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Abstract—In this paper, we propose Adam-Hash: an adaptive
and dynamic multi-resolution hashing data-structure for fast
pairwise summation estimation. Given a data-set X ⊂ R

d, a

binary function f : R
d × R

d → R, and a point y ∈ R
d, the

Pairwise Summation Estimate PSEX(y) := 1
|X|

∑
x∈X f(x, y).

For any given data-set X , we need to design a data-structure
such that given any query point y ∈ R

d, the data-structure
approximately estimates PSEX(y) in time that is sub-linear in
|X|. Prior works on this problem have focused exclusively on the
case where the data-set is static, and the queries are independent.
In this paper, we design a hashing-based PSE data-structure
which works for the more practical dynamic setting in which
insertions, deletions, and replacements of points are allowed.
Moreover, our proposed Adam-Hash is also robust to adaptive
PSE queries, where an adversary can choose query qj ∈ R

d

depending on the output from previous queries q1, q2, . . . , qj−1.

I. INTRODUCTION

Pairwise Summation Estimation (PSE) is one of the most

important problems in machine learning [1], [2], [3], [4], [5],

[6], [7], [8], [9], statistics [10], [11], [12], [13], [14], [15],

and scientific computing [16], [17], [18], [19], [20], [21], [22].

Given a data-set X ⊂ R
d, a binary function f : Rd×R

d → R,

and a point y ∈ R
d, we need the pairwise summation estimate

of f(x, y) for x ∈ X i.e. PSEX(y) = 1
|X|

∑
x∈X f(x, y). PSE

arises naturally in ML applications: (1) Efficient training and

inference of neural network: In computer vision and natural

language processing, the Softmax layer with n neurons is

defined as
exp 〈wi,x〉∑
n
j=1

〈wj ,x〉
, where wi is the parameter for the

i’th neuron and x is the input hidden vector. A novel line

of research [4], [8], [9] applies PSE to estimate
∑n

j=1〈wj , x〉
with running time sublinear in n. As a result, a sparse training

and inference scheme of Softmax layer can be achieved for

acceleration. (2) Fast kernel density estimation: Given a binary

kernel function, we would like to estimate the density of a

dataset on a query for efficient outlier detection [23], [2], [24],

classification [25], [7] and clustering [26].

A Preliminary version of this paper is appeared at BigData 2022.

A. The Need for Adaptive and Dynamic PSE

Recently, there has also been a lot of recent interest in

developing PSE for deep learning that are robust to adaptive

queries [27], [28], [29], [9], [30], [31], [32], [33], in which

an adversary can choose a query qj ∈ R
d that depends on the

output of our data structure to past queries q1, q2, . . . , qj−1.

This is a natural setting in training neural networks. For

instance, the input hidden vector of Softmax layer serves as a

query for PSE. If we perform adversarial attacks [34] in each

step, the PSE-accelerated training and inference might lead to

failure in generalization. This brings new challenges for PSE

because an adversary can always pick the hardest query point,

and we would like to have an accuracy guarantee to hold even

under this adversarial setting.

Moreover, current PSE applications in ML depend on

parameters that are often changing in time and not known

apriori. So it is necessary that we develop data structures

which can support dynamic updates [35], [36], [37], [38], [39],

[40], [41], [42], [43], [44], [45], [46], [47], [48], [49], [50].

One typical setting to consider is an iterative process where

one data point changes for each iteration. For instance, the

weights of Transformer models [9] changes significantly in

the first couple of iterations and then changes smoothly in

later iterations. As a result, a successful PSE algorithm for

deep models should be robust to incremental updates.

B. Our Proposal: Adam-Hash

In this paper, we propose Adam-Hash: an adaptive and

dynamic multi-resolution hashing for fast pairwise summation

estimation. Formally, we start with defining the problem as

follows:

Definition I.1 (Adaptive and dynamic hashing based estima-

tor). Given an approximation parameter ǫ ∈ (0, 1) and a

threshold τ ∈ (0, 1), for every convex function w, there exists

a data structure which supports the operations as followed:

http://arxiv.org/abs/2212.11408v1


• INITIALIZE(). Initialize the data structure.

• QUERY(x). Given an input x, QUERY outputs an estimate

Ẑ which approximates µ = w(x). even in a sequence of

adaptively chosen queries

• UPDATE(i, z). Replace xi by z into the data structure.

Technical contributions. Adam-Hash contain a dynamic

version of Hashing-Based-Estimators (HBE) and multi-

resolution HBE. HBE hashes each data point into a set of hash

buckets, and uses collision probability to estimate the pairwise

summation function. For updating datasets, we only need to

update the corresponding hash buckets. To enable our Adam-

Hash to work for adversarial queries, we start from query with

a single HBE in Adam-Hash of constant success probability,

and boost constant success probability to high probability by

obtaining the median of a set of HBE estimators. We then

design a ǫ0-net to prove our Adam-Hash can answer a fixed

set of on-net points with high probability. And finally, we

generalize the results to all query points where ‖q‖2 ≤ 1 with

the Lipschitz property of the target function.

a) Roadmap.: We introduce some related work to our pa-

per in section II. We give a technique overview of our paper in

section III. We present the dynamic version HBE in section V.

Then we present the dynamic version of multi-resolution HBE
in section VI. We further extend to the adaptive and dynamic

version HBE in section VII. We conclude our contribution in

section VIII.

II. RELATED WORK

a) Pairwise summation estimation: The pairwise summa-

tion estimation is a general formulation to a lot of machine

machine problems. For instance, density estimation of kernel

functions [51] is a standard PSE problem.

Recently, there is an growing direction in using hashing for

PSE [52], [5], [6], [53], [15]. The general intuition is that the

binary function is actually a similarity function between data

point and query. As a result, we could have speedups in PSE

with near neighbor search data structures.

b) Adaptive queries: In modern machine learning algo-

rithms that involves data structures. The queries to these data

structures are adaptive in two ways: (1) we have sequential

queries that is non-i.i.d, such as weights each iteration of

the model [29], (2) the potential threats posed by deploying

algorithms in adversarial settings [54], [55], [56], [57], where

an attacker could manipulate query based on the results of

previous queries. Thus, current data structures should be robust

in these settings so that they can be deployed in machine

learning.

III. TECHNIQUE OVERVIEW

In this section, we present an overview of our techniques to

realize Adam-Hash algorithm. Our introduction to Adam-Hash

follows a divide-and-conquer style. We start with presenting a

dynamic version of multi-resolution hashing. Next, we show

how to make it robust to adaptive queries. Finally, we introduce

the main algorithm in Algorithm 5.

We also provide an overview of our theoretical analysis.

