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Abstract—Machine learning algorithms typically assume that
the training and test samples come from the same distributions,
i.e., in-distribution. However, in open-world scenarios, streaming
big data can be Out-Of-Distribution (OOD), rendering these
algorithms ineffective. Prior solutions to the OOD challenge seek
to identify invariant features across different training domains.
The underlying assumption is that these invariant features should
also work reasonably well in the unlabeled target domain. By
contrast, this work is interested in the domain-specific features
that include both invariant features and features unique to the
target domain. We propose a simple yet effective approach that
relies on correlations in general regardless of whether the features
are invariant or not. Our approach uses the most confidently
predicted samples identified by an OOD base model (teacher
model) to train a new model (student model) that effectively
adapts to the target domain. Empirical evaluations on benchmark
datasets show that the performance is improved over the SOTA
by ∼10-20%1.

I. INTRODUCTION

Standard machine learning models (i.e., models trained

by Empirical Risk Minimization (ERM) [1]) rely on a key

assumption that the training and test data are independent and

identically distributed (i.i.d.), or in-distribution. However, in

practice, streaming big data can be out-of-distribution (OOD),

rendering significant performance degradation of ERM-based

models. To overcome this critical OOD challenge, a variety

of methods have been proposed, such as the Distributionally

Robust Optimization (DRO) [2], and Invariant Risk Minimiza-

tion (IRM) [3]. Most of these methods assume that invariant

features for prediction across different training domains can

also generalize well to the test domain [4,5]. However, a

comprehensive comparison of different OOD methods by the

authors in [6,7] showed that ERM can outperform such meth-

ods across different datasets. One potential explanation is that

learning invariant features alone may be insufficient. This work

aims to exploit domain-related features to further improve

the OOD prediction performance. Take the benchmark dataset

CMNIST [3] as an example. In Fig. 1, we observe that there

is a slight difference between the color-label correlation and

the digit-label correlation in the training domains. However,

the domain-related correlation (color-label) is significantly

different between the training and the test domains. This

suggests that learning the domain-related features can help

1https://github.com/aniquetahir/SimprovMinimal
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Fig. 1: CMNIST dataset sample with color-label and digit-

label correlations that vary marginally in the training domains.

The test domain has different domain-specific correlations. GT

represents the scale of the digit.

predict the label since they capture correlations unique to the

test domain.

With the growing popularity of publicly accessible applica-

tions and websites, unlabeled data is ubiquitous and contains

greater variety, arriving in increasing volumes and with more

velocity. Platforms such as Apache Kafka aid in analytics, in-

tegrating big data streams. When machine learning models are

deployed at scale, the deployment domain might differ from

the domains in which the model was trained. Especially, since

the model might be trained on a relatively smaller quantity

of data compared to the stream of big data it encounters in

practice. The incoming unlabeled data, however, might help

the model adapt by learning from the distribution of features

specific to the deployment domain. This work thereby seeks

to leverage domain-specific features (including both invariant

features and domain-related features) to address the OOD

challenge. To achieve this, we assume that the unlabeled data

from the target domain is available during deployment for

adaptive training.

We identify three primary challenges. First, the latent repre-

sentations learned during training are often entangled between

http://arxiv.org/abs/2211.04670v1


the invariant features and domain-related features [2,8,9]. Dis-

entangling these features in the latent space is a challenging

task. It is suggested that well-grounded disentanglement ap-

proaches must rely on assumptions about the model or data

[10]. Second, how do we identify features related to the target

domain with only the labeled training data and unlabeled

target data? We need to design a feedback mechanism to

enforce the model to learn domain-related features. Finally,

with no access to labels for the target domain, it is difficult

to determine the optimization direction when adapting the

model to the target domain, i.e., determining whether there are

positive correlations or negative correlations. This highlights

the importance of model selection based on the training data.

To address these challenges, we propose a simple yet

effective approach – Simprov – that learns domain-specific

features for OOD prediction using labeled training data and

unlabeled target domain data. In particular, we first identify

the high confidence predictions in the target domain by using

an OOD base model such as IRM and then use these to

train a runtime classifier for the target domain. Our major

contributions include: (i) a novel framework that uses domain-

specific features for OOD prediction, (ii) an effective model

selection criterion for fast adapting the model to the target

domain, and (iii) empirical analyses on three benchmark

datasets from DomainBed [11] and WILDS [12,13].

II. RELATED WORK

Standard machine learning uses ERM to optimize the ob-

jective function. A key assumption is that random variables

in the data are i.i.d. Thus, in scenarios involving distribution

shift, ERM performance degrades significantly [14,15]. OOD

methods aim to address the issue by using data from related

domains that differ in distributions.

