensitive Entity Recognition and Tool-kits

If a training set does not have sensitive entity indicators,
we suggest several ways to identify sensitive entities in textual
data, as follows.

Using Named Entity Recognition (NER) datasets. NER
datasets [37, 38] refer to textual data in which entities in a
text are labeled based on several predefined categories. NER
typically makes it easy for individuals and systems to identify
and understand the subject of the given text quickly. Therefore,
extracted entities are critical and should be protected. For
instance, in the CONLL-2003 dataset [37], there are four entity
types, i.e., location, person, organization, and miscellaneous.

Using Publicly Available Tool-kits. For textual datasets
that do not have NER labels or sensitive entity indicators, there
are publicly available tool-kits for detecting named entities or
PII in text, for example, Spacy [39], Stanza [40], and Microsoft
Presidio3. Spacy and Stanza deploy pre-trained NER models
based on statistical learning methods to identify eighteen
categories of named entities, including person, nationality or
religious groups, facility, etc. (Table I). Microsoft Presidio is
another toolbox for PII detectors and NER models based on
Spacy and regular expression6. For instance, Spacy is used
as a sensitive entity identification in Fig. 1 to detect “David
Johnson” a person entity, “Main” a GPE entity, “September
18” a date entity, and “Main Hospital” an organization entity.

We present descriptions of different sensitive entity cate-
gories in the CONLL-2003, AG, and SEC datasets in Table I.
The descriptions are from [37] and spaCy, supporting eighteen
different entity types. In the current work, we play with four
different types and their combinations. Note that, in UeDP,
providing the name of an algorithm and a sensitive entity
means we consider that type of entity as sensitive entities in the
training process. For instance, in Fig. 4, UeDP-Alg fE+ (Org)
means we use all organization entities as sensitive entities
in the UeDP-Alg algorithm. “All entities” means all types
of sensitive entities considered for the dataset are used. For
example, “all entities” in the CONLL-2003 dataset means all
person, location, organization, and miscellaneous entities are
regarded as sensitive entities. Meanwhile, in the AG and SEC
datasets, “all entities” means that all organization, location,
GPE, and PII entities are considered sensitive entities. More
entity types are also presented in Table I so that users can
have more choices when identifying sensitive entities.

B. UeDP without Considering Extended Sensitive Entities

At each iteration t, we randomly sample U t users from
U and Et sensitive entities from E, with sampling rates qu
and qe, respectively. Then, we use all sensitive sentences
consisting of the sensitive entities in Et belonging to the
selected users in U t for training. Like [16], we leverage the
basic federated learning setting in [41] to compute gradients
of model parameters for a particular user, denoted as ∆t+1

u,E .
Here, we clip the per-user gradients so that its l2-norm is

6https://github.com/google/re2/

bounded by a predefined gradient clipping bound β. Next,
a weighted-average estimator fE is employed to compute
the average gradient ∆t+1 using the clipped gradients ∆t+1

u,E
gathered from all the selected users. Finally, we add random
Gaussian noise N (0, Iσ2) to the model update. During the
training, the moments accountant M is used to compute the
T training steps’ privacy budget consumption.

In this process, we need to bound the sensitivity of the
weighted-average estimator fE for per-user gradients ∆t+1

u,E .
We first consider the following simple estimator, with both
sampling rates qu for the user-level and qe for the sensitive
entity-level:

fE(U
t, Et) =

∑
u∈Ut wu∆t+1

u,E

quWuqeWe
(7)

s.t. ∆t+1
u,E =

∑
e∈Et

u

we(
∑

s consists of e

∆u,s)

where wu and we ∈ [0, 1] are weights associated with a user
u and with a sensitive entity e. These weights capture the
influence of a user and a sensitive entity to the model outcome.
∆u,s is the parameter gradients computed using a sensitive
sentence s consisting of the sensitive entity e. In addition,
Wu =

∑
u wu and We =

∑
e we.

The estimator fE is unbiased to the sampling process;
since E[

∑
u∈Ut wu] = quWu and E[

∑
e∈Et

u
we] = qeWe.

The sensitivity of the estimator fE can be computed as:
S(fE) = maxu′,e′‖fE({U t ∪ u′, Et ∪ e′}) − fE({U t, Et})‖2,
where the added user u′ can have arbitrary data and e′ is an
arbitrary sensitive entity.

Given that ∆t+1
u,E is l2(β)-norm bounded, where β is the

radius of the norm ball by replacing ∆t+1
u,E with ∆t+1

u,E ·
min

(
1, β

‖∆t+1
u,E ‖

)
, the sensitivity of S(fE) is also bounded.