Given an estimator Z of complexity C which is V -bounded

where E[Z] = µ ∈ (0, 1] and threshold τ ∈ (0, 1), we first

introduce the dynamic version of single-resolution HBE in

Theorem V.1. The query algorithm interacts with the data

structure by calling the hash function and sample a data

point from the hash bucket the query falls into (Line 25

of Algorithm 1). After O (V ((µ)τ log(1/δ))) hash function

calls, with probability at least 1 − δ/2 we either have a

(1 ± ǫ)-approximation result or QUERY outputs 0 indicating

that µ < τ . When we want to update the dataset, we need to

insert new entries or delete old entries from each hash table.

Then we present the dynamic version of multi-resolution

HBE in Theorem VI.1. The estimator consists of G different

hashing function families, and each hash function family has

a weight computed from their collision probability functions

(Line 24 of Algorithm 3). And the subquery estimation is

more complex by combining the estimation from each hash

function family at their corresponding weight (Line 10 of

Algorithm 4). After interacting with the data structure for

O (V ((µ)τ log(1/δ))) times, with high probability we either

have a (1±ǫ)-approximation result or 0 is outputted indicating

that µ < τ .

To make our data structure adaptive to adversarially chosen

queries, we begin with a single HBE estimator to answer the

query with (1±ǫ)-approximation with a constant success prob-

ability 0.9. Then by chernoff bound we have that obtaining the

median of a set of HBE estimators can boost constant success

probability to high success probability. We design a ǫ0-net

N containing |N | = (10/ǫ0)
d points and prove that our data

structure can answer a fixed set of on-net points with high

probability via union bound. Finally, we know that for each

point q /∈ N , there exists a p ∈ N such that ‖p − q‖2 ≤ ǫ0.

We can quantize the off-net query q to its nearest on-net

query p and generalize the results to all query points where

‖q‖2 ≤ 1 with the k-Lipschitz property of the target function.

To this end, we complete our proof for designing adaptive

and dynamic data structures for multi-resolution hashing of

pairwise summation estimates.

IV. PRELIMINARY

a) Notation.: For a vector A ∈ R
d, we define ‖A‖∞ =

maxi∈[d](xi). We define ‖A‖2 =
√∑n

i=1 x
2
i . We use [n] to

denote {1, 2, · · · , n}. For an event f(x), we define 1f(x) such

that 1f(x) = 1 if f(x) holds and 1f(x) = 0 otherwise. We

use Pr[·] to denote the probability, and use E[·] to denote

the expectation if it exists. We use a ∈ (1 ± ǫ) · b to denote

(1− ǫ) · b ≤ a ≤ (1 + ǫ) · b.
We will make use of Hoeffding’s Inequality:

Theorem IV.1 (Hoeffding’s Inequality [58]). Let X1, . . . , Xn

be independent random variables such that Xi ∈ [ai, bi]
almost surely for i ∈ [n] and let S =

∑n
i=1 Xi−E[Xi]. Then,

for every t > 0 :

Pr[S ≥ t] ≤ exp(−
2t2∑n

i=1(bi − ai)2
).



V. DYNAMIC SINGLE-RESOLUTION HBE

In this section, we introduce a dynamic version of single-

resolution HBE. We present our theorem for the dynamic

version HBE in Theorem V.1.

Theorem V.1 (Dynamic version of Theorem 4.2 in page

11 [52]). For a kernel w, given a V -bounded estimator Z
of complexity C where E[Z] = µ ∈ (0, 1] and parameters

ǫ ∈ (0, 0.1), τ ∈ (0, 1), δ ∈ (0, 1), there exists a data structure

which supports the operations as followed:

• INITIALIZE(w : R
d × R

d → R+, V : R →
R+, {xi}

n
i=1 ⊂ R

d,H, ǫ ∈ (0, 0.1), δ ∈ (0, 1), τ ∈
(0, 1)). Given a set of data points {xi}

n
i=1, a hashing

scheme H, the target function w : R
d × R

d → R+,

the relative variance function V : R → R+, accuracy

parameter ǫ ∈ (0, 0.1), failure probability δ ∈ (0, 1) and

a threshold τ ∈ (0, 1) as input, the INITIALIZE operation

takes O(ǫ−2V (τ)C log(1/δ) · n) time.

• QUERY(x ∈ R
d, α ∈ (0, 1], τ ∈ (0, 1), δ ∈ (0, 1)). Given

a query point x ∈ R
d, accuracy parameter α ∈ (0, 1], a

threshold τ ∈ (0, 1) and a failure probability δ ∈ (0, 1)
as input, the time complexity of QUERY operation is

O(ǫ−2V (τ)C log(1/δ)) and the output of QUERY Ẑ
satisfies:

{
Pr[|Ẑ − µ| ≤ αµ] ≥ 1− δ, µ ≥ τ

Pr[Ẑ = 0] ≥ 1− δ, µ < τ

• INSERTX(x ∈ R
d). Given a data point x ∈ R

d as input,

the INSERTX operation takes O(ǫ−2V (τ) log(1/δ) · C)
time to update the data structure.

• DELETEX(x ∈ R
d). Given a data point x ∈ R

d as input,

the DELETEX operation takes O(ǫ−2V (τ) log(1/δ) · C)
time to update the data structure.

Proof. We can prove the theorem by combining the query

correctness proof Lemma V.3 and running time lemmas includ-

ing the INITIALIZE running time in Lemma V.4, the QUERY

running time in Lemma V.6, the INSERTX running time in

Lemma V.7 and DELETEX running time in Lemma V.8.

We remark that this statement provide a foundation of

dynamic HBEs and will help the final presentation of Adam-

Hash.

We present our dynamic single-resolution HBE estimator

data structure in Algorithm 1 and Algorithm 2. During INI-

TIALIZE, we evaluate R hash functions on all of the data points

to obtain R hash tables. During SUBQUERY we leverage the

hash function collision probability to compute an estimate of

the pairwise summation function by

Zi,j =
1

n

w(x, y)

pr(x, y)
|Hr(x)| ∀i ∈ [L], j ∈ [m],

and leverage median of means to output the final estima-

tion. QUERY calls SUBQUERY operation for up to Q =
⌊ log(τ/(1−(c+ǫ)))

log(1−γ) ⌋ times to keep approaching the true result

and finally obtain the estimated output. INSERTX and DELE-

TEX operations insert or delete corresponding hash table

entries using the input data point x ∈ Sd−1.