One seminal work in OOD is Invariant Risk Minimization

(IRM) [3] which aims to identify the invariant features. The

hypothesis is that if the model can identify the causes (i.e.,

the invariant features) of an outcome, then it should perform

reasonably well in a new unlabeled domain as it does not

rely on spurious correlations. Distributionally Robust Opti-

mization (DRO) family of approaches focuses on the worst-

case scenario [16,17]: optimizing for the source domain with

the greatest loss. Another line of research leverages pseudo-

labeling and data augmentation [18,19] approaches. Here, a

trained model is used to generate noisy labels for samples

in the unlabeled domain, combine them with the annotated

training data and use the resulting semi-pseudo-labeled batch

to further improve the trained model [20]. Noisy student [21]

incorporates model distillation, where it trains the teacher to

generate pseudo labels which are used for training a student

model.

More recent research [11,22] considered Domain Adap-

tation (DA), where both the labeled training domains and

unlabeled test domain(s) are available during training. Our

problem setting is slightly different: we optimize prediction

performance while DA optimizes on the learned representation.

Adaptive Risk Minimization (ARM) [23] studied the same

problem setting as ours by adapting the training model to

the target domain using meta-learning to update the model’s

parameters. We complement prior works by considering the

importance of learning domain-specific features for the target

domain and removing potential spurious features identified in

the training domains, that is, features useful for prediction

during training but not for the target domain.

III. PRELIMINARIES

Invariant Risk Minimization. IRM [3] aims to identify the

invariant features (often referred to as causes) by training over

multiple different domains. Thus the loss function of IRM is

designed to minimize the per domain risk, Re = Eptr(x,y|e)[l],
where x represents the features, y the labels, e the domain,

l the loss function (e.g., mean squared error), and ptr is the

distribution over the training domains. Formally, let Φ be the

invariant prediction function. The objective function of IRM,

L, can be then defined as:

L(Φ) =
∑

e∈Etr

Re(Φ) + λ||∇ŵ|ŵ=1.0R
e(ŵ ◦ Φ)||, (1)

where ŵ is a classification model that predicts from the

invariant features, λ is the regularization parameter, and Etr is

the set of training domains. The second term adds a constraint

on the learning for a particular environment by increasing

the loss when the propagation gradients are high resulting in

reduced learning towards a specific domain leading to more

generalizability.

Distillation. The distillation consists of a teacher model

and a student model. The teacher model is trained on the

original data and the student model then learns from the

teacher [24,25]. In this work, we use offline and response-

based distillation [26] where the predictions (hard-labels) or

logits (soft-labels) of the teacher model are used to train the

student model.

Formally, let T denote the teacher model, S the student

model, the recursive loss function L for offline distillation is:

L =

n
∑

i=1

αL(yi, S(xi)) + (1− α)L(yi, T (xi)), (2)

where α denotes the ratio between the two losses (teachers and

students) and n is the number of samples. Here, the teacher

and student models are trained independently from each other.

IV. METHOD

In this section, we describe our proposed approach (Sim-

prov) for tackling the OOD challenge. Simprov aims to

effectively adapt an ERM-based model to the distribution of

target domain by learning domain-specific features. We first

formally define the problem setting as follows:

Definition 1. Let Eall be the set of all possible domains, Etr
the set of training domains, and Ete the set containing the

target domain. Given training samples xtr ∈ X of an input

random variable X, ytr ∈ Y of a target random variable Y,

z ∈ Z of an input domain random variable Z , and xte ∈ X
of X, the goal is to learn a function f : X → Y representing
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Fig. 2: An overview of Simprov. It leverages invariant fea-

tures (Teacher), distillation, and a model selection criterion

(Improvisation) to enhance performance on the target domain.

The teacher model (such as IRM) learns invariant features

and identifies target samples predicted with high confidence.

Pseudo-labels (PL) with dropout are used to estimate the

confidence. The student model (i.e., an ERM-based model)

is trained over these selected samples to make predictions

in the target domain. Since the pseudo-labels are generated

without prior knowledge of the target domain, training over

them requires a positive feedback loop between the teacher

and student formed by the combination of Improvisation (1)

and Self-Distillation (2).

P (Y |X, ete) given, P (X,Y |ete) 6= P (X,Y |etr), where ete ∈
Ete and etr ∈ Etr.

An overview of our approach is highlighted in Fig. 2.

Simprov primarily consists of three parts: Pseudo-Labeling,

Self-Distillation, and Model Selection (Improvisation). Logi-

cally, the structure of the prediction model constitutes of a

representation learning module Φ : X → H and a classifier ŵ :
H → Y , where H is the representation space. We aim to learn

the function f : X → Y ∼ P (Y |X, ete). Note the difference

between our problem setting and Domain Adaptation is that

the objective of the latter is to learn the invariant representation

function Φ s.t. P (Φ(X)|X, ete) = P (Φ(X)|X, etr).