Lemma 2. If for all users u we have ‖∆t+1
u,E ‖2 ≤ β, then

S(fE) ≤ (qu|U |+1) max(wu)β
quWu×qeWe

.

Proof. If for all users u we have ‖∆t+1
u,E ‖2 ≤ β, then S(fE)

=

∑
u∈Ut∪u′ wu[(

∑
e∈Et we(

∑
s∈St

ue
∆u,s))]

(quWu × qeWe)

+

∑
u∈Ut∪u′ wu[we′(

∑
s∈St

ue′
∆u,e′)]

(quWu × qeWe)

−
∑
u∈Ut wu[

∑
e∈Et we(

∑
s∈St

ue
∆u,s)]

(quWu × qeWe)

≤
∑
u∈Ut∪u′ wuβ

quWu × qeWe
≤ (qu|U |+ 1) max(wu)β

quWu × qeWe
(8)

Consequently, Lemma 2 holds.

By applying Lemma 2, given a hyper-parameter z, the noise
scale σ for the estimator fE is:

σ = zS(fE) =
z(qu|U |+ 1) max(wu)β

quWu × qeWe
(9)

We show that this approach achieves (ε, δ)-UeDP, by ap-
plying the moments accountant M to bound the total privacy

https://github.com/google/re2/

loss of T steps of the Gaussian mechanism with the noise
N (0, Iσ2) in Theorem 1. However, this mechanism only uses
sensitive entities detected by automatic toolkits to train the
model ignoring a large number of extended sensitive entities.
As a result, it introduces a loose sensitivity bound (Lemma 2)
and affects our model utility.

C. Datasets and Data Processing

CONLL-2003 consists of Reuters news stories published
between August 1996 and August 1997. CONLL-2003 is an
NER dataset, where there are labels for four different types
of named entities, including location, organization, person,
and miscellaneous entities. These types of named entities
are considered sensitive entities. In the CONLL-2003 dataset,
there is no obvious user information; hence, we consider each
document as a user consisting of multiple sentences in the next
word prediction task.

AG dataset is a collection of news articles gathered from
more than 2, 000 news sources by ComeToMyHead academic
news search engine7. It is categorized into four classes:
world, sport, business, and science/technology. Similar to the
CONLL-2003 dataset, there is no user information in AG.
To imitate a user indicator, we randomly divide news into
different users based on Gaussian distribution. There are no
named entities; thus, we apply pre-trained Spacy to find named
entities and PII in the dataset. We choose different types of
these named entities to be sensitive entities: organization, GPE
(i.e., countries, cities, and states), location, and PII entities.

Our SEC dataset consists contract clauses collected from
contracts submitted in SEC filings8. Since the contracts can
be associated with a company ID, we use the ID as a user
indicator. Similar to the AG dataset, we consider organization,
GPE, location, and PII entities as sensitive entities to protect.

In addition to the next word prediction, we conducted text
classification on the AG dataset to further strengthen our
observations. For text classification, the number of labels is not
sufficient in the SEC dataset, and the labels do not exist in the
CONLL-2003 dataset. Therefore, we do not utilize CONLL-
2003 and SEC datasets for text classification in this study.

For data preprocessing, we changed all words to lower-case
and removed punctuation marks. Fig. 8 shows the distribution
of the number of users and sentences in the CONLL-2003,
AG, and SEC datasets. In the CONLL-2003 dataset, there is no
obvious user information; hence, we consider each document
as a user consisting of multiple sentences. Like the CONLL-
2003 dataset, in the AG dataset, there is no user information.
Therefore, to imitate a user indicator, we randomly divide news
into different users. The number of sentences per user follows
a Gaussian distribution N (15, 22), i.e., there are 15 sentences
per user on average, and the standard deviation is 2 sentences.
In the SEC dataset, since the contracts can be associated with a
company ID, we use the ID as a user indicator. The document
related to the ID is considered to be that user’s data.

7http://newsengine.di.unipi.it/
8https://www.sec.gov/edgar.shtml

D. Revisiting Word-level LDP Analysis in [18]

This section aims at revisiting privacy protection in [18] and
describes a privacy accumulation issue over the embedding
dimension. Then, we revise Theorems 1 and 2 in [18] and
compare them with our approaches.