Algorithm 1 Dynamic Single-solution HBE-Estimator Data

Structure

1: data structure
2: members
3: X = {xi}

n
i=1 ⊂ R

d ⊲ A set of data points
4: R ∈ N ⊲ Number of hash functions.
5: {hr}

R
r=1 ⊲ R hash functions

6: {Hr}
R
r=1 ⊲ A collection of hash tables

7: {pr}
R
r=1 : Rd × R

d → [0, 1] ⊲ The collision probability for
hashing schemes

8: w : Rd × R
d → R+ ⊲ The target pairwise function

9: V : R→ R+ ⊲ The relative variance function
10: end members
11: procedure INITIALIZE(w : R

d × R
d → R+, V : R →

R+, {xi}
n
i=1 ⊂ R

d, ǫ ∈ (0, 0.1), δ ∈ (0, 1), τ ∈ (0, 1)) ⊲
Lemma V.4

12: R ← O(ǫ−2 log(1/δ)V (τ )), X ← {xi}
n
i=1, w ← w, V ←

V
13: Sample {hr}

R
r=1 ∼ v from H. {pr}

R
r=1 are corresponding

collision probability functions.
14: for r = 1→ R do
15: Hr ← hr(X) ⊲ Evaluate hash function on the dataset to

obtain a hash table.
16: end for
17: end procedure
18: procedure SUBQUERY(x ∈ R

d, V : R → R+, µ, ǫ ∈
(0, 1), δ0 ∈ (0, 1)) ⊲ Lemma V.2, Lemma V.5

19: m← ⌈6ǫ−2V (µ)⌉
20: L← ⌈9 log(1/δ0)⌉
21: for i = 1→ L do
22: Sample r ∼ [R]
23: for j = 1→ m do
24: Sample a data point y ∼ Hr(x) ⊲ Hr(x) denotes

the hash bucket where query x falls into using hash function hr

25: Zi,j ←
1
n

w(x,y)
pr(x,y)

|Hr(x)| ⊲ The hashing-based

estimator
26: end for
27: end for
28: Zi ← mean{Zi,1, · · · , Zi,m} for i ∈ [L]
29: Z ← median{Z1, · · · , ZL}
30: return Z
31: end procedure

A. Correctness of Query

In this subsection, we present the lemmas to prove the

correctness of SUBQUERY and QUERY.

Lemma V.2 (Correctness of SubQuery). Given an estimator

Z of complexity C which is V -bounded and E[Z] = µ ∈
(0, 1], taking a non-decreasing function V : R → R+, µ ∈
(0, 1), a query point x ∈ R

d, accuracy parameter ǫ ∈ (0, 1]
and a failure probability δ0 ∈ (0, 1) as input, the SUBQUERY

in Algorithm 1 could obtain an estimation value Z , which

satisfies:

Pr[|Z − µ| > ǫ · µ] ≤ δ0

using O(ǫ−2V (µ) log(1/δ)) samples.



Algorithm 2 Dynamic Single-solution HBE-Estimator Data

Structure

1: procedure QUERY(x ∈ R
d, α ∈ (0, 1], τ ∈ (0, 1), δ ∈ (0, 1)) ⊲

Lemma V.6 and Lemma V.3.
2: ǫ← 2

7
α, c← ǫ

2
, γ ← ǫ

7
, δ0 ←

2α
49 log(1/τ)

3: Q← ⌊ log(τ/(1−(c+ǫ)))
log(1−γ)

⌋
4: for i = −1→ Q do
5: i← i+ 1
6: µi ← (1− γ)i

7: Zi ← SUBQUERY(x, V, µi,
ǫ
3
, δ0)

8: if |Zi − µi| ≤ c · µi then
9: break;

10: end if
11: end for
12: if i ≤ 49 log(1/τ)

2α
then

13: return Zi

14: else
15: return 0
16: end if
17: end procedure
18: procedure INSERTX(x ∈ R

d) ⊲ Lemma V.7
19: X = X ∪ x
20: for r = 1→ R do
21: Hr ← Hr ∪ {hr(x)} ⊲ Insert x to its mapping hash

bucket.
22: end for
23: end procedure
24: procedure DELETEX(x ∈ R

d) ⊲ Lemma V.8
25: X = X \ x
26: for r = 1→ R do
27: Hr ← Hr \ {hr(x)}
28: end for
29: end procedure
30: end data structure

The correctness of the QUERY operation is shown as fol-

lows.

Lemma V.3 (Correctness of Query). Given an estimator Z
of complexity C which is V -bounded and E[Z] ∈ (0, 1],
QUERY (in Algorithm 2) takes a query point x ∈ R

d, accuracy

parameter α ∈ (0, 1], a threshold τ ∈ (0, 1) and a failure

probability δ ∈ (0, 1) as inputs, and outputs Zest ∈ R such

that:

• Pr[|Zest − E[Z]| ≤ αE[Z]] ≥ 1− δ if E[Z] ≥ τ
• Pr[Zest = 0] ≥ 1− δ if E[Z] < τ

Proof. The query algorithm interacts with HBE data structure

by invoking hash functions. HBE maintains an index of the

most recent hash function invoked and increases it by one

after each hash function is evaluated, which ensures that a

query never computes the same hash function again so that the

data points are independently sampled. When a query arrives,

the query algorithm begins with the adaptive mean relaxation

algorithm. Here we set α = 1 and probability be δ/2. After

invoking O (V ((E[Z])τ log(1/δ))) hash functions with failure

probability at most δ/2, we can have one of the following

result: (1) ǫ-approximation result, (2) QUERY outputs 0 which

indicates that E[Z] < τ .

For the first scenario, we apply the SUBQUERY algorithm

which have a value that underestimates E[Z] that invokes

O
(
ǫ−2 log(1/δ)V ((E[Z])τ )

)
more calls to the hash functions

and resut in an ǫ-approximation result with failure probability

at most δ according to Lemma V.2. For the second scenario,

the query algorithm outputs 0 when E[Z] < τ .

B. Running Time

In this subsection, we prove the running time of each opera-

tion in our data structure, including: INITIALIZE, SUBQUERY,

QUERY, INSERTX and DELETEX.

Lemma V.4 (Initialize Time). Given an estimator Z of com-

plexity C which is V -bounded and n data points, the time com-

plexity of INITIALIZE in Algorithm 1 is O(ǫ−2V (τ) log(1/δ) ·
nC).

Proof. During INITIALIZE operation, the running time

is dominated by the hash function evaluations on the

dataset {xi}
n
i=1. The number of hash functions is R =

O(ǫ−2 log(1/δ)V (τ)), so the INITIALIZE can be done in

n · RC = O(ǫ−2V (τ) log(1/δ) · nC) time.

Next, we show the SUBQUERY operation’s running time.

Lemma V.5 (SubQuery Time). Given an estimator Z of

complexity C which is V -bounded, the time complexity of

SUBQUERY in Algorithm 1 is O(ǫ−2V ((µ)τ ) log(1/δ0)C).