A. Pseudo-Labeling

Simprov’s learning is initiated by pseudo-labeling the target

data. It then relies on a positive feedback loop for learning

about the target distribution. Simprov first identifies the subset

of the high confidence target predictions using a base model

for OOD generalization. The intuition is that the predictions

with the highest confidence are the most accurate since the

confidence represents the reliance on invariant features for

the predictions. Simprov then uses these predictions with high

confidence as pseudo-labels to start a feedback loop.

Particularly, we use a trained OOD base model such as IRM

to pseudo-label target data with prediction confidence values

generated using Monte Carlo (MC) dropout for uncertainty

estimation [27]. Specifically, we perform label inference after

changing the dropout mask for the same batch of target

data. The variance between the inferences then determines the

confidence in the predictions. Formally, let C = {1, 2, ..., k} be

the set of k classes, d the dropout probability, m the number

of confirmations for the pseudo-labeling process, and f the

labeling function parameterized by θ. The pseudo-label l̃i of

the i-th inference for target sample j can be obtained by:

l̃j,i = fθ(xj , dj,i) ∀i ∈ {1, 2, ...,m}, xj ∈ Ete. (3)

Let ℓj be the set of all inferred pseudo labels of j i.e., ℓj =
{l̃j,1, l̃j,2, ..., l̃j,m}. A simple majority voting strategy is used

to infer the final pseudo label ỹj :

ỹj = argmax
c

∑

a

1(a, c) ∀a ∈ ℓj, c ∈ C. (4)

where 1 is the indicator function. Finally, the confidence score

κj of ỹj is defined as κj = −Var(ℓj), i.e., the variance of ℓj .

B. Self-Distillation

With the high confidence target samples predicted by an

OOD base model, Simprov trains an ERM-based student

model with dropouts over the target distribution. To further

improve the quality of the pseudo-labels, it creates a positive

feedback loop where it re-trains the student model using the

previous student model as the teacher. At the end of the

feedback loop, Simprov learns domain-specific features in the

target domain.

At t=0, fθ0 is the function learned by the base model (e.g.,

IRM on training domains). It encourages Simprov to predict

using invariant features. fθ0 is then used to infer pseudo labels

for the target data. Next, we train the student model fθ1 on

the target data using the pseudo labels. We update the pseudo

labels for the target data using re-trained fθ1 . The iterative

process improves the student model towards positive feedback

as judged by the model selection criterion detailed below.

C. Random Chance-based Model Selection

Although the self-distillation process can help improve the

quality of the pseudo-labels, it might turn into a negative

feedback loop as the correct direction of the feedback loop

is unknown. Incorrect pseudo labels will only reinforce the

teacher’s inconsistencies.

To address this challenge, we propose to use the student

model’s pseudo-labels for training domains to maneuver the di-

rection of the feedback loop in the self-distillation process. The

base model learns invariant features in the training domains.

However, due to issues such as sufficiency [28], it may learn

some spurious features. Between training and target domains,

these spurious features (Xspur) may be (i) positively correlated

i.e., P (Y |Xspur, ete) ∝ P (Y |Xspur, etr), (ii) negatively corre-

lated i.e., P (Y |Xspur, ete) ∝
1

P (Y |Xspur,etr)
, or (iii) indepen-

dent. By definition, P (Y |Xinv, etr) = P (Y |Xinv, ets), where

Xinv represents the invariant latent features. If the training

and target distributions have the same correlation (cases (i)

and (iii)), then a model trained on the target distribution

works similarly on the training distribution. Otherwise (case

(ii)), the model would give an accuracy that is lower than

random chance on Etr. We propose a new metric dtrand to

help identify the direction of the self-distillation feedback loop:



CMNIST Camelyon17 Waterbirds
IRM 67.1 (2.5) 64.2 (8.1) 75.3 (0.6)
Group DRO 38.7 (1.8) 68.4 (7.3) 91.4 (0.3)

DANN 51.5 (0.3) 68.4 (9.2) 77.8 (0.0)
ARM 56.2 (0.2) 87.2 (0.9) 94.1 (0.0)
Pseudolabel 42.9 (1.1) 67.7 (8.2) 74.2 (8.0)
NoisyStudent 27.1 (3.8) 86.7 (1.7) 22.2 (0.0)

Simprov-IRM (Ours) 89.8 (0.1) 92.8 (6.2) 81.6 (8.1)
Simprov-DRO (Ours) 12.3 (0.0) 87.7 (3.5) 95.0 (3.0)

TABLE I: Average accuracy and standard deviations over five

trials of different methods under three benchmark datasets.

the difference between the training prediction accuracy and

the random chance of a model trained on target pseudo-labels.