In [18], the authors aim at preserving the privacy of the
extracted test representation from users while maintaining the
good performance of the classifier, which is trained at a server
by the data collected from users. To achieve the goal, they
consider a word-level DP, that is, two inputs x and x′ are
adjacent if they differ by at most 1 word. Additionally, they
introduce a DP noise layer r after a predefined feature extractor
f(x). To train a robust classifier at the server, they add the
same level of noise as the test phase in the training process
and optimize the classifier by minimizing the loss function as
follows:

L(x, y) = X (C(f(x) + r), y) (10)

where C is the classifier, y is the true label, and X is the cross
entropy loss function.

The Laplace noise layer r is injected into the embedding
f(x) in which its coordinates r = {r1, r2, . . . , rk} are random
variables drawn from the Laplace distribution defined by
Lap(b) with b =

∆f

ε , ε is the privacy budget, and ∆f is
the sensitivity of the extracted representation. Here, k is the
dimension of f(x).

Algorithm 1 describes how to derive DP-preserving repre-
sentation from the feature extractor f . Note that xs in the
Algorithm 1 is a sentence (equivalent to x in our notation),
which is considered to be sensitive and needs to be protected.

Revisting Theorems 1 and 2 in [18]. In the paper, the
authors consider adjacent sentences differing by one word.
Changing one word in x may change the entire embedding
vector f(x). Each element of f(x) is normalized into the range
[0, 1] (Line 5, Algorithm 1), hence each element sensitivity of
f(x) is ∆f = 1, the noise is Lap(∆f/ε). Therefore, each
element of the embedding f(x) consumes a privacy budget
ε. Since the k elements of the embedding are derived from a
single sensitive input x, applying the LDP mechanism A(.),
i.e., Lap(b), k times will consume the privacy budget k × ε.
This follows the composition property in DP. Note that the k
elements cannot be treated by using the parallel property in DP
[47], since all of them are derived from a single (data) input
x, NOT from k different inputs (k different data samples).
Consequently, the privacy guarantees in Theorems 1 and 2 of
[18] is kε-DP, instead of ε-DP as reported.

In their experimental results, e.g., Table 2 of [18], the
approach could achieve almost the same (and even better)
model utility with noiseless model given the extremely low
ε = 0.05 using BERT embeddings. As our analysis, the privacy
budget in Theorems 1 and 2 is kε, instead of ε. Therefore, the
proper privacy budget is at least 0.05 × 768 = 38.4. Similar
results were reported through out the all in experiments. With
this high value of the privacy budget, the word-level DP in
[18] provides loose privacy protection.

http://newsengine.di.unipi.it/
https://www.sec.gov/edgar.shtml

Algorithm 1 Differentially Private Neural Representation
(DPNR) [18]

1: Input: Each sensitive input xs ∈ Rd, feature extractor f
2: Parameters: Dropout vector In ∈ {0, 1}d
3: Word dropout: x̃s ← xs � In, where � performs a word-

wise multiplication.
4: Extraction: xr ← f(x̃s)
5: Normalization: xr ← xr−min(xr)/(max(xr)−min(xr))

6: Perturbation: x̂r ← xr + r, ri ∼ Lap(b)
7: Output: Perturbed representation x̂r.

Revisting Element-level DP in [18]. During our discussion
with the authors of [18], the authors mentioned that their
approach preserves a new notion of (ε, 0)-element-level DP,
i.e., two embeddings differ from one element, instead of a
word-level DP. However, for the element-DP to hold, all the
elements in the embedding f(x) must be independent from
each other, that is, changing one element will not result in
changing any other element. If changing one element results
in changing all the remaining elements, then element-DP
will be suffered from the dimension of the embedding by
following group privacy. In the current approach, changing
one element means there is a change in the input data x to
occur. Equivalently, using BERT, any change in the input data
x will result in changing the whole embedding (all elements).
Therefore, the condition of two neighboring embeddings only
differing in only one element does NOT hold in theory and
practice. Consequently, the introduced element-level DP does
NOT hold at the level of (ε, 0)-DP.

Our revising Theorems 1 and 2 in [18]. Based upon our
analysis, we introduce revised versions of the Theorems 1 and
2 in [18], as follows.

Theorem 1. Revised Theorem 1 in [18]. Let the entries of
the noise vector r be drawn from Lap(b) with b =

∆f

ε . The
Algorithm 1 is kε-word-level DP, where k is dimension of the
embedding f(x).