Proof. In the SUBQUERY operation, the running time is

dominated by evaluating the HBE with query point x ∈ R
d for

mL = O(ǫ−2Vµ log(1/δ0)) times. Because the complexity of

V -bounded estimator is C, we have that the time complexity

of SUBQUERY is O(ǫ−2V ((µ)τ ) log(1/δ0)C).

We now move the QUERY operation’s running time.

Lemma V.6 (Query Time). Given an estimator Z of complex-

ity C which is V -bounded, the time complexity of QUERY in

Algorithm 2 is O(ǫ−2V ((µ)τ ) log(1/δ)C).

Proof. Because in QUERY operations, SUBQUERY is called

for at most fixed Q = ⌊ log(τ/(1−(c+ǫ)))
log(1−γ) ⌋ times, the time

complexity of QUERY operation is O(ǫ−2V ((µ)τ ) log(1/δ)C).

Next, we present the running time for the INSERTX opera-

tion.

Lemma V.7 (InsertX Time). Given an estimator Z of complex-

ity C which is V -bounded, the time complexity of INSERTX

in Algorithm 2 is O(ǫ−2V (τ) log(1/δ) · C).

Proof. During INSERTX operation, the running time is domi-

nated by the hash function evaluations on the inserted data

point x ∈ R
d. The number of hash functions is R =

O(ǫ−2 log(1/δ)V (τ)), so the INSERTX can be done in RC =
O(ǫ−2 log(1/δ)V (τ) · C) time.

We present the running time for the DELETEX operation as

follows.



Lemma V.8 (DeleteX Time). Given an estimator Z of

complexity C which is V -bounded, the time complexity of

DELETEX in Algorithm 2 is O(ǫ−2V (τ) log(1/δ) · C).

Proof. During DELETEX operation, the running time is domi-

nated by the hash function evaluations on the to be deleted

data point x ∈ R
d. The number of hash functions is

R = O(ǫ−2 log(1/δ)V (τ)), so the DELETEX can be done

in RC = O(ǫ−2 log(1/δ)V (τ) · C) time.

VI. DYNAMIC MULTI-RESOLUTION HBE

In this section, we extend the dynamic correction to multi-

resolution hashing. We present our theorem for the dynamic

version multi-resolution HBE in Theorem VI.1.

Theorem VI.1 (Our results, Dynamic version of Theorem 5.4

in page 17 [6]). Given an approximation parameter ǫ ∈ (0, 1)
and a threshold τ ∈ (0, 1), for a convex function w, we have

a data structure the allows operations as below:

• INITIALIZE(w : R
d × R

d → R+, V : R →
R+, {xi}

n
i=1 ⊂ Sd−1, {Hg}

G
g=1, ǫ ∈ (0, 0.1), δ ∈

(0, 1), τ ∈ (0, 1)). Given a set of data points {xi}
n
i=1 ⊂

Sd−1, a collection of hashing scheme {Hg}
G
g=1, the

target function w : R
d × R

d → R+, the relative

variance function V : R → R+, accuracy parameter

ǫ ∈ (0, 0.1), failure probability δ ∈ (0, 1) and a threshold

τ ∈ (0, 1) as input, the INITIALIZE operation takes

O(ǫ−2V (τ)C log(1/δ) · n) time.

• QUERY(x ∈ Sd−1, α ∈ (0, 1], τ ∈ (0, 1), δ ∈ (0, 1)).
Given a query point x ∈ Sd−1, accuracy parameter α ∈
(0, 1], a threshold τ ∈ (0, 1) and a failure probability δ ∈
(0, 1) as input, the time complexity of QUERY operation

is O(ǫ−2V (τ)C log(1/δ)) and the output of QUERY Ẑ
satisfies:

{
Pr[|Ẑ − µ| ≤ αµ] ≥ 1− δ, µ ≥ τ

Pr[Ẑ = 0] ≥ 1− δ, µ < τ

• INSERTX(x ∈ Sd−1). Given a data point x ∈ Sd−1 as in-

put, the INSERTX operation takes O(ǫ−2V (τ) log(1/δ) ·
C) time to update the data structure.

• DELETEX(x ∈ Sd−1). Given a data point

x ∈ Sd−1 as input, the DELETEX operation takes

O(ǫ−2V (τ) log(1/δ) · C) time to update the data

structure.

Proof. We can prove the theorem by combining the run-

ning time lemmas including the INITIALIZE running time

in Lemma VI.4, the QUERY running time in Lemma VI.6,

the INSERTX running time in Lemma VI.7 and DELETEX

running time in Lemma VI.8, and query correctness proof

Lemma VI.3.

We remark that as for now, we have a dynamic data structure

for PSE with potential applications in neural network training

and kernel density estimation.

We present the dynamic multi-resolution HBE estimator

data structure in Algorithm 3 and Algorithm 4. During INI-

TIALIZE, we evaluate R hash functions for G hash function

families on all of the data points to obtain G · R hash

tables. During SUBQUERY we leverage different hash func-

tion collision probabilities of G hash function families to

compute an estimate of the pairwise summation function by

∀i ∈ [L], j ∈ [m]

Zi,j =
1

|X |

G∑

g=1

w̃r,g(x, yg) · w(x, yg)

pr,g(x, yg)
|Hr,g(x)|

and leverage median of means to output the final estima-

tion. QUERY calls SUBQUERY operation for up to Q =
⌊ log(τ/(1−(c+ǫ)))

log(1−γ) ⌋ times to keep approaching the true result

and finally obtain the estimated output. INSERTX and DELE-

TEX operations insert or delete corresponding hash table

entries for all hash function families using the input data point

x ∈ Sd−1.

A. Correctness of Query

In this section, we present the lemmas for correctness

of SUBQUERY and QUERY operation in the dynamic multi-

resoluion HBE in Lemma VI.3.

Lemma VI.2 (Correctness of SubQuery). Given a multi-

resolution HBE estimator Z of complexity C which is V -

bounded and E[Z] = µ ∈ (0, 1], taking a non-decreasing

function V : R → R+, µ ∈ (0, 1), a query point x ∈ R
d,

accuracy parameter ǫ ∈ (0, 1] and a failure probability

δ0 ∈ (0, 1) as input, the SUBQUERY in Algorithm 4 can get

an estimate Z such that

Pr[|Z − µ| > ǫ · µ] ≤ δ0

using O(ǫ−2V (µ) log(1/δ)) samples.

We now move to the correctness for the QUERY operation.

