
A monitoring framework for deployed machine
learning models with supply chain examples

Bradley Eck
IBM Research Europe

Dublin, Ireland
bradley.eck@ie.ibm.com

Duygu Kabakci-Zorlu
IBM Research Europe

Dublin, Ireland

Yan Chen
IBM

San Francisco, CA, USA

France Savard
IBM

Montreal, QC, Canada

Xiaowei Bao
IBM

Seattle, WA, USA

Abstract—Actively monitoring machine learning models dur-
ing production operations helps ensure prediction quality and
detection and remediation of unexpected or undesired conditions.
Monitoring models already deployed in big data environments
brings the additional challenges of adding monitoring in parallel
to the existing modelling workflow and controlling resource
requirements. In this paper, we describe (1) a framework for
monitoring machine learning models; and, (2) its implementation
for a big data supply chain application. We use our imple-
mentation to study drift in model features, predictions, and
performance on three real data sets. We compare hypothesis
test and information theoretic approaches to drift detection in
features and predictions using the Kolmogorov-Smirnov distance
and Bhattacharyya coefficient. Results showed that model per-
formance was stable over the evaluation period. Features and
predictions showed statistically significant drifts; however, these
drifts were not linked to changes in model performance during
the time of our study.

Index Terms—MLops, hypothesis-testing, drift-detection,
Spark

I. INTRODUCTION

Monitoring of machine learning (ML) models in industrial
applications helps ensure prediction quality and integrity of
business decisions made based on model predictions. Most
models are trained under the assumption of stationarity: that
data used to make predictions will have the same probability
distribution as that used for model training [1]. However,
industrial applications are often driven by non-stationary pro-
cesses due to seasonality, changes in consumer behavior, or
evolving operational conditions. High volume and velocity of
data in these applications introduces additional challenges for
model monitoring as the data of interest may only be available
for a short time or become expensive to access.

Both the literature and commercial ML system developers
recognize the need to monitor models during production.
Synthesizing experience with numerous systems at Google,
Breck et al. weight monitoring during production as one
quarter of their overall score of model readiness [2]. Precisely
which quantities to monitor depends on the application. Con-
sidering the stationarity assumption underlying many models,
it is not surprising that modern modelling software supports,
and recent studies investigate, several methods for detecting
distribution shift. Also called, drift detection, these methods
evaluate the stationarity assumption by carrying out hypothesis
tests such as the Kolmogorov-Smirnov test or estimating the

shared information content using information entropy related
metrics such as the Kullback-Leibler divergence [3]. Several
studies present comparisons of algorithmic approaches to drift
detection for ML models [4] [5] [6].

The choice of which monitoring algorithms to apply for a
given modelling task remains application dependant and so
modelling packages have growing support for drift related
algorithms. Tensorflow’s data validation component quantifies
drift using the L-infinity distance for categorical features and
approximate Jensen-Shannon divergence for numeric features
[7]. With pytorch, torchdrift supports several methods of drift
detection including the Kolmogorov-Smirnov and Max Mean
Discrepancy tests [8]. Scikit-learn (version 1.1.2) provides a
variety of metrics to evaluate pairwise distances and sample
affinity [9]. Spark (version 3.3.1) provides the one-sample
Kolmogorov-Smirnov test and several distance measures [10].
The alibi-detect package provides algorithms for outlier, ad-
versarial and drift detection [5]. With this landscape, much
model monitoring can use algorithms from existing packages
but there is room to add methods tailored for big data use
cases.

Several recent contributions examine strategies for imple-
menting drift detection as part of the modelling life cycle.
Klaise et al. discuss the challenges of drift detection in
production systems [11]. The Augur framework [12] examines
drift detection metrics and thresholds with a view to eventu-
ally triggering model retraining. The MLFlow [13] tracking
module, provides logging for metrics computed as part of
a run. The Castor time series forecasting system [14] [15]
tracks performance of rolling predictions. Drift monitoring
also appears in the model lifecycle proposed by Hummer et
al. who describe a cloud-based framework for AI Application
development and lifecycle management [16]. In the market,
cloud-based ML platforms provide monitoring for deployed
models. IBM’s Watson® OpenScale™ supports monitoring for
bias, fairness, and drift [17]. Amazon Sagemaker™ provides
a model monitor component that detects outliers and data drift
[18]. Microsoft Azure™ also has drift detection for machine
learning data sets [19]. At Google®, the Vertex AI model
monitoring component handles drift detection for categorical
and numerical features [20]. Although these platforms are
feature rich, many existing software applications embed their
machine learning workflows rather than use a cloud service.

ar
X

iv
:2

21
1.

