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Abstract—Tour itinerary planning and recommendation are
challenging problems for tourists visiting unfamiliar cities. Many
tour recommendation algorithms only consider factors such as
the location and popularity of Points of Interest (POIs) but their
solutions may not align well with the user’s own preferences
and other location constraints. Additionally, these solutions do
not take into consideration of the users’ preference based on
their past POIs selection. In this paper, we propose POIBERT,
an algorithm for recommending personalized itineraries using the
BERT language model on POIs. POIBERT builds upon the highly
successful BERT language model with the novel adaptation of a
language model to our itinerary recommendation task, alongside
an iterative approach to generate consecutive POIs.

Our recommendation algorithm is able to generate a sequence
of POIs that optimizes time and users’ preference in POI cate-
gories based on past trajectories from similar tourists. Our tour
recommendation algorithm is modeled by adapting the itinerary
recommendation problem to the sentence completion problem in
natural language processing (NLP). We also innovate an iterative
algorithm to generate travel itineraries that satisfies the time
constraints which is most likely from past trajectories. Using
a Flickr dataset of seven cities, experimental results show that
our algorithm out-performs many sequence prediction algorithms
based on measures in recall, precision and F1-scores.

Index Terms—Recommendation Systems, Personalisation, Neu-
ral Networks, Word Embedding, LSTM, BERT, Self-Attention,
Transformer

I. INTRODUCTION

Tour recommendation and planning are challenging prob-
lems faced by many tourists, due to the constraints in time
and locality; additionally they may not be familiar with the
city or country [1]–[3]. Most visitors usually follow guide
books/websites to plan their daily itineraries or use recommen-
dation systems that suggest places-of-interest (POIs) based on
popularity [4]. However, these are not optimized in terms of
time feasibility, localities and users’ preferences [4], [5].

In recent years, the Transformer model has become the
state-of-the-art solution for many NLP tasks. Compared to
other architectures, such as Recurrent Neural Network (RNN)
and LSTM, a Transformer-based model processes the entire
input data all at once. Additionally the attention mechanism
provides the context for any position in the input sequence,
allowing more parallelism with good performance quality;
hence less time is required for training and optimization are
needed [6].

In this paper, we propose POIBERT, a Transformer-word
embedding model to recommend POIs as a sequence of
itinerary based on historical data with consideration of the
locations, and also traveling time between these POIs. Fig-
ure 1 shows the overall workflow of itinerary prediction of
the POIBERT model.

We compare our proposed methods with other sequence
prediction algorithms and conclude that our algorithms can
achieve an average of F1-scores of up to 59.2% accuracy
in our experiments. In this paper, we make the following
contributions:

• We model our Tour Recommendation problem as a se-
quential recommendation problem in reinforcement learn-
ing: to recommend the subsequent POIs (items) in a
user’s travel schedule, given a set of trajectories in the
form of user − POI tuples (item) of interactions(check-
in records) [8]. The solution of this problem is a rein-
forcement learning algorithm that is flexible in different
environments (i.e. cities.)

• We propose two approaches to solving the tour recom-
mendation problem, namely: (1) POILSTM - A Long
Short-Term Memory framework, and, (2) POIBERT - a
Transformer-based mechanism. These two models take
users’ trajectories as inputs and process as a long se-
quence of user-item interaction for our recommenda-
tion algorithms.

• We use the Bootstrapping method in statistics to estimate
the duration of visits with confidence intervals using
a method of random sampling. More accurate estima-
tion (with confidence intervals) of POI duration also
results in a realistic and compact scheduling of itineraries.

• We have conducted thorough experiments on our pro-
posed solutions against state-of-art solutions in sequence
prediction and classic algorithms (SPMF Data Mining Li-
brary [9].) Experimentation results show that our solution
out-performs other baseline algorithms.

• Additionally, our proposed solution has the advantage
of adapting to different scenario (cities/datasets) without
modification. In particular, we recorded a performance in-
crease, as much as 19.9% in our Delhi dataset, measured
in terms of average F1-scores.