Lemma VI.3 (Correctness of Query). Given a multi-resolution

HBE estimator Z of complexity C which is V -bounded and

E[Z] ∈ (0, 1], QUERY Zest (in Algorithm 4) takes a query

point x ∈ R
d, accuracy parameter α ∈ (0, 1], a threshold

τ ∈ (0, 1) and a failure probability δ ∈ (0, 1) as inputs, and

outputs Zest ∈ R such that:

• Pr[|Zest − E[Z]| ≤ αE[Z]] ≥ 1− δ if E[Z] ≥ τ
• Pr[Zest = 0] ≥ 1− δ if E[Z] < τ

Proof. The query algorithm invokes hash function calls to

sample data points from the data structure. The data structure

increases the index of the most recent hash function invoked

by one after each hash function is computed, which enables

a query to never evaluate the same hash function again and

sample data points independently. When a query arrives, the

query algorithm begins with the adaptive mean relaxation

algorithm with α = 1 and probability δ/2. After interacting

with the data structure for O (V ((E[Z])τ log(1/δ))) times, we

either obtain an ǫ-approximation result or QUERY outputs 0
which indicates that E[Z] < τ with probability at least 1−δ/2.

For the first scenario, we apply the SUBQUERY algo-

rithm which results in an value that underestimates of E[Z].
Moreover it invokes O

(
ǫ−2 log(1/δ)V ((E[Z])τ )

)
more hash



Algorithm 3 Multi-Resolution HBE-Estimator Data Structure

1: data structure
2: members
3: X = {xi}

n
i=1 ⊂ R

d ⊲ A set of data points
4: R ∈ N ⊲ Number of estimators.
5: G ∈ N ⊲ Number of hash schemes.
6: {Hg}

G
g=1 ⊲ A collection of hashing schemes per estimator.

Hg = {f : Rd → R}
7: {{hr,g}

G
g=1}

R
r=1 ⊲ A collection of hash functions

8: {{Hr,g}
G
g=1}

R
r=1 ⊲ A collection of hash tables

9: {{pr,g}
G
g=1}

R
r=1 : Rd × R

d → [0, 1] ⊲ The collision
probability for hashing functions

10: w : Rd × R
d → R+ ⊲ The target pairwise function

11: {{w̃r,g}
G
g=1}

R
r=1 : Rd × R

d → R+ ⊲ A collection of
weight functions

12: V : R→ R+ ⊲ The relative variance function
13: end members
14: procedure INITIALIZE(w : R

d × R
d → R+, V : R →

R+, {xi}
n
i=1 ⊂ R

d, {Hg}
G
g=1, ǫ ∈ (0, 0.1), δ ∈ (0, 1), τ ∈

(0, 1)) ⊲ Lemma VI.4
15: R← O(ǫ−2 log(1/δ)V (τ ))

16: G← ⌊
log(

1−|ρ+|

1−|ρ−|
)

log(1+
√

. ǫ
8|ℓmin

|).
⌋

17: X ← {xi}
n
i=1, w← w, V ← V

18: for g = 1→ G do

19: Sample {hr,g}
R
r=1 ∼ v from Hg . {pr,g}

R
r=1 are corre-

sponding collision probability functions.
20: end for
21: for g = 1→ G do
22: for r = 1→ R do
23: Hr,g ← hr,g(X) ⊲ Evaluate hash function on the

dataset to obtain a hash table.

24: w̃r,g(x, y)←
p2r,g(x,y)∑
G
i=1

p2
r,i

(x,y)
⊲
∑G

i=1 w̃r,i = 1

25: end for
26: end for
27: end procedure
28: procedure INSERTX(x ∈ Sd−1) ⊲ Lemma VI.7
29: X ← X ∪ x
30: for r = 1→ R do
31: for g = 1→ G do
32: Hr,g ← Hr,g ∪ {hr,g(x)} ⊲ Insert x to its mapping

hash bucket.
33: end for
34: end for
35: end procedure
36: procedure DELETEX(x ∈ Sd−1) ⊲ Lemma VI.8
37: X ← X \ x
38: for r = 1→ R do
39: for g = 1→ G do
40: Hr,g ← Hr,g \ {hr,g(x)} ⊲ Insert x to its mapping

hash bucket.
41: end for
42: end for
43: end procedure

function calls and obtains an ǫ-approximation result with

success probability of at least 1− δ according to Lemma V.2.

For the second scenario, the query algorithm outputs 0 when

E[Z] < τ .

Algorithm 4 Multi-Resolution HBE-Estimator Data Structure

1: procedure SUBQUERY(x ∈ R
d, V : R → R+, µ ∈ (0, 1), ǫ ∈

(0, 1), δ0 ∈ (0, 1)) ⊲ Lemma VI.2, Lemma VI.5
2: m← ⌈6ǫ−2V (µ)⌉
3: L← ⌈9 log(1/δ0)⌉
4: for i = 1→ L do
5: Sample r ∼ [R]
6: for j = 1→ m do
7: for g = 1→ G do
8: Sample a data point yg ∼ Hr,g(x) ⊲

Hr,g(x) denotes the hash bucket where query x falls into using
hash function hr,g

9: end for
10: Zi,j ←

1
|X|

∑G
g=1

w̃r,g(x,yg)·w(x,yg)

pr,g(x,yg)
|Hr,g(x)| ⊲ The

multi-resolution hashing-based estimator
11: end for
12: end for
13: Zi ← mean{Zi,1, · · · , Zi,m} for i ∈ [L]
14: Z ← median{Z1, · · · , ZL}
15: return Z
16: end procedure
17: procedure QUERY(x ∈ R

d, α ∈ (0, 1], τ ∈ (0, 1), δ ∈ (0, 1)) ⊲
Lemma VI.3 and Lemma VI.6

18: ǫ← 2
7
α, c← ǫ

2
, γ ← ǫ

7
, δ0 ←

2α
49 log(1/τ)

19: Q← ⌊ log(τ/(1−(c+ǫ)))
log(1−γ)

⌋
20: for i = −1→ Q do
21: i← i+ 1
22: µi ← (1− γ)i

23: Zi ← SUBQUERY(x, V, µi,
ǫ
3
, δ0)

24: if |Zi − µi| ≤ c · µi then
25: break;
26: end if
27: end for
28: if i ≤ 49 log(1/τ)

2α
then

29: return Zi

30: else
31: return 0
32: end if
33: end procedure
34: end data structure

B. Running Time

In this section, we prove the time complexity of INITIALIZE,

SUBQUERY, INSERTX and DELETEX operations.

Lemma VI.4 (Initialize Time). Given a V -bounded multi-

resolution HBE estimator of complexity C and n data

points, the time complexity of INITIALIZE in Algorithm 3 is

O(ǫ−2V (τ) log(1/δ) · nC).