06
23

9v
1

 [
cs

.L
G

]
 1

1
N

ov
 2

02
2

Moreover, existing commercial and open source model moni-
toring tools target models that already use a related software
stack; there is thus gap for a more loosely coupled approach
to model monitoring for applications with existing modelling
workflows.

Monitoring of production models thus requires both a
framework suitable for the deployment environment and met-
rics suitable for the modelling problem. In the use cases that
motivate our work, we sought to add drift and performance
monitoring in parallel to, and without disturbing, existing
training and inference workflows. On the algorithmic side, we
sought metrics that could work from lightweight summaries of
the data and use computing and storage infrastructure already
available in the target environment. We also sought to explore
the application of hypothesis test and information theoretic
metrics for model monitoring in a supply chain use case with a
view to understanding which metrics could anticipate changes
in model performance.

This paper outlines two contributions to model monitor-
ing. First, we propose a framework for monitoring deployed
models, especially where monitoring functionality should be
added to applications that already embed model training and
deployment. We motivate the framework with applications
from several domains using ML on big data. In contrast to
existing frameworks, we emphasize the deployment phase of
the model lifecycle. Second, we apply the framework to a
supply chain use-case and present computational experiments
on real world data. These experiments use novel variations
of classical techniques to reduce computational and storage
requirements for measuring drift in features and predictions.

The remainder of the paper is organized as follows. Section
II outlines the big data use-cases that motivate our work.
Section III summarizes the concepts and architectural design
of our monitoring framework. Section IV describes our ex-
periments leveraging big data tools including Spark, Parquet,
and object storage to monitor three models in a real supply
chain use case. Results results appear in Section V. Finally,
we conclude the work and note some promising directions for
future effort in section VI.

II. MOTIVATING APPLICATIONS

Diverse applications, each with different modelling scenar-
ios and data types, motivate our work on monitoring ML mod-
els during production. We consider monitoring models that
forecast sales in supply chains, predict failures of machinery,
and classify objects on assembly lines. The following sections
elaborate each application to inform requirements for model
monitoring.

A. Supply chain

Sales forecasts help retailers order adequate quantities,
analyze the effect of discounts and position inventory to meet
demand. Sales of individual products are tracked by stock
keeping unit (SKU) and location. Large retailers carrying
many products at many locations have tens or hundreds
of millions of potential SKU-location combinations. Since

TABLE I
SUMMARY OF SUPPLY CHAIN DATA SETS CONSIDERED FOR MODEL
MONITORING. DIMENSION REFERS TO THE NUMBER OF POSSIBLE

SKU-LOCATION COMBINATIONS. DENSITY REFERS TO THE PERCENTAGE
OF POSSIBLE COMBINATIONS PRESENT IN THE DATA.

Name Dimension Density
A 8,300,000 4%
B 15,000,000 8%
C 270,000,000 5%

every location will not carry every product the SKU-location
mapping typically has low density. Table I summarizes three
such real-world data sets.

In our supply chain application, data scientists train new
sales forecast models each month using features as recent as
the previous day’s sales. Each day, the inference workflow
updates the model features and issues a new forecast. However,
a model may start producing poor predictions before the next
scheduled training due to shifts in feature distributions, buying
habits, or other circumstances. For example, COVID-19 re-
strictions significantly changed consumer behavior. Therefore,
these models require monitoring throughout deployment to
enable model retraining on a data-driven rather than scheduled
basis. Since a data scientist manages many supply chain
forecasting models among several customers, automation of
monitoring across models is essential.

B. Equipment failure

Industrial machines need maintenance to achieve optimal
service life and return on investment. The availability of
sensor output from such equipment opens ML use cases
such as failure prediction. In our application, sensors on the
machines emit measurements which are then processed and
used to predict asset health and reliability. ML models making
predictions with this sensor data can encounter non-stationarity
for example when the unit of sensor output or operating regime
changes. Hence the models require monitoring especially to
detect data drift.

C. Object classification

In manufacturing, assembly lines produce products which
require inspection for quality control and assurance. Image
processing models doing object classification support human
operators to deliver products with fewer defects. In the appli-
cation we study, training data sets for the model are typically
small, perhaps only a fraction of a percent of the number
of images the model will generate inferences on within its
lifetime. Small variety in the training data means that the
image processing models receive myriad production images
that are very different to training. Model monitoring is thus
crucial for delivering reliable predictions.

III. MONITORING FRAMEWORK

Models for sales forecasting, equipment failure, and object
classification appear within existing enterprise software appli-
cations to provide automation and decision support. Synthe-

sizing the steps needed to implement model monitoring, the
following steps were consistent across applications:

1) Register the model with the monitoring system and
specify how the model should be monitored.