The remaining of this paper is organized as follows: In
Section II we give a background to the Tour Recommendation978-1-6654-8045-1/22/$31.00 ©2022 IEEE
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Fig. 1. Overall system diagram of POIBERT using geo-tagged photos. Step (I) Given a city of interest, a set of photos with known user-IDs, timestamps
and geo-tags are collected from Flickr database. Identify the POI-ID of each photo by its geo-tag information and metadata [7]. Step (II) Sort the photos by
timestamps and user-IDs to reconstruct users’ trajectories to form sequences of (POI − IDs, timestamps) tuples. Step (III) Training of POIBERT model
using trajectories in Step-II and Algorithms 2, details in Section III-B0a. Step (IV) Prediction of tour itineraries using a (source, dest.) POI tuple.

and discuss the state-of-the-art to the itinerary prediction
problem. In Section III we formally define the problem and
notations to our solution. In Section IV we describe our
experiment framework and other baseline algorithms we used
for solution evaluation. Finally, we summarize the paper with
further work of extension in Section V.

II. RELATED WORK

A. Tour Recommendation

Tour planning is an essential, but tedious task for tourists
visiting an unfamiliar city. Many visitors often get recom-
mendation from guide books or websites to plan their daily
itineraries; this will be time-consuming and sub-optimal.
Next POI prediction [5], [10] and tour planning [4], [11] are
two related problems: Next-location prediction and recommen-
dation aim to identify the next POI that is most likely to visited
based on historical trajectories.

Personalized tour recommendation has been proposed with
the use of photos and their meta-information such as times-
tamps and GPS-locations provided by Location-based Social
Networks (LBSN). Tour itinerary can be generated based on
user interests from his/her visit history. Previous works focus

on recommending popular POIs in terms of posted photos
with geo-tags [7], [12]–[14]. Other works utilized geo-tagged
photos posted in LBSN to determine POI related information
for making various types of tour recommendation [15]–[20].

Furthermore, tour itinerary recommendation has the chal-
lenges of planning a connected itinerary of POIs that appeal
to the users’ interest preferences, without users taking unnec-
essary routes and spending extra time/distance. At the same
time, there is a need to satisfy tourists’ temporal and spatial
constraints such as limited time and budget.

B. Sequence Prediction

Sequence prediction is a well-studied machine learning task;
this task involves predicting the next symbol(s) or word based
on the previously observed sequence of symbols. Sequence
prediction can be applied to solve the tour recommendation
problem, by treating POIs as words as inputs.

Sequence Prediction is widely used in the areas of time-
series forecasting and product recommendation. It is different
from other prediction algorithms; the order of sequence is
important to get an accurate result, examples include pre-
dicting stock prices [21]. Existing solutions to Sequence
Prediction include word-embedding by considering POI-to-



POI similarity using techniques such as Word2Vec, GloVe
and FastText [22]–[25]. Many recommendation systems for
planning tours consider broad POI categories but some of their
recommendations do not align well with travelers’ preferences
together with locational constraints in their trips. Some rec-
ommendation system dynamically propose routes by taking
into consideration all possible solutions generated by different
agents system [26].

Personalized recommendation of tour planning is proposed
by using the technique of POI-embedding methods providing a
finer representation of POI categories [27]. Recently, advances
in Machine Learning (ML) and Artificial Intelligence (AI) al-
gorithms allow for more advanced representation of sequential
data, particularly in the area of Natural Language Processing.

C. LSTM models

First proposed in 1994, the Long Short-Term Memory is an
RNN with long-term dependencies in the input sequences [28].
A LSTM network consists of memory blocks, or cells, which
are capable of storing information known as states. During
the training phase of LSTM, two states are transferred to (or
from, respectively) the next (prior, respectively) cell, known
as the cell state and the hidden state. The memory blocks of
LSTM are used as the memory and the flow and termination
of information is done through three gates:

1) Input Gate: it is responsible for the addition of infor-
mation to the cell state. The gate applies the sigmoid
function to the input state determine information to be
added to the cell state.

2) Forge Gate: this gate determines a subset of information
to be removed from the cell state; information that is less
importance is removed by applying a filter function [29].

3) Output Gate: The Output gate organizes the information
for the output to other LSTM cells. The basic implemen-
tation of LSTM applies the tanh function cell state and
the sigmoid for filtering of information. The output of
this gate is subsequently fed as the input gate of the next
state.