Proof. During INITIALIZE operation, the running time

is dominated by the hash function evaluations on the

dataset {xi}
n
i=1. The number of hash functions is R =

O(ǫ−2 log(1/δ)V (τ)), so the INITIALIZE can be done in

n · RC = O(ǫ−2V (τ) log(1/δ) · nC) time.

The SUBQUERY time for our data structure is the following.

Lemma VI.5 (SubQuery Time). Given a V -bounded multi-

resolution HBE estimator of complexity C, the time complexity

of SUBQUERY in Algorithm 4 is O(ǫ−2V ((µ)τ ) log(1/δ0)C).



Proof. In the SUBQUERY operation, the running time is

dominated by computing the multi-resolution HBE with

query point x ∈ R
d for mL = O(ǫ−2Vµ log(1/δ0))

times. Because the complexity of V -bounded estimator is

C, we have that the time complexity of SUBQUERY is

O(ǫ−2V ((µ)τ ) log(1/δ0)C).

We present the QUERY time as follows.

Lemma VI.6 (Query Time). Given a V -bounded multi-

resolution HBE estimator of complexity C, the time complexity

of QUERY in Algorithm 4 is O(ǫ−2V ((µ)τ ) log(1/δ)C).

Proof. Because in QUERY operations, SUBQUERY is called

for at most fixed Q = ⌊ log(τ/(1−(c+ǫ)))
log(1−γ) ⌋ times, the time

complexity of QUERY operation is O(ǫ−2V ((µ)τ ) log(1/δ)C).

The INSERT time for the data structure is the following.

Lemma VI.7 (Insert Time). Given a V -bounded multi-

resolution HBE estimator of complexity C, the time complexity

of INSERTX in Algorithm 3 is O(ǫ−2V (τ) log(1/δ) · C).

Proof. During INSERTX operation, the running time is domi-

nated by the hash function evaluations on the inserted data

point x ∈ R
d. The number of hash functions is R =

O(ǫ−2 log(1/δ)V (τ)), so the INSERTX can be done in RC =
O(ǫ−2 log(1/δ)V (τ) · C) time.

Now we present the DELETE time for the data structure.

Lemma VI.8 (Delete Time). Given a V -bounded multi-

resolution HBE estimator of complexity C, the time complexity

of DELETEX in Algorithm 3 is O(ǫ−2V (τ) log(1/δ) · C).

Proof. During DELETEX operation, the running time is domi-

nated by the hash function evaluations on the to be deleted

data point x ∈ R
d. The number of hash functions is

R = O(ǫ−2 log(1/δ)V (τ)), so the DELETEX can be done

in RC = O(ǫ−2 log(1/δ)V (τ) · C) time.

VII. ADAM-HASH: ADAPTIVE AND DYNAMIC HBE

In this section, we present Adam-Hash: an adaptive and dy-

namic multi-resolution hashing-based estimator data structure

design in Algorithm 5, and give the corresponding theorem

in Theorem VII.1. Then we present the lemmas and proofs

for correctness of query in section VII-A. We present the

lemmas and proofs for the time complexity of operations in our

dynamic multi-resolution HBE data structure in section VII-B.

Theorem VII.1 (Our results, Adaptive and dynamic hashing

based estimator). Let the approximation parameter be ǫ ∈
(0, 1) and a threshold τ ∈ (0, 1). Given any convex function w,

we show that we can have a data structure allows operations

as below:

• INITIALIZE(w : R
d × R

d → R+, V : R →
R+, {xi}

n
i=1 ⊂ Sd−1, {Hg}

G
g=1, ǫ ∈ (0, 0.1), δ ∈

(0, 1), τ ∈ (0, 1)). Given a set of data points {xi}
n
i=1 ⊂

Sd−1, a collection of hashing scheme {Hg}
G
g=1, the k-

Lipschitz target function w : Rd×R
d → R+, the relative

Algorithm 5 Adam-Hash Data Structure

1: data structure
2: members
3: {HBEj}

L
j=1 ⊲ A set of HBE estimators

4: L ∈ N ⊲ Number of HBE estimators
5: n ∈ N ⊲ Number of data points.
6: end members
7: procedure INITIALIZE(w : R

d × R
d → R+, V : R →

R+, {xi}
n
i=1 ⊂ R

d, {Hg}
G
g=1, ǫ ∈ (0, 0.1), δ ∈ (0, 1), τ ∈

(0, 1)) ⊲ Lemma VII.10

8: L← O(log((10k/ǫτ )d/δ))
9: n← n

10: for j = 1→ L do
11: HBEj .INITIALIZE(w, V, {xi}

n
i=1, {Hg}

G
g=1, ǫ, δ, τ )

12: end for
13: end procedure
14: procedure QUERY(q ∈ R

d, ǫ ∈ (0, 1], τ ∈ (0, 1), δ ∈ (0, 1)) ⊲
Lemma VII.2, Lemma VII.11

15: Let N denote the ǫ0-net of {x ∈ R
d | ‖x‖2 ≤ 1}.

16: Find a point p ∈ N which is the closest to q.
17: for k ∈ [L] do
18: yk = HBEk.QUERY(p, ǫ, τ, δ)
19: end for
20: z̃ ← Median({yk}

L
k=1)

21: return z̃
22: end procedure
23: procedure INSERTX(x ∈ R

d) ⊲ Lemma VII.12
24: n← n+ 1
25: for k = 1→ L do
26: HBEj .INSERTX(x) ⊲ Insert the data point into each

HBE data structure.
27: end for
28: end procedure
29: procedure DELETEX(x ∈ R

d) ⊲ Lemma VII.13
30: n← n− 1
31: for k = 1→ L do
32: HBEj .DELETEX(x)
33: end for
34: end procedure

variance function V : R → R+, accuracy parameter

ǫ ∈ (0, 0.1), failure probability δ ∈ (0, 1) and a threshold

τ ∈ (0, 1) as input, the INITIALIZE operation takes

O(ǫ−2V (τ)C log(1/δ) · n · log((10k/ǫτ)d/δ)) time.

• QUERY(x ∈ Sd−1, ǫ ∈ (0, 0.1), τ ∈ (0, 1), δ ∈ (0, 1)).
Given a query point x ∈ Sd−1, accuracy parameter

ǫ ∈ (0, 0.1), a threshold τ ∈ (0, 1) and a failure proba-

bility δ ∈ (0, 1) as input, the time complexity of QUERY

operation is O(ǫ−2V (τ)C log(1/δ) · log((10k/ǫτ)d/δ))
and the output of QUERY Ẑ satisfies:

{
Pr[|Ẑ − µ| ≤ ǫµ] ≥ 1− δ, µ ≥ τ

Pr[Ẑ = 0] ≥ 1− δ, µ < τ

even when the queries are adaptive.