2) Process or store inference features, predictions, and
optionally ground truth.

3) Compute metrics to evaluate model behavior and per-
formance.

4) Evaluate metrics to trigger further actions like model
retraining, report generation, or alerting.

We describe the above steps with reference to the following
concepts:

• Model: the name or identifier for an instance of a trained
ML model that is monitored by the system.

• Monitor: a collection of metrics computed over the same
data. For example, a performance monitor could compare
predictions with ground truth using the mean average
error, root mean square error, and other related metrics.

• Metric: a computed value that results from running a
monitor.

• Reaction: post-processing of metrics including side-
effects. For example, compare a metric to a threshold
and send an alert.

• Log: a document that results from running a reaction

To enable use of the framework in applications with dif-
ferent data types and architectures, we designed a layered
system to separate the re-usable and application specific logic.
Highly re-usable components include the API that emerges
from pairing the above concepts with verbs like get, set, run
and delete and the key-value schema for storing data generated
during the production phase.

A. System Design

A loosely coupled ML model monitoring framework should
be applicable to many domains each with their own data
types, computing environments, and storage infrastructure. The
framework proposed here aims to be flexible and extensible
so that existing enterprise applications with ML models can
easily add monitoring capability with minimal disturbance
to existing workflows. The system comprises layers for or-
chestration, monitoring logic, and data storage (Fig. 1). The
host application orchestrates monitoring of its ML models by
invoking the monitoring framework. The framework in turn
calls the application specific monitoring logic and stores the
results in the monitoring data store. The application package
provides concrete implementations of the monitors and re-
actions needed for the target models. These implementations
typically use statistical hypothesis testing, model evaluation,
and dimensionality reduction algorithms provided by other
libraries. To make these calculations, the application package
also connects to the model data storage. The storage layer
distinguishes data generated by monitoring system from data
used to train and score the model. Each of these components
are further described in the following paragraphs.

Fig. 1. Architecture of monitoring framework.

The framework package encapsulates common function-
ality that interacts with the application specific package to de-
liver a working monitoring system. Features of the framework
package include the data schema, client interface, and abstract
or base classes for the framework concepts of Monitors,
Metrics, Reactions, and Logs. In our experience, these features
are independent of the ML model or application specifications
so that it is possible to reuse these components.

The application package addresses functional needs of
monitoring models in a particular application. It provides
concrete implementations of monitors, metrics, reactions and
logs for the target modelling scenario. For example, a report
reaction enables custom visualisations for big data that plot
samples of the data instead of all points. This package also
handles the connection to the model training and inference
data of the application.

Algorithm package(s) contain core implementations for
computing metrics. Monitoring metrics depend on the data
characteristics of an application. For example, image data often
requires dimension reduction while big data gets most benefit
from parallelism or approximated algorithms. Such algorithms
are usually implemented without reference to the compute or
storage infrastructure used by the data so that they can be used
in multiple situations.

Finally, in the data layer, the framework package manages
the storage of monitoring data while the application package
interacts with the model data. For monitoring data, a key-value
design allows storage of monitoring configuration and results
using a variety of storage technologies including IBM Cloud®

object storage, IBM DB2®, MongoDB or a file system. Model
data, such as training data sets, features used to make predic-
tions, values of predictions and eventually ground truth values
remain in the model data storage. Applications with machine
learning workflows already store this information; this design
allows reuse of the existing data to support monitoring.

B. Monitoring API

A simple application programming interface emerges from
combining the framework concepts with the verbs set, get, run,
delete. Setting a monitor associates a monitor with a model.
Running a monitor computes metrics for a particular model.

TABLE II
MONITORING API. ’X’ INDICATES A SUPPORTED COMMAND; EMPTY

CELLS MARK UNSUPPORTED COMMANDS.

set get run delete
Monitor x x x x
Metrics x x
Reaction x x x x
Logs x x

Getting metrics retrieves computed metrics from storage. Sim-
ilarly, setting a reaction associates a reaction and a model.
Running the reaction creates logs. Logs may be the only result
of running a reaction or may document a side-effect such as
sending an alert or triggering model retraining. Getting logs
retrieves this information from the monitoring data storage.

Table II indicates the methods comprising our monitoring
API. Most verb-object combinations are supported. Exceptions
are setting and running metrics and logs; these objects result
from running monitors and reactions and thus are not settable
or runnable outside the framework. With a layered system
design and this API, the monitoring framework supports the
necessary workflow steps while allowing application-specific
customization.