The input layer of the LSTM network takes in as input a
vector of a fixed length and output a vector of fixed length.
In an extension of LSTM, the Encoder-Decoder LSTM has
two more additional components then the basic LSTM net-
work: the encoder and decoder. The encoder of the model
extracts a fixed-length vector representation from a variable-
length input sentence. Experiments suggest that the encoder-
decoder LSTM model performs well on short sentences with-
out unknown words. The performance of the LSTM method
was shown to degrade as with input text size [30], [31].

D. Transformer models

Transformer is a learning model designed to process se-
quential input data. It adopts the mechanism of self-attention
having use primarily in NLP and Computer Vision [6]. Bidi-
rectional Encoder Representations from Transformers (BERT)
is a transformer-based machine learning technique, developed
by Google [32] for language translation. BERT models have

TABLE I
NOTATIONS USED IN THIS PAPER

Notation Description
T Time budget of recommended trajectory
ui Identifier of the user ID i
ci Category label (or Theme) of POI-pi, e.g. Museum,

Park, Sports,...
pi Identifier of the POI ID i
puj Identifier of the POI ID j in Step-j of u’s trajectory
vui Activity of user-u in step-i in her/his trajectory
tryju sequence of check-ins from user-u as a trajectory,

i.e. {vu1 ..vuk}
⊕ Concatenation operation

Sample distributions
X X = {x1, x2, ..}

Empirical distributions
F F = {x∗1, x∗2, ..}
B Number of sampling iterations in Bootstrapping
α Significance level in Bootstrapping

become the state-of-art baseline in NLP experiments. BERT is
trained using 1) Masked-Language Modeling (MLM), and, 2)
Next Sentence Prediction (NSP) with more application other
than its original language tasks. Moreover, BERT is shown to
achieve high accuracy in Classification tasks such as sentiment
analysis [33].

III. PROBLEM FORMULATION AND ALGORITHMS

In this section, we start with the definition of tour recom-
mendation problem and a list of notations used in Table I.
Given a set of travelers, Sh, visiting a city with |P | points-
of-interest, we denote a traveler, u ∈ U , in a sequence of
(poi, time) tuples, Sh = [(p1, t1), (p2, t2)... (pk, tk)], where
k is the number of check-in or photos posted to LBSN,
for all pi ∈ POIs and ti as the timestamps of the photos
taken. Given also, a starting POI-s0 ∈ POIs together with
all the photos taken at s0, the problem in this paper is to
recommend a sequence of POIs in which travelers are likely
to visit based on the past trajectories from a dataset collected,
using the Transformer model.

We first propose “POILSTM”, an LSTM model that encodes
users’ trajectories with consideration of the travelers’ locations
and distances traveled to recommend a tour itinerary with esti-
mated duration. We also propose “POIBERT”, an algorithm for
prediction of itinerary based on the MLM algorithm in BERT,
discussed in Section III-B.

A. POILSTM- Itinerary Prediction Algorithm using LSTM

We model the itinerary prediction problem as a predic-
tion in an Encoder-Decoder LSTM. Each input vector to the
POILSTM network represents a vector representing of user’s
visit from a POI transiting to the next POI (with embedded
details, such as time and distance traveled). During the training
phase of POILSTM, each POI in a trajectory is passed to
the input layer of the LSTM network as an encoded vector,
one at a time using the encoder function. This process is
repeated for all POIs in all trajectories in the training dataset,



discussed in Figure 1. When the LSTM network is trained
sufficiently for a number of steps (epochs), the output of the
LSTM network is a prediction of the next POI (as one-hot
embedding) and its estimated duration (in hours) in floating
point format.) POI itinerary can be predicted by repeatedly
decoding the output of POILSTM, by passing in the previous
output information of trajectory iteratively as an encoded
vector.

The function time(i, j) returns the time spent from vi to
vj and dist(i, j) returns the distance the user(u) traveled from
step-i through step-j. Additionally, putk−2

, putk−1
and putk are

represented as onehot embedding [34].