Proof. Each element of the embedding f is bounded in [0, 1],
so ∆f = 1 for each element. By adding random noise variables
drawn from the Laplace Lap(b) with b =

∆f

ε into each
element of f , each element consumes ε/k privacy budget.
Since the k elements of the embedding are derived from a
single sensitive input x, applying the mechanism Lap(b) k
times on the k elements will consume the privacy budget kε.
Therefore, the Algorithm 1 is kε-word-level DP.

Theorem 2. Given an input x ∈ D, suppose A(x) = f(x)+r
is kε-word-level DP, let In with dropout rate µ be applied to

x: x̃ = x � In, then A(x̃) is ε′-word level-DP, where ε′ =
ln[(1− µ) exp(kε) + µ].

Proof. Suppose there are two adjacent inputs x1 and x2 that
differ only in the i-th coordinate (word), say x1i = v, x2i 6= v.
For arbitrary binary vector In, after dropout, x̃1 = x1 � In,
x̃2 = x2 � In, there are two possible cases, i.e., Ini = 0 and
Ini = 1.

If Ini = 0: Since x1 and x2 differ only in i-th coordinate,
after dropout x̃1i = x̃2i = 0, hence x1 � In = x2 � In. Then
Pr{A(x1 � In) = S} = Pr{A(x2 � In) = S}.

If Ini = 1: Since x1 and x2 differ only in i-th coordinate,
after dropout x̃1i = v, and x̃2i 6= v. Since A(x) is kε-word
level-DP, then Pr{A(x1 � In) = S} ≤ exp(kε)Pr{A(x2 �
In) = S}.

Combining these two cases, and Pr[Ini = 0] = µ, we have:

Pr{A(x1 � In) = S}
= µPr{A(x1 � In) = S}+ (1− µ)Pr{A(x1 � In) = S}
≤ µPr{A(x2 � In) = S}
+ (1− µ) exp(kε)Pr{A(x2 � In) = S}
= [(1− µ) exp(kε) + µ]Pr{A(x2 � In) = S}

= exp
(

ln[(1− µ) exp(kε) + µ]
)
Pr{A(x2 � In) = S}

(11)

Therefore, after dropout, the privacy budget is ε′ = ln[(1−
µ) exp(kε) + µ].

Comparison with UeDP. Apart from the privacy accumu-
lation over the embedding dimension, in [18], during training
the model, the Laplace or Gaussian noise is drawn at every
training iteration. Therefore, the model accesses the raw data
at every iteration. As a result, the privacy budget at the training
phase is accumulated over the number of training iterations,
which can be a large number causing an exploded privacy
budget in training. [18] focuses on protecting privacy at the
inference time and use the noise in the training phase to obtain
a more robust model without considering training data privacy.
This is different from our goal to protect users and sensitive
entities of training data, which is a more challenging task.
Our UeDP-preserving model can be deployed to the end-users
for a direct use in the inference phase, without demanding
that the end-users send their data embedding to our server;
therefore offering a more rigorous privacy protection and better
usability. In addition to this, our approach offers more rigorous
DP budget bounds compared with the DPNR algorithm in [18],
since DPNR consumes large DP budgets that is proportional
to the commonly large dimension of the embedding k.

E. Supplemental Experimental Results

(a) CONLL-2003 dataset (b) AG dataset (c) SEC dataset

Fig. 8: Distribution of users and sentences.

(a) CONLL-2003-organization entities (b) AG-organization entities (c) SEC-organization entities

(d) CONLL-2003-location entities (e) AG-location entities (f) SEC-location entities

(g) CONLL-2003-person entities (h) AG-GPE entities (i) SEC-GPE entities

(j) CONLL-2003-miscellanous entities (k) AG-PII entities (l) SEC-PII entities

Fig. 9: Privacy budget of UeDP-Alg fE , UeDP-Alg fE+ , and User-level DP as a function of iterations in CONLL-2003, AG,
and SEC datasets. UeDP-Alg fE+ achieves a tighter privacy budget compared with UeDP-Alg fE and User-level DP.

	I Introduction
	II Background
	III Different Levels of DP
	IV User-Entity Differential Privacy
	IV-A Sensitive Entities and User Membership
	IV-B UeDP Definition

	V Preserving UeDP in NLMs
	V-A Misidentifying Sensitive Entities
	V-B Preserving UeDP

	VI Experimental Results
	VII Conclusion and Future Work
	Appendix
	A Sensitive Entity Recognition and Tool-kits
	B UeDP without Considering Extended Sensitive Entities
	C Datasets and Data Processing
	D Revisiting Word-level LDP Analysis in lyu2020differentially
	E Supplemental Experimental Results