IV. EXPERIMENTAL METHODOLOGY

We used the framework described above to carry out moni-
toring experiments for the ML models making sales forecasts
in our supply-chain use case. These experiments had three
related aims. First, we needed to quantify the performance
of the sales forecast models during production. Second, we
wanted to check for non-stationarity in model features. Third,
we wanted to identify metrics that could be computed at
forecast time that might indicate an upcoming change in model
performance. Our hypothesis was that a statistical test for
distribution shift among the features or predictions could be
such an indicator. To facilitate the experiments, we created
a supply-chain application package with monitors for drift
detection and model performance.

A. Drift Monitor

We monitor features and predictions for distribution shift
by comparing data from training time to production values
using variations of the Kolmogorov-Smirnov test and the
Bhattacharyya coefficient. As further explained below, our
variations to these classical methods enable computation of
these metrics in a distributed environment with Spark and
generate summaries of the data for re-use and visualization.

The Kolmogorov-Smirnov test for two samples calculates
the largest distance between empirical cumulative distribution
functions of the samples.

DKS = max|F1(x)− F2(x)| (1)

The distribution of this test statistic is also well known and so
p-values can be readily computed, for example using [21]:

P (DKS > observed) = QKS

(√
NM

N +M
DKS

)
(2)

where the quantile function is:

QKS(λ) = 2

∞∑
k=1

(−1)k−1e−2k
2λ2

(3)

In our variation of the test, we build an approximate
cumulative distribution function F̂ for each sample. We
construct F̂1 and F̂2 using approximate quantiles from the
Greenwald-Khanna algorithm [22] as implemented in Spark’s
approxQuantile method. We build F̂ from quantiles at a
linearly spaced probabilities between 1/N and 1. Evaluation
at intermediate points uses linear interpolation between the
resulting quantiles. This approximation of F summarizes the
data of interest in fewer points.

The Bhattacharyya coefficient is defined by [23] as

BC(p, q) =

∫ √
p(x)q(x)dx, (4)

where p and q are density functions. BC represents the cosine
of the angle between unit vectors representing distributions
p and q. As a cosine, BC = 0 indicates perpendicular unit
vectors and hence probability distributions without overlap.
Similarly BC = 1 corresponds to parallel unit vectors and
distributions that fully overlap. Thus BC is a convenient
similarity measure for distributions as it always falls between
0 and 1, with 0 indicating no similarity and 1 indicating
complete similarity.

In our variation, we evaluate BC using estimated probabil-
ity density functions, f̂ , derived from the cumulative density
estimates F̂ already computed for (Eq. 1). The density estimate
is

f̂(x) = (∆F̂ (xk) + wk)/∆x (5)

where ∆F̂ (xk) is the difference in cumulative frequencies
between breaks of the kth bin; wk is a small correction factor
to ensure relative frequencies sum to 1; and ∆x is the bin
width. In this way, the data summary F̂ can be re-used to
compute inputs for BC.

B. Performance Monitor

We monitor the in-production performance of sales forecasts
from our model by comparing predicted and actual values.
The target variable of the forecasting model is the seven-day
average sales volume (termed velocity, as in units per day) for
a product at a location, vi. Sales data become available each
day and so after seven days the true value can be computed.

We report absolute and relative error metrics as follows. The
mean absolute error (MAE) is

MAE =
1

N

N∑
i

|v̂i − vi| (6)

where the forecast velocity for the ith sku-location is v̂i; the
true velocity is vi; and there are N sku-location combinations
of interest. Absolute errors are informative when target values
have similar scales. When this is not the case, dividing the er-
ror by the target provides another useful view of performance.
When there are no sales of a product at a location for a week,

the actual velocity vi is 0, in which case the traditional MAPE
cannot be computed. Thus we add a weight of unity to the true
value in the denominator and report a weighted mean absolute
percentage error:

wMAPE =
1

N

N∑
i

|v̂i − vi|
vi + 1

· 100% (7)

Our workflow orchestrator runs the model performance
monitor daily for deployed models. Values of v̂i are extracted
from the model data store. Values of vi are computed on the fly
from daily values in storage. We persist the resulting statistics
for further analysis and visualization.

C. Run-time Environment

Fig. 2 shows the parallel modelling and monitoring work-
flows in our supply chain use-case. Data scientists initiate
model training and deployment and enable monitoring. For
drift monitoring, the system evaluates training data and stores
the approximate cumulative distribution function, F̂ , of model
features and predictions along with other parameters in the
monitoring data store for re-use. Each day, new information
becomes available and is used to make a new forecast; the
monitoring system evaluates drift between training and pro-
duction data. The resulting metrics are saved into the monitor-
ing data store for later visualization and analysis. Performance
monitoring follows the same steps, except training data is not
evaluated because calculations of MAE and wMAPE need
only predictions and ground truth values.