Algorithm 1 Prediction model in POILSTM

Require: vu, T imeLimit : time budget
1: Set Activation Function: Softmax
2: Set Optimizer: RMSprop
3: Let i = 1, T = 0, seq = {}
4: SubFunction: LSTM encode seq(vutk) =
5: time(k − 1, k)⊕ time(1, k) ⊕
6: dist(k − 1, k) ⊕ dist(1, k) ⊕
7: putk−2

⊕ putk−1
⊕ putk

8: repeat
9: x

(t)
i ← LSTM encode seq(vpu=pi)

1

10: compute a(t) and h(t)

11: compute o(t)

12: Let (pi, ti)← decode(o(t))
13: seq ← seq ⊕ pi
14: T ← T + ti
15: i← i+ 1
16: until T ≥ TimeLimit
17: return seq

B. POIBERT - a BERT model for POI Itinerary Prediction

Generally, a BERT model uses a self-attention mechanism
that is able to learn the general trend of a language; the trained
model can then be used for downstream tasks, such as lan-
guage translation and question answering [35]. When used in
practice, a pre-trained BERT model can significantly improve
the results in prediction based on a number of benchmarks.
To perform an itinerary prediction in our POIBERT model,
we pass in a set of sentences consisting of POIs and relevant
information to predict the next POI which is most likely to
occur using the MLM prediction model.

a) Training of POIBERT Model: We propose a
novel POIBERT Model in the space of POIs and
users’ itineraries. The original implementation of
BERT train MLM by masking 15% of words.
The POIBERT prediction algorithm is to predict the
masked POI (word), based on the context provided by other
words (representing POIs or POI categories) without masks.
We use Algorithm 2 to translate users’ trajectories into
sentences of POIs(words) which are subsequently trained by
the POIBERT model for the itinerary prediction task.

Figure 2 outlines a function to transform users’ trajecto-
ries to sentences of words representing POIs or categories
of POIs for POIBERT training. The time complexity of the
function is O(NK2), where N is the total number of POIs in
the dataset and K represents the maximum number of POIs in
any trajectory.

Algorithm 2 Training Data Generation for POIBERT

Require: tryju,∀u ∈ Users
1: for all u ∈ users do
2: for all tryj seq ∈ tryju do
3: Let n← |tryj seq|
4: Let {p1..pn} ← poi id(tryj seq)
5: Let {c1..cn} ← theme(tryj seq)
6: // where the functions poi id(...) and theme(...)
7: // return POI id (and theme, resp.) projections.
8: Output: ∀1 ≤ i < j ≤ n,
9: “{ci, pi, .., pj−1, cj−1} → pj”

10: end for
11: end for

b) Itinerary Prediction: Given an initial POI, p1, and
the ending POI, pk from traveler’s specification, we propose
an algorithm to predict a sequence of POIs which travelers
are most likely to visit as ordered list, based of historical
trajectories recorded in the dataset. The POIBERT algorithm
is inspired by the MLM training process of BERT, where
the prediction algorithm identifies the masked words based
on the context of a sentence. As outlined in Algorithm 3,
the algorithm searches for the next relevant POI between the
initial POI and destination POI, and insert it to the predicted
itinerary.

Algorithm 3 Itinerary Prediction Algorithm in POIBERT

Require: p1, pk: starting/ending POIs
TimeLimit: time budget of itinerary

1: Let seq ← {p1, pk}
2: repeat
3: forall j ∈ {2..|seq| − 1}
4: Let queryj ← {p1, c1, pj−1, cj−1,[MASK],

pj , cj , ..., pk, ck}
5: seq ← ArgMaxj∈{2..|seq|−1}(Unmask(queryj))
6: until

∑
poi∈seq

duration(poi) ≥ TimeLimit

7: return seq

C. Estimation of duration of visits

Getting a realistic estimate of duration of visits to our
predicted POIs are crucial in our solution. Any over-estimation
(or under-estimation) of duration to the predicted POIs will
affect the time-sensitive trajectories output from the algo-
rithm, hence affecting the recall- and precision-scores. In this
section, we estimate the duration of visits using a statistical
method: bootstrapping by calculating the confidence-interval
of duration in the trajectories [36]. Due to the high variance in
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Fig. 2. Itinerary prediction algorithm of POIBERT model: In each iteration of the system, a new destination (i.e. POI) is predicted by solving the MLM prediction
task; the predicted POI is then inserted to the itinerary. The prediction loop stops when all POIs are visited, or when the time constraint is satisfied.

duration of visit to the POIs, it is not practical to estimate the
duration by merely taking the averages of all visitors’ duration
to the POIs.