• INSERTX(x ∈ Sd−1). Given a data point x ∈ Sd−1 as in-

put, the INSERTX operation takes O(ǫ−2V (τ) log(1/δ) ·
C · log((10k/ǫτ)d/δ)) time to update the data structure.

• DELETEX(x ∈ Sd−1). Given a data point

x ∈ Sd−1 as input, the DELETEX operation takes

O(ǫ−2V (τ) log(1/δ) · C · log((10k/ǫτ)d/δ)) time to

update the data structure.



Proof. We can prove the theorem by combining the run-

ning time lemmas including Lemma VII.10, Lemma VII.11,

Lemma VII.12 and Lemma VII.13, and query correctness

proof Lemma VII.2.

A. Correctness of Query

The goal of this section is to prove the correctness for

QUERY in Algorithm 5 in Lemma VII.2,

Lemma VII.2 (Correctness of Query). Given an estimator

Z of complexity C which is V -bounded and E[Z] = µ ∈
(0, 1], QUERY Ẑ in Algorithm 5 takes a query point x ∈ R

d,

accuracy parameter ǫ ∈ (0, 1], a threshold τ ∈ (0, 1) and a

failure probability δ ∈ (0, 1) as inputs, and outputs Ẑ ∈ R

such that:

• Pr[|Ẑ − µ| ≤ ǫµ] ≥ 1− δ if µ ≥ τ
• Pr[Ẑ = 0] ≥ 1− δ if µ < τ

Proof. When µ ≥ τ , for QUERY in Algorithm 5, first we

prove each HBE estimator can answer the query with constant

success probability in Lemma VII.3, second we prove the

median of query results from L HBE estimators can achieve

ǫ approximation with high probability in Lemma VII.4, third

we prove that for all query points on a ǫ-net can be answered

with ǫ approximation with high probability in Lemma VII.6

and fourth we prove that for all query points ‖q‖2 ≤ 1, QUERY

in Algorithm 5 can give an answer with ǫ approximation with

high probability in Lemma VII.9.

When µ < τ , the QUERY in Algorithm 5 returns 0 with

probability 1− δ.

1) Starting with Constant Probability: First we need to

prove the HBE estimator can answer the query approximately

with a constant success probability.

Lemma VII.3 (Constant probability). Given ǫ ∈ (0, 0.1), τ ∈
(0, 1), a query point q ∈ R

d and a set of data points X =
{xi}

n
i ⊂ R

d, let Z(q) := 1
|X|

∑
x∈X w(x, q) an estimator

HBE can answer the query which satisfies:

HBE.QUERY(q, ǫ, 0.1) ∈ (1± ǫ) · Z(q)

with probability 0.9.

2) Boost the Constant Probability to High Probability:

Then we want to boost the constant success probability to high

success probability via obtaining the median of L queries.

Lemma VII.4 (Boost the probability). We write the failure

probability as δ1 ∈ (0, 0.1) and accuracy parameter as ǫ ∈
(0, 0.1). Given L = O(log(1/δ1)) estimators {HBEj}

L
j=1. For

each fixed query point q ∈ R
d, the median of queries from L

estimators satisfies that:

Median({HBEj .QUERY(q, ǫ, 0.1)}Lj=1) ∈ (1± ǫ) · Z(q)

with probability 1− δ1.

Proof. From Lemma VII.3 we know each estimator HBEj can

answer the query that satisfies:

HBE.QUERY(q, ǫ, 0.1) ∈ (1± ǫ) · Z(q)

with probability 0.9.

From the chernoff bound we know the median of L =
O(log(1/δ1)) queries from {HBEj}

L
j=1 satisfies:

Median({HBEj .QUERY(q, ǫ, 0.1)}Lj=1) ∈ (1± ǫ) · Z(q)

with probability 1− δ1.

Therefore, we complete the proof.

3) From each Fixed Point to All the Net Points: In this

section, we present Fact VII.5 and generalize from each fixed

point to all on-net points in Lemma VII.6.

Fact VII.5. Let N be the ǫ0-net of {x ∈ R
d | ‖x‖2 ≤ 1}. Let

|N | denote the size of N . Then |N | ≤ (10/ǫ0)
d.

Lemma VII.6 (From for each fixed to for all net points). Let

N denote the ǫ0-net of {x ∈ R
d | ‖x‖2 ≤ 1}. Let |N | denote

size of N . Given L = log(|N |/δ) estimators {HBEj}
L
j=1.

With probability 1− δ, we have: for all q ∈ N , the median

of queries from L estimators satisfies that:

Median({HBEj .QUERY(q, ǫ, 0.1)}Lj=1) ∈ (1± ǫ) · Z(q).

Proof. There are |N | points on the d dimension ǫ0-net when

‖q‖2 ≤ 1. From Lemma VII.4 we know that for each query

point q on N , we have :

Median({HBEj .QUERY(q, ǫ, 0.1)}Lj=1) ∈ (1± ǫ) · Z(q)

with failure probability δ/|N |.
Next, we could union bound all |N | points on N and obtain

the following:

∀‖q‖2 ≤ 1 :

Median({HBEj .QUERY(q, ǫ, 0.1)}Lj=1) ∈ (1± ǫ) · Z(q)

with probability 1− δ.

4) From Net Points to All Points: With Lemma VII.6, we

are ready to prove all query points ‖q‖2 ≤ 1 can be answered

approximately with high probability.

Lemma VII.7 (k-Lipschitz). Given a dataset X ⊂ R
d, and a

query vector q ∈ R
d, the k-Lipschitz target function w(q, x),

then the summation Z(q) = 1
|X|

∑
x∈X w(q, x) is k-Lipschitz.

Proof. Based on the assumption that the target function

w(q, x) is k-Lipschitz, we have:

∀x ∈ X : |w(q1, x)− w(q2, x)| ≤ k · ‖q1 − q2‖2 (1)

To prove Z(q) is k-Lipschitz, we have:

|Z(q1)− Z(q2)|

= |
1

|X |

∑

x∈X

w(q1, x)−
1

|X |

∑

x∈X

w(q2, x)|

= |
1

|X |

∑

x∈X

(w(q1, x)− w(q2, x))|



≤
1

|X |

∑

x∈X

(k · ‖q1 − q2‖2)

= k · ‖q1 − q2‖2

where the first step comes from the definition of Z(q), the

second step comes from merging the summation, the third

step comes from Eq. (1). Therefore, we have that Z(q) is k-

Lipschitz.

The following fact shows that if the elements of an array

shift by a bounded value ǫ, then the median of the array shifts

by a bounded value 3ǫ.