We run monitoring workflows on a compute cluster of
7 worker nodes each with 16 CPU cores and 58GB mem-
ory. Kubernetes version 1.22 allocates workload to compute
nodes. We define and invoke model monitoring steps as Argo
workflows. Our algorithms are implemented in Python 3.7
using pyspark [10], numpy [24], scipy [25], pandas [26] and
matplotlib [27]. Separate buckets on IBM Cloud object storage
contain the model data, in Parquet [28] format, and monitoring
data storage. Stocator [29] provides the connection between
Spark and object storage. Using the monitoring system in
this runtime environment enables automation across model
deployments.

V. RESULTS AND DISCUSSION

Our experiments aimed to quantify forecast model perfor-
mance, check for non-stationary features, and explore metrics
that could be calculated at forecast time but indicate an
upcoming performance change. To address these questions we
ran the drift and performance monitors outlined above on three
supply chain examples. One model was trained for each data
set. Six of the model features are evaluated for drift. Drift
and performance metrics for data sets A, B, and C of Table
I. during March 2022 appear in Figs. 3 - 8. The figures show
the Bhattacharyya coefficient, BC, (Eq. 4) and Kolmogorov-
Smirnov distance DKS (Eq. 1) for model predictions and
features by evaluation date. For model performance, we plot
MAE (Eq. 6) and wMAPE (Eq. 7) on the forecast date even
though the computation was actually carried out a week later,

once the data became available. This arrangement compares
the information available at forecast time with the model
performance eventually observed.

We compare metrics’ behavior across data sets using their
coefficient of variation, Cv:

Cv =
s

x̄
(8)

where the sample standard deviation is s and the sample
mean is x̄. This ratio provides a convenient way of comparing
dispersion between samples with different means.

For data set A, the model was trained with 3 months data on
March 7th and used to make forecasts for the remainder of the
month. Prediction performance (Fig. 3) was stable with MAE
and wMAPE having similar coefficients of variation: 0.0483
and 0.047. The distribution of predictions was also quite stable,
but the KS distance (Cv = 0.22) showed considerably more
variation than the Bhattacharyya coefficient (Cv = 0.0084).
For model features (Fig 4), some trends of increasing DKS

and decreasing BC are visually evident in f2 and f6 while the
other features showed little shift from the training distribution.
Values of BC and DKS for model features showed more vari-
ation than predictions. Neither drift in features or predictions
were associated with changes in model performance.

For data set B, the model was trained with 3 months data
on March 9th. Data was available for metric computation until
March 17 except for March 10 which is not available. Model
performance (Fig. 5) was again stable with MAE and wMAPE
showing similar coefficients of variation 0.0065 and 0.0069 to
each other, and slightly more variation than data set A. For
prediction drift, KS distance (Cv = 0.98) showed much more
variation than the Bhattacharrya coefficient (Cv = 0.014). The
high variation in DKS was driven by one very low value
on March 11. March 14th showed highest shift in prediction
values, but no change in model performance. Model features
(Fig. 6) did not show any drift; the March 14th movement in
prediction values was not apparent in the features.

For data set C, the model was trained with 1 month data
on March 1st and production data available for the following
week except the 4th. A trend of increasing drift in predictions
is visually evident in the declining BC and rising DKS values
(Fig. 7). Consistent with the other examples, that trend does
not carry through to model performance, where MAE and
wMAPE were stable and had similar coefficients of variation
of 0.057 and 0.055. KS distance (Cv = 0.28) again showed
more variation than BC (Cv = 0.018). Drift metrics for model
features (Fig. 8) show a similar trend as those for predictions
with drift most visually evident in f2 and f6. Consistent with
the other examples, variations in drift metrics of features
and predictions were not associated with changes in model
performance.

Across data sets A, B, and C, model performance, as
measured by MAE and wMAPE were very stable for the time
periods over which data was available for these experiments.
While this result indicates models that perform well, the good
model performance hampered our experimental objective of
identifying metrics that might anticipate changes in model

Deployed

Forecast

 Models

Report

Training

Data

Data

scientist

Train

Daily/Weekly

forecats on

velocity

Inference

Production

 Data

Monitoring

System

Training Data

Parameters

Monitoring

System

Drift &

Performance

Metrics

Store metrics

Alert

RUN MONITOR

initiates

production

model

deployment and

enables

monitoring

Monitoring

System

Modelling

Monitoring

 Data Store

Model Data

 Store

Trigger Model

Retrain
Training

Data

SET MONITOR

Run

Reaction

Fig. 2. Modelling (top) and monitoring (bottom) workflows in our run-time environment.