We note that Bootstrapping does not assume the input data
to follow any statistic distribution. It treats the original samples
as the real population and draws random samples from the
data. Then, bootstrapping creates more samples so one can
make a better estimation of population by the procedure
of sub-sampling randomly with replacement. This method is
used to estimate the duration of visits at the POIs given that
there are less samples visiting to some POIs that are less
popular. Algorithm 4 outlines the steps of getting the 90%
confidence intervals of duration of visit to a POI-i, ∀i ∈ POIs.

IV. EXPERIMENTS AND RESULTS

We use a dataset of photos uploaded to the Flickr platform,
which consists of trajectories of 5,654 users from 7 different
cities, tagged with meta-information, such as the date and
GPS location. Using this data-set, one can construct the travel
trajectories by sorting the photos by time, mapping the photos
to the POIs as identified by the GPS location, resulting in the
users’ trajectories as a sequence of time sensitive POI-IDs.

A. Datasets

We use the Flickr datasets prepared for our evaluation of
algorithms [27]. In total, there are close to 120K photos, or

Algorithm 4 Estimate Duration of Visit to POI

Require: poi id ∈ POIs
Require: confidence level α
Require: number of replicates B
Require: Tryju,∀u ∈ Users

1: SubFunc. getSamples(poi id):
2: for all u ∈ users do
3: for all tryj seq ∈ tryju do
4: for all p ∈ tryj seq do
5: Output activities if p == poi id
6: end for
7: end for
8: end for
9:

10: Let X ← getSamples(poi id)
11: Sample x∗1, x∗2, ..x∗n with replacement from sample X .

Repeat B iterations2.
12: Let F ∗ be the empirical distribution
13: Calculate (100− α)% confidence intervals for F ∗

check-in records, from 4701 users in seven popular cities.
Table II describes more details about each dataset and infor-
mation about the trajectories of these cities.



TABLE II
DESCRIPTION OF DATA-SETS

City Budapest Delhi Edinburgh Glasgow Osaka Perth Toronto
No. of POIs 39 26 29 29 28 25 30
No. of Users 935 sample 279 1454 601 450 159 1395
No. of Trajectories 2361 489 5028 2227 1115 716 605
.. for training 277 13 267 28 12 14 95
.. for evaluation 70 4 67 7 3 4 74
No. of check-ins 18513 3993 33944 11434 7747 3643 39419
.. for training 7593 367 6575 600 381 418 2371
.. for evaluation 1915 215 1921 223 40 68 540
Avg. POIs per trajectory 5.78 4.69 5.27 4.71 4.50 4.93 4.93
Avg. check-ins per POI 4.74 6.02 4.68 4.55 7.06 6.06 5.07

TABLE III
AVERAGE F1 / RECALL / PRECISION SCORES OF POIBERT PREDICTION ALGORITHM (%)