Fact VII.8 (folklore). Given two list of numbers such that

|ai − bi| ≤ ǫ, for all i ∈ [n]. Then we have

|Median({ai}i∈[n])−Median({bi}i∈[n])| ≤ 3ǫ

Lemma VII.9 (From net points to all points). Given L =
O(log((10k/ǫτ)d/δ)) estimators {HBEj}

L
j=1, with probabil-

ity 1 − δ, for all query points ‖q‖2 ≤ 1, there exits a point

p ∈ N which is the closest to q, we have the median of queries

from L estimators satisfies that:

∀‖q‖2 ≤ 1 :

Median({HBEj .QUERY(p, ǫ, 0.1)}Lj=1) ∈ (1± ǫ) · Z(q).

Proof. We define an event ξ to be the following,

∀p ∈ N,

Median({HBEj .QUERY(p, ǫ, 0.1)}Lj=1) ∈ (1 ± ǫ) · Z(p)

Using Lemma VII.6 with L = log(|N |/δ), we know that

Pr[ event ξ holds ] ≥ 1− δ

Using Fact VII.5, we know that

L = log(|N |/δ) = log((10/ǫ0)
d/δ) = log((10k/ǫτ)d/δ)

where the last step follows from ǫ0 ≤ ǫτ/k.

We condition the above event ξ to be held. (Then the

remaining proof is not depending on any randomness, for each

and for all becomes same.) For each point q /∈ N , there exists

a p ∈ N such that

‖p− q‖2 ≤ ǫ0 (2)

For each q /∈ N , we quantize off-net query q to its nearest

on-net query p. we know

|Z(q)− Z(p)| ≤ k · ‖q − p‖2 ≤ kǫ0 ≤ ǫτ (3)

where the first step follows that Z(·) is k-Lipschitz, the second

step comes from Eq. (2) and the third step comes from ǫ0 ≤
ǫτ/k. Using the on-net query p to answer the off-net quantized

query q, we have:

Median({HBEj .QUERY(p, ǫ, 0.1)}Lj=1) ∈ (1 ± ǫ) · Z(p).

Using Eq. (3), we can obtain that

Median({HBEj .QUERY(p, ǫ, 0.1)}Lj=1) ∈ (1± ǫ) · (Z(q)± ǫτ).

Using ∀j ∈ [L] : HBEj .QUERY(p, ǫ, 0.1) ≥ τ , we have

Median({HBEj .QUERY(p, ǫ, 0.1)}Lj=1) ∈ (1 ± ǫ)2Z(q).

We know that (1 − ǫ)2 ≥ (1 − 3ǫ) and (1 + ǫ)2 ≤ (1 + 3ǫ)
when ǫ ∈ (0, 0.1). Rescaling the ǫ completes the proof.

B. Running Time

In this section, we provide several lemmas to prove the time

complexity of each operation in our data structure. We remark

that the running time complexity corresponds to potential

energy consumption in practice. We hope that our guidance

in theory would help improves the energy efficiency in the

running of our algorithm.

1) Initialization Time:

Lemma VII.10 (Initialize Time). Given an estimator Z
of complexity C which is V -bounded and n data points,

the time complexity of INITIALIZE in Algorithm 3 is

O(ǫ−2V (τ) log(1/δ) · nC).

Proof. Because in INITIALIZE operation in Algorithm 5,

HBE.INITIALIZE is called for L = O(log((10k/ǫτ)d/δ))
times to initialize L HBE data structures, and each

HBE.INITIALIZE takes O(ǫ−2V (τ)C log(1/δ) · n) time to

complete. Therefore, the overall time complexity of INITIAL-

IZE operation in Algorithm 5 is O(ǫ−2V (τ)C log(1/δ) · n ·
log((10k/ǫτ)d/δ))

2) Query Time: We prove the time complexity of QUERY

in Lemma VII.11.

Lemma VII.11 (Query Time). Given an estimator Z of

complexity C which is V -bounded, the time complexity

of QUERY in Algorithm 5 is O(ǫ−2V ((µ)τ ) log(1/δ)C ·
log((10k/ǫτ)d/δ)).

Proof. Because in QUERY operation in Algorithm 5,

HBE.QUERY is called for L = O(log((10k/ǫτ)d/δ))
times, and each HBE.QUERY takes O(ǫ−2V (τ)C log(1/δ))
time to complete. As a result, the total time of QUERY

operation in Algorithm 5 is O(ǫ−2V ((µ)τ ) log(1/δ)C ·
log((10k/ǫτ)d/δ)).

3) Maintenance Time: We provide the time complexity of

INSERTX in Lemma VII.12.

Lemma VII.12 (Insert Time). Given an estimator Z of

complexity C which is V -bounded, the time complexity

of INSERTX in Algorithm 5 is O(ǫ−2V (τ) log(1/δ) · C ·
log((10k/ǫτ)d/δ)).

Proof. Because in INSERTX operation in Algorithm 5,

HBE.INSERTX is called for L = O(log((10k/ǫτ)d/δ)) times,

and each HBE.INSERTX takes O(ǫ−2V (τ) log(1/δ) ·C) time

to complete. Therefore, the overall time complexity of IN-

SERTX operation in Algorithm 5 is O(ǫ−2V (τ) log(1/δ) ·C ·
log((10k/ǫτ)d/δ)).

We provide the time complexity of DELETEX in

Lemma VII.13.



Lemma VII.13 (Delete Time). Given an estimator Z of

complexity C which is V -bounded, the time complexity

of DELETEX in Algorithm 5 is O(ǫ−2V (τ) log(1/δ) · C ·
log((10k/ǫτ)d/δ)).

Proof. Because in DELETEX operation in Algo-

rithm 5, HBE.DELETEX operation is called for

L = O(log((10k/ǫτ)d/δ)) times, and each HBE.DELETEX

operation takes O(ǫ−2V (τ) log(1/δ) · C) time to

complete. Therefore, the overall time complexity

of DELETEX operation operation in Algorithm 5 is

O(ǫ−2V (τ) log(1/δ) · C · log((10k/ǫτ)d/δ)).

VIII. CONCLUSION

Pairwise Summation Estimation (PSE) is an important yet
challenging task in machine learning. In this paper, we present
Adam-Hash: the first provable adaptive and dynamic multi-
resolution hashing for PSE. In an iterative process, the data
set changes by a single data point per iteration, and our data
structure outputs an approximation of the pairwise summation
of a binary function in sub-linear time in the size of the data set.
Our data structure also works for the adaptive setting where an
adversary can choose a query based on previous query results.
We hope our proposal would shed lights on joint innovations
of data structures and machine learning.
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