Fig. 3. Prediction performance and drift metrics for data set A during March
2022.

performance. The fact that we did not observe non-stationarity
in model performance may be due to the relatively short time
period over which data were available. Some non-stationarity
was evident in features of data sets A and C. However, the
models coped with this variation well and there were no
meaningful changes in performance.

Regarding the hypothesis that a statistical test for distribu-
tion shift could anticipate changes in model performance, our
experimental evidence did not support this view. At the sample
sizes considered here, even small values of DKS are highly
significant. For example solving (Eq. 2) with α = 0.05 and
N = M = 332, 000 as for data set A yields a critical distance
DKS = 0.00333. Similarly, using N = M = 13, 500, 000
as for data set C gives a distance of DKS = 0.0005227.
An example is instructive to see why a highly significant
distribution shift may not effect model performance. Figure 9
shows cumulative distribution functions for model predictions
in the training and production samples from data set A on
March 20, where the KS distance is 0.065. This distance is
highly statistically significant with a p-value ¡ 10−16. While

Fig. 4. Drift metrics for six model features in data set A during March 2022.

this distance is visible on the plot, in this context it is
understandable that the distribution has not changed in an
operationally meaningful way. For this reason, we also report
BC values to provide evidence that the shape of the distribution
has not changed much.

VI. CONCLUSIONS

We presented and applied a framework for monitoring ma-
chine learning models during deployment to three supply chain
examples. The framework enables adding model monitoring
capability to an existing application that is already training
and scoring of ML models. It uses the application’s storage

Fig. 5. Prediction performance and drift metrics for data set B during March
2022.

Fig. 6. Drift metrics for five features of data set B during March 2022.

Fig. 7. Prediction performance and drift metrics for data set C during March
2022.

Fig. 8. Drift metrics for six features of data set C during March 2022.

Fig. 9. Cumulative distribution functions for predicted velocity in data set A
on March 7 (training) and March 20 (production).

infrastructure and supports calculation of metrics tailored to
the use case.

In our supply chain examples we analyze sales predictions
and model features for distribution shift. Across three data sets
in March 2022, the forecast model performance as measured
by MAE and wMAPE was very stable. The distribution of
predicted sales showed more variation than model performance
but this variation did not translate into performance changes,
suggesting that the models are performing as intended. Fea-
tures showed more drift but this was also not connected with
performance change. All of the KS tests reported here were
highly statistically significant. The fact no tests were opera-
tionally meaningful sounds a cautionary note about the utility
of hypothesis testing for drift detection in this application. As
an additional metric, the Bhattacharyya coefficient provided

useful confirmation that the distribution shape had not changed
much, despite the KS distance.

Future work could apply the proposed monitoring frame-
work to other applications and longer duration data sets to
identify suitable thresholds for BC, KS or other metrics to
support alerting and retraining.

REFERENCES

[1] G. Ditzler, M. Roveri, C. Alippi, and R. Polikar, “Learning
in nonstationary environments: A survey,” Comp. Intell. Mag.,
vol. 10, no. 4, p. 12–25, nov 2015. [Online]. Available: https:
//doi.org/10.1109/MCI.2015.2471196

[2] E. Breck, S. Cai, E. Nielsen, M. Salib, and D. Sculley, “The ml test score:
A rubric for ml production readiness and technical debt reduction,” in
2017 IEEE International Conference on Big Data (Big Data), 2017, pp.
1123–1132.

[3] C. Huyen, Designing Machine Learning Systems. O’Reilly Media, Inc.,
2022.

[4] S. Rabanser, S. Günnemann, and Z. C. Lipton, “Failing loudly: An
empirical study of methods for detecting dataset shift,” in Advances
in Neural Information Processing Systems 32: Annual Conference on
Neural Information Processing Systems 2019, NeurIPS 2019, December
8-14, 2019, Vancouver, BC, Canada, H. M. Wallach, H. Larochelle,
A. Beygelzimer, F. d’Alché-Buc, E. B. Fox, and R. Garnett, Eds., 2019,
pp. 1394–1406.

[5] A. Van Looveren, J. Klaise, G. Vacanti, O. Cobb, A. Scillitoe,
R. Samoilescu, and A. Athorne, “Alibi detect: Algorithms for
outlier, adversarial and drift detection,” 2019. [Online]. Available:
https://github.com/SeldonIO/alibi-detect

[6] O. Cobb and A. V. Looveren, “Context-aware drift detection,” in
Proceedings of the 39th International Conference on Machine Learning,
2022.