epochs Budapest Delhi Edinburgh Glasgow Osaka Perth Toronto

1

Recall
F1

Precision

65.511
49.974
46.563

71.250
58.485
50.119

64.262
54.371
53.223

78.265
59.417
52.234

46.667
52.382
61.111

77.500
60.242
54.924

73.427
55.929
52.559

3

Recall
F1

Precision

63.498
48.533
45.632

87.500
58.485
55.357

64.165
54.371
52.950

81.020
59.381
52.531

55.000
52.381
75.556

77.500
60.242
60.417

73.427
55.929
50.666

5

Recall
F1

Precision

60.455
47.448
45.238

76.250
58.333
47.619

61.965
52.748
52.694

81.020
60.752
53.296

54.999
63.420
75.556

77.500
61.994
61.174

74.468
52.973
52.618

7

Recall
F1

Precision

63.094
48.731
46.014

76.250
58.333
47.619

61.710
52.229
51.909

70.306
54.949
48.044

55.000
63.420
75.556

77.500
60.242
60.417

71.790
52.256
52.856

10

Recall
F1

Precision

61.323
47.542
45.425

76.250
58.333
47.619

62.148
53.397
53.145

76.735
51.042
47.086

61.667
71.753
86.667

72.500
64.286
52.083

64.865
52.744
52.825

15

Recall
F1

Precision

60.717
46.884
44.510

76.250
58.333
47.619

62.507
53.556
53.206

66.225
51.471
45.899

53.333
60.714
72.222

72.500
55.777
53.750

67.782
54.589
54.592

20

Recall
F1

Precision

62.870
48.228
45.517

76.250
57.051
46.230

60.855
51.865
51.064

78.980
56.724
48.566

70.000
74.817
84.127

66.250
56.047
54.464

64.320
50.288
49.533

30

Recall
F1

Precision

60.469
47.081
45.167

76.250
58.333
47.619

61.611
51.806
53.215

73.367
51.752
46.315

53.333
62.229
75.556

66.250
59.077
56.548

63.273
52.542
52.212

40

Recall
F1

Precision

59.210
45.675
43.258

82.500
63.333
51.786

60.991
51.494
51.813

69.796
51.696
44.490

53.333
62.229
75.556

61.250
52.411
52.381

63.442
50.514
51.548

50

Recall
F1

Precision

60.673
46.686
44.280

82.500
64.848
54.167

60.141
51.465
50.924

75.408
53.457
47.973

53.333
62.229
75.556

60.000
54.708
50.947

63.863
52.506
51.301

60

Recall
F1

Precision

60.453
47.186
45.030

88.75
69.848
57.738

61.445
52.240
51.566

66.224
49.128
43.900

53.333
62.229
75.556

66.25
54.708
55.159

66.182
51.777
51.935



a) Training and Test Set: Our data-sets are split into
Training and Testing data-sets. Firstly, we organize photos by
the Trajectory-IDs, then these trajectories are sorted according
to their last check-in times (in ascending order). To obtain the
Training dataset, the first 80% of Trajectories (based on their
photos) are set aside as Training Data. The remaining data
is used as the Testing Data. This segregation of Training and
Test data avoids the problem of having a trajectory covering
over both Training and Testing Data sets.

B. Performance of Algorithms

Experiments were conducted for each city in the dataset.
We regard all users’ trajectories (with at least 3 POIs) in
the training set as sequences of POI (corpus). To compare
the performance of our models, we trained different sequence
prediction models using different hyper-parameters. We then
used the Test set to evaluate the accuracy of the trained
models: for each of the trajectory in the testing set (known as
history-list), we treat the first (and last, respective) POI as the
source (and destination, respectively) POI and try to predict
the intermediate POIs of the trajectory, given in a time boxed
event of history-list. We evaluated the effectiveness of POIB-
ERT and POILSTM prediction algorithms in terms of F1, pre-
cision (Tp) and recall (Tr) scores of the predicted POIs against
the actual trajectories, as below:
Let Sp be the predicted sequence of POIs from the algorithm
and Sh be the actual sequence from the trajectories, we
evaluate our algorithms based on:
• Tr(Sh, Sp) = |Sh∩Sp|

|Sp|

• Tp(Sh, Sp) =
|Sh∩Sp|
|Sh|

• F1 score(Sh, Sp) =
2Tr(•)Tp(•)
Tr(•)+Tp(•)

C. Baseline Algorithms

Our proposed models are compared with other sequence
prediction algorithms as baseline algorithms:
• SPMF algorithms - this package consists of data mining

algorithms including: CPT [37], CPT+ [38], TDAG [39],
First-order and All-k-Order Markov Chains [40], [41].
Our experiments predict an itinerary by repeatedly asking
for the next token (represented as the next POI to visit)
when time limit is not exhausted.

• SUBSEQ : the algorithm uses a Succinct Wavelet Tree
structure to maintain a list of training sequences for
sequence prediction [42].

• SEQ2SEQ : this model adopts a multilayered LSTM to
map the input sequence to a vector with a fixed size or
dimension [31]. The prediction is facilitated by another
deep LSTM to decode the target sequence. The default
prediction model of SEQ2SEQ is to output a sentence
of words which may consist of duplicated words. We
modified the prediction model to return a series of
unique POIs instead.

Some baseline algorithms only predict one token or POI,
we iteratively predict more tokens until the time limit of the
itinerary is reached. For the propose of algorithms evaluation,

all experimentation of baseline algorithms are conducted in
the same setting as in Section IV-B, sharing the same training
and testing data.