Formally, the model selection metric is defined as:

dtrand =
∣

∣

∣

fθt(x) −
1

k

∣

∣

∣

, x ∈ Etr. (5)

If dtrand is greater than dt−1
rand, it indicates that the model

has learned informative features. Thus, during self-distillation,

Simprov only replaces the teacher model at t − 1 with

the student model when this metric increases. This ensures

that there is information gain from the target distribution to

de-noise the pseudo-labels, i.e., the model is learning the

domain-specific features, including both the domain-relevant

and invariant features in the target domain.

V. EXPERIMENTS

We aim to answer the following research questions in the

experiments: RQ. 1 Can Simprov outperform SOTA for OOD

over different datasets? RQ. 2 How effective is the proposed

model selection criterion? RQ. 3 How sensitive is Simprov to

different values of hyperparameters?

A. Experimental Setup

Our implementation extends the boilerplate provided by the

Stanford’s WILDS benchmark repository [13].

Datasets. We use three benchmark datasets with different

classification tasks. (i) CMNIST [3] contains images of digits

that have either of the two colors: green and red. The label

is ‘1’ if the digit is less than five, otherwise it is ‘0’. (ii)

Camelyon17-Wilds [29] is related to tumor detection. (iii) Wa-

terbirds [2] aim to classify images of landbirds and waterbirds

with land or water backgrounds. For the model architecture,

we followed the default setting of WILDS [12].

Baselines. We compare Simprov with two popular OOD

models (i.e., IRM [3] and Group DRO [16]) and four SOTA

domain-adaptation models (i.e., DANN [11], ARM [23], Pseu-

dolabel [30], and NoisyStudent [21]). IRM and Group DRO

aim to learn invariant features across domains. DANN, ARM,

Pseudolabel, and NoisyStudent employ techniques to ensure

the distributions of learned representations are aligned across

domain. Using IRM and DRO base models leads to two

versions of Simprov: Simprov-IRM and Simprov-DRO.

B. Results

We report the mean and standard deviations of the accuracy

on the target domain over five trials of the selected models.

We present the results in Table I. We used the same train/test

splits (i.e., the hardest case) for CMNIST as in [3], different

from most of other implementations that report results over a

combination of splits. The best results are in bold font and

the second best ones are underlined. We make the following

observations answering RQ1:

• Simprov mostly outperforms the corresponding base mod-

els across different tasks (e.g., Simprov-IRM outperforms

IRM for CMNIST), indicating that learning domain-specific

features is critical for achieving high accuracy in OOD

tasks. Simprov improves accuracy by ∼20% on the hardest

dataset (CMNIST) as it optimizes the feature representation

using target domain data.

• Simprov reinforces the feature correlations learned in the

base models. This is supported by the observation that when

the base models perform relatively well (e.g., Camelyon17

and Waterbirds), it can improve the prediction performance

by a large margin; however, its performance degrades sig-

nificantly if the base models fail (e.g., Group DRO for CM-

NIST). This further implies that learning invariant features

is necessary for the OOD challenge.

• Compared to the SOTA models for domain adaption, our

models consistently achieve the best performance. For ex-

ample, Simprov has an ∼10% improvement on average

over three datasets on compared to ARM. There are two

reasons for this improvement. First, by using only the

pseudo-labels predicted by the OOD base models rather than

their latent features, By using pseudo labels instead of the

features for the training data during distillation, Simprov

does not rely on the strong feedback regarding the training

domains while retaining feedback for the target domain via

backpropagation; (ii) Our model selection strategy leads

the training process in a direction of information gain,

i.e., when the random-chance difference is large, Simprov

has high information about the target domain, leading to

comparatively better performance.

We perform further analysis to answer RQ2 and RQ3.

Fig. 3(a) shows that increasing the deepness (i.e. the number of

distillation iterations) of the self-distillation process generally

helps Simprov learn better domain-specific features in the

target domain. We believe this is in part due to the feedback

loop created during training on the target data. Fig. 3(b) shows

that the proposed model selection strategy is effective. When

the random chance difference is low, there is high variation

in the accuracy of the models on the target domain. This is

because the closer the model’s performance to random chance

accuracy on the training data, the less Simprov knows about

the domain-specific features. By contrast, at a higher random

chance difference, Simprov presents more minor variations and

higher accuracy on the target domain.



(a) D (b) dt
rand

Fig. 3: (a) effects of deepness on the accuracy, and (b) accuracy

changes relative to our model selection metric.

VI. CONCLUSION

Our approach (Simprov) leveraged both labeled training

data and target data to learn domain-specific features guided

by an effective model selection criterion. We showed that our

method can outperform SOTA over three benchmark datasets.

We draw two main conclusions. First, our approach relies

on invariants from OOD models in prior works. Second, our

approach does not find purely invariant features in the data in

lieu of the domain-specific features. We leave these to future

work.
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