[7] M. Abadi, A. Agarwal, P. Barham, E. Brevdo, Z. Chen, C. Citro, G. S.
Corrado, A. Davis, J. Dean, M. Devin, S. Ghemawat, I. Goodfellow,
A. Harp, G. Irving, M. Isard, Y. Jia, R. Jozefowicz, L. Kaiser,
M. Kudlur, J. Levenberg, D. Mané, R. Monga, S. Moore, D. Murray,
C. Olah, M. Schuster, J. Shlens, B. Steiner, I. Sutskever, K. Talwar,
P. Tucker, V. Vanhoucke, V. Vasudevan, F. Viégas, O. Vinyals,
P. Warden, M. Wattenberg, M. Wicke, Y. Yu, and X. Zheng,
“TensorFlow: Large-scale machine learning on heterogeneous systems,”
2015, software available from tensorflow.org. [Online]. Available:
https://www.tensorflow.org/

[8] T. Viehmann, L. Antiga, D. Cortinovis, and L. Lozza, “TorchDrift:
drift detection for pytorch,” 2021. [Online]. Available: https://www.
torchdrift.org/

[9] F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel, B. Thirion,
O. Grisel, M. Blondel, P. Prettenhofer, R. Weiss, V. Dubourg, J. Vander-
plas, A. Passos, D. Cournapeau, M. Brucher, M. Perrot, and E. Duch-
esnay, “Scikit-learn: Machine learning in Python,” Journal of Machine
Learning Research, vol. 12, pp. 2825–2830, 2011.

[10] M. Zaharia, R. Xin, P. Wendell, T. Das, M. Armbrust, A. Dave, X. Meng,
J. Rosen, S. Venkataraman, M. Franklin, A. Ghodsi, J. Gonzalez,
S. Shenker, and I. Stoica, “Apache spark: A unified engine for big data
processing,” Communications of the ACM, vol. 59, pp. 56–65, 11 2016.

[11] J. Klaise, A. V. Looveren, C. Cox, G. Vacanti, and A. Coca, “Monitoring
and explainability of models in production,” in Workshop onChallenges
in Deploying and Monitoring MachineLearning Systems(ICML 2020),
2020.

[12] G. A. Lewis, S. Echeverrı́a, L. Pons, and J. Chrabaszcz, “Augur: A step
towards realistic drift detection in production ml systems,” in Workshop
on Software Engineering for Responsible AI (SE4RAI’22), 2022.

[13] M. Zaharia, A. Chen, A. Davidson, A. Ghodsi, S. A. Hong, A. Kon-
winski, S. Murching, T. Nykodym, P. Ogilvie, M. Parkhe, F. Xie, and
C. Zumar, “Accelerating the machine learning lifecycle with mlflow,”
Bulletin of the IEEE Computer Society Technical Committee on Data
Engineering, 2018.

[14] B. Chen, B. Eck, F. Fusco, R. Gormally, M. Purcell, M. Sinn, and
S. Tirupathi, “Castor: Contextual IoT time series data and model
management at scale,” Proc. of the 18th ICDM 2018, pp 1487-1492,
2018.

[15] B. Eck, F. Fusco, R. Gormaly, M. Purcell, and S. Tirupathi, “Scalable
deployment of AI time-series models for IoT,” in Workshop AI for
Internet of Things (AI4IoT) at the 28th International Joint Conference
on Artificial Intelligence (IJCAI), 2019.

[16] W. Hummer, V. Muthusamy, T. Rausch, P. Dube, K. El Maghraoui,
A. Murthi, and P. Oum, “Modelops: Cloud-based lifecycle management
for reliable and trusted ai,” in 2019 IEEE International Conference on
Cloud Engineering (IC2E), 2019, pp. 113–120.

[17] “Ibm watson openscale,” accessed 1 Sept 2022. [On-
line]. Available: https://www.ibm.com/docs/en/cloud-paks/cp-data/3.5.
0?topic=services-watson-openscale

[18] “Amazon sagemaker model monitor,” accessed 1 Sept 2022.
[Online]. Available: https://docs.aws.amazon.com/sagemaker/latest/dg/
model-monitor.html

[19] “Monitor azure machine learning,” accessed 1 Sept
2022. [Online]. Available: https://docs.microsoft.com/en-us/azure/
machine-learning/monitor-azure-machine-learning

[20] “Vertex ai model monitoring,” accessed 1 Sept 2022. [Online].
Available: https://cloud.google.com/vertex-ai/docs/model-monitoring

[21] W. H. Press and S. A. Teukolsky, “Kolmogorov-smirnov test for two-
dimensional data,” Computers in Physics, vol. 2, no. 74, 1988.