D. Experimental Results

We evaluated the effectiveness of our proposed algorithms
on different cities. We constructed the travel histories by
chronologically sorting the photos, which resulted in the users’
trajectories. These trajectories are then regarded as sentences
for inputs to our proposed training models with different
hyper-parameters. Results are summarized by comparing the
accuracy of the predicted itineraries (i.e. Recall / Precision /
F1 scores,) as shown in Table III.

In Table IV, we also compare the performance of POIB-
ERT and POIBERT against 8 baseline algorithms. Overall,
experimental results show that our POILSTM and POIB-
ERT itinerary prediction algorithms achieve significant ac-
curacy in itinerary prediction tasks; the proposed POIB-
ERT prediction algorithm is scale-able and adaptable in parallel
environment. Our experiments also show that the POIBERT-
prediction algorithm achieves F1 scores of at least 47%
accuracy across all cities and different parameter settings.
In particular, we recorded an average of 74.8% in our Os-
aka dataset; experiments in Delhi also show an increase of
19.99% (from 58.238% up to 69.848%) in F1 score.

In Table V, we compare the number of POIs in users’ trajec-
tories and their predicted itineraries by POIBERT. POIBERT is
able to recommend more relevant, and compact trajectories
relative to the actual trajectories, while not compromising the
quality of the recommendation model.

V. CONCLUSION

In this paper, we study the problem of tour itinerary
recommendation to identify users’ preference on POIs and
make the appropriate recommendation of itineraries with time
constraints. To solve this problem, we propose POIBERT that
builds upon the highly successful BERT model with the novel
adaptation of a language model to this itinerary recommenda-
tion task, along with an iterative approach to generating POIs.
Our iterative POIBERT prediction algorithm can reliably un-
cover a user’s preference in a tour by only using a pair of initial
and destination POIs. Our experiments show the effectiveness
of our proposed algorithm for predicting relevant POIs in
terms of F1-scores. In our experiments on 7 cities, our POIB-
ERT algorithm outperforms 8 baseline algorithms measured
in averaged F1-scores. Future works include further adaptation
and more in-depth evaluation of other language models for this
itinerary recommendation task and creating a HuggingFace
interface module for POIBERT [43].
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TABLE IV
AVERAGE F1 SCORES FOR DIFFERENT SEQUENCE PREDICTION ALGORITHMS (%)

Algorithm Budapest Delhi Edinburgh Glasgow Osaka Perth Toronto
CPT 45.331 58.238 44.732 51.234 45.238 58.569 46.816
CPT+ 43.472 42.511 44.543 48.701 37.719 58.570 37.719
DG 44.917 50.260 44.867 50.579 43.333 49.936 43.333
LZ78 43.447 49.412 44.105 45.438 40.00 51.582 40.00
PPM 44.574 50.258 44.848 50.579 45.556 54.481 45.556
TFAG 43.686 60.694 43.105 48.237 45.556 48.711 45.555
BWT-SuBSeq 37.883 43.333 39.082 48.322 42.857 36.320 33.145
SEQ2SEQ 36.970 43.864 52.768 62.132 57.937 54.911 52.870
POILSTM* 53.591 68.750 41.282 61.147 60.350 60.229 50.759
POIBERT* 49.974 69.848 54.471 62.771 71.753 61.075 55.929

TABLE V
AVERAGE NUMBER OF POI’S USING POIBERT PREDICTED MODEL VS. ACTUAL TRAJECTORIES

Epoches Budapest Delhi Edinburgh Glasgow Osaka Perth Toronto
Actual Trajectories 6.243 4.750 5.955 5.000 5.000 5.250 5.458
1 9.786 6.000 7.881 7.429 4.000 6.750 7.583
3 9.814 6.750 7.582 7.857 3.667 7.500 12.042
5 9.514 6.750 7.507 7.714 3.667 7.500 11.250
7 9.729 6.750 7.881 7.286 3.667 7.500 10.917
10 9.671 6.750 7.571 7.571 3.667 7.500 7.458
15 9.871 6.750 7.806 7.000 4.000 7.000 7.583
20 9.914 7.000 7.791 7.857 4.333 6.500 8.042
30 9.757 6.750 7.672 6.857 3.667 5.750 7.250
40 9.771 6.750 7.836 7.429 3.667 6.250 7.500
50 9.871 6.500 7.821 8.000 3.667 6.250 7.708
60 9.600 4.333 7.940 6.857 3.667 5.500 7.875
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