[22] M. Greenwald and S. Khanna, “Space-efficient online computation of
quantile summaries,” SIGMOD Rec., vol. 30, no. 2, p. 58–66, May
2001. [Online]. Available: https://doi.org/10.1145/376284.375670

[23] T. Kailath, “The divergence and bhattacharyya distance measures in
signal selection,” IEEE Trans. on Communication Technology, vol. 15,
no. 1, pp. 52–60, 1967.

[24] C. R. Harris, K. J. Millman, S. J. van der Walt, R. Gommers,
P. Virtanen, D. Cournapeau, E. Wieser, J. Taylor, S. Berg, N. J.
Smith, R. Kern, M. Picus, S. Hoyer, M. H. van Kerkwijk, M. Brett,
A. Haldane, J. F. del Rı́o, M. Wiebe, P. Peterson, P. Gérard-Marchant,
K. Sheppard, T. Reddy, W. Weckesser, H. Abbasi, C. Gohlke,
and T. E. Oliphant, “Array programming with NumPy,” Nature,
vol. 585, no. 7825, pp. 357–362, Sep. 2020. [Online]. Available:
https://doi.org/10.1038/s41586-020-2649-2

[25] P. Virtanen, R. Gommers, T. E. Oliphant, M. Haberland, T. Reddy,
D. Cournapeau, E. Burovski, P. Peterson, W. Weckesser, J. Bright, S. J.
van der Walt, M. Brett, J. Wilson, K. J. Millman, N. Mayorov, A. R. J.
Nelson, E. Jones, R. Kern, E. Larson, C. J. Carey, İ. Polat, Y. Feng, E. W.
Moore, J. VanderPlas, D. Laxalde, J. Perktold, R. Cimrman, I. Henrik-
sen, E. A. Quintero, C. R. Harris, A. M. Archibald, A. H. Ribeiro,
F. Pedregosa, P. van Mulbregt, and SciPy 1.0 Contributors, “SciPy 1.0:
Fundamental Algorithms for Scientific Computing in Python,” Nature
Methods, vol. 17, pp. 261–272, 2020.

[26] Wes McKinney, “Data Structures for Statistical Computing in Python,”
in Proceedings of the 9th Python in Science Conference, Stéfan van der
Walt and Jarrod Millman, Eds., 2010, pp. 56 – 61.

[27] J. D. Hunter, “Matplotlib: A 2d graphics environment,” Computing in
Science & Engineering, vol. 9, no. 3, pp. 90–95, 2007.

[28] D. Vohra, Apache Parquet. Berkeley, CA: Apress, 2016, pp. 325–335.
[Online]. Available: https://doi.org/10.1007/978-1-4842-2199-0{ }8

[29] G. Vernik, M. Factor, E. K. Kolodner, P. Michiardi, E. Ofer, and
F. Pace, “Stocator: Providing high performance and fault tolerance for
apache spark over object storage,” in 2018 18th IEEE/ACM International
Symposium on Cluster, Cloud and Grid Computing (CCGRID), 2018, pp.
462–471.

https://doi.org/10.1109/MCI.2015.2471196
https://doi.org/10.1109/MCI.2015.2471196
https://github.com/SeldonIO/alibi-detect
https://www.tensorflow.org/
https://www.torchdrift.org/
https://www.torchdrift.org/
https://www.ibm.com/docs/en/cloud-paks/cp-data/3.5.0?topic=services-watson-openscale
https://www.ibm.com/docs/en/cloud-paks/cp-data/3.5.0?topic=services-watson-openscale
https://docs.aws.amazon.com/sagemaker/latest/dg/model-monitor.html
https://docs.aws.amazon.com/sagemaker/latest/dg/model-monitor.html
https://docs.microsoft.com/en-us/azure/machine-learning/monitor-azure-machine-learning
https://docs.microsoft.com/en-us/azure/machine-learning/monitor-azure-machine-learning
https://cloud.google.com/vertex-ai/docs/model-monitoring
https://doi.org/10.1145/376284.375670
https://doi.org/10.1038/s41586-020-2649-2
https://doi.org/10.1007/978-1-4842-2199-0{_}8

	I Introduction
	II Motivating Applications
	II-A Supply chain
	II-B Equipment failure
	II-C Object classification

	III Monitoring Framework
	III-A System Design
	III-B Monitoring API

	IV Experimental Methodology
	IV-A Drift Monitor
	IV-B Performance Monitor
	IV-C Run-time Environment

	V Results and Discussion
	VI Conclusions
	References

