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Abstract. Distance plays a fundamental role in measuring similarity between
objects. Various visualization techniques and learning tasks in statistics and

machine learning such as shape matching, classification, dimension reduction

and clustering often rely on some distance or similarity measure. It is of
tremendous importance to have a distance that can incorporate the underlying

structure of the object. In this paper, we focus on proposing such a distance

between network objects. Our key insight is to define a distance based on
the long term diffusion behavior of the whole network. We first introduce a

dynamic system on graphs called Laplacian flow. Based on this Laplacian

flow, a new version of diffusion distance between networks is proposed. We
will demonstrate the utility of the distance and its advantage over various

existing distances through explicit examples. The distance is also applied to
subsequent learning tasks such as clustering network objects.

1. Introduction

A network is a representation of relations between objects and arises naturally in
characterizing phenotypes of complex data. Due to its flexibility in representing the
underlying structure of data, networks have presented their significance in a variety
of scientific fields from biology and neurosicence (brain and biological networks) to
social science (social networks), to name just a few. This has necessitated immense
developments in theory, methodologies and algorithms over the last few decades for
inference of a network. For instance, there are many models for clustering nodes
within a network such as stochastic blockmodels [15, 19], spectral clustering [30],
modularity optimization [24] and so on.

Recently, there has been an emerging strong need of a framework to make in-
ference on a population of network objects. For example, the Human Connectome
Project [28] hosts brain imaging data of more than one thousand subjects where an
individual’s neural system is represented as a network object. Datasets of such type
pose many difficulties in providing convincing answers to questions like clustering,
centrality, hypothesis test, and others at the population level. There has been some
recent work on inferences of a population of networks based the notion of Fréchet
means [3, 8] with applications to hypothesis testing with network data [10, 20]. [22]
proposes to cluster network objects based a mixture of graphon model. Answer-
ing many other questions of this type starts from defining a descriptor to measure
similarity between network objects. Surprisingly little attention has been shown
but we will introduce some of the previous works in the next section. One notable
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work in the Computer Science literature is graph kernel [29] which computes kernel
similarity matrices.

The rest of the paper is organized as follows. In Section 2, we give a brief
description of distance measures between network objects. Based on Laplacian
flow, we propose a novel distance measure, characterize its properties, and provide
an efficient numerical scheme in Section 3. Our simulation in Section 4 supports
our new proposal to outperform incumbent metrics.

2. Related Work

Let G be a network or graph with n nodes with its adjacency matrix A, which is
an n×n matrix. For a binary network, Aij = 1 if node i and j has an observed edge
between two nodes and Aij = 0 otherwise for 1 ≤ i, j ≤ n. The graph Laplacian
of a graph G is defined as L = D − A, where D is a degree matrix such that
Dii =

∑
j Aij for 1 ≤ i ≤ n and Dij = 0 otherwise [30].

Several measures have been proposed to describe dissimilarity based on direct
observables of the network. One simple way is to count the number of match-
ing edges from two networks [13], the popular Hamming distance. In [31], Wilson
and Zhu suggested to use the Euclidean distance between the spectra of two ad-
jacency matrices. From a network-theoretic perspective, Roy et al. [26] claimed
the discrepancy of node-defined centrality measures be a candidate for dissimilarity
measure.

The graph Laplacian has been known as an approximation of the Laplace-
Beltrami operator on smooth manifold underlying observed objects [11]. Since L
contains geometric and topological information of the data via its spectrum, many
strategies have been proposed.

Since the graph Laplacian matrix is symmetric and positive-semidefinite, eigen-
values of L are nonnegative real numbers. Jakobson and Rivin exploited such phe-
nomenon by defining the distance measure by taking normalized sum of squared
differences for top eigenvalues [17]. Instead of using eigenvalues directly, some chose
to compute the disparity of two approximated distributions of spectrum. Ipsen and
Mikhailov, in [16], suggested to apply kernel density estimation by convolving nar-
row Lorentz distributions with computed eigenvalues, while Fay et al. employed
discrete histogram through binning [7].

Recently, an interesting work adopted diffusion dynamics on a graph to charac-
terize and distinguish networks. The work is based on the manifold learning method
called Diffusion Maps [5], where the distance between two nodes takes all possible
paths in between into account across different timescale. This implies that each
network and its topological properties can be well presented by the diffusion pro-
cess. In [14], Hammond et al. adopted such idea to define graph diffusion distance
that measures dissimilarity of two networks and showed it is indeed a metric.
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3. Proposed Work

Suppose we have two graphs G1 and G2 with the same number of N nodes. Let
c1(t) = (c11(t), . . . , c1N (t)) be a time-dependent vector of functions associated with
the nodes of G1. Similarly we define c2(t) for G2. The Laplacian flow is a dynamic
system defined in a coordinate-wise manner by

(1) ċi(t) =
∑
j∼i

(cj(t)− ci(t)),

where the sum runs over all nodes adjacent to i, and a compact expression for
equation (1) is

(2) ċ(t) = −Lc(t).

Given an initial condition c(0), we can solve the system to obtain an analytic
solution,

(3) c(t) = exp(−tL)c(0).

Since the eigenvalues of L are nonnegative, the solution will converge to the pro-
jection of c(0) to the kernel of L. Now we give the same initial condition for the
two graphs G1 and G2 so that

(4) ci(t) = exp(−tLi)c(0)

for i = 1, 2. Graph diffusion distance in [14] is defined as maximal discrepancy on
a family of distance measures across different time points,

(5) dGDD(G1, G2) = max
t
|| exp(−tL1)− exp(−tL2)||F ,

where the subscript F means Frobenius norm for a matrix.

3.1. Definition of the Network Flow Distance (NLD). We study the dif-
ference between diffusion processes at the nodes [i1] in G1 and [i2] in G2 using
ċ1i (t)− ċ2i (t) for various initial conditions. Define

(6) di :=
∑
c(0)

∫ ∞
0

|ċ1i (t)− ċ2i (t)|dt,

where in the sum c(0) runs through standard basis vectors ej = (0, · · · , 1, · · · , 0)
for all j 6= i. Although the definition uses an improper integral, one can see
the convergence without difficulty. Moreover, the integrand at t = 0 is given by
the absolute value of the i-th component of L1c(0) − L2c(0). When c(0) runs
through basis vectors ej ’s for all j 6= i, we find that the integrand coincides with
the Hamming distance of the i-th row of the adjacent matrices. Then we define the
network flow distance (NLD) between two graphs as

(7) dNLD(G1, G2) :=

n∑
i=1

di.

From definitions (6) and (7) it is straightforward to check that dNLD satisfies the
well known axioms of a distance metric, i.e.,

(i) dNLD is symmetric,
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(ii) dNLD(G1, G2) ≥ 0 and dNLD(G1, G2) = 0 if and only if G1 and G2 are
identical,

(iii) dNLD(G1, G3) ≤ dNLD(G1, G2) + dNLD(G2, G3).

The definition dGDD has a similar flavor as dNLD in nature by incorporating the
diffusion behavior of a whole network but there are some key differences. One
drawback of the definition of dGDD is that the maximum may occur at a different
time for a different pair of graphs, which results in mismatching behavior in the
context of a large group of graphs. We integrate the distance between a pair of
nodes between two graphs with respect to time. In practice, we can truncate at
proper Tmax. Due to the exponential decay of the integrand in (6), Tmax can be
chosen properly according to one’s desired precision. Another advantage is that we
removed the diagonal terms so that we characterize a node in a network entirely
through its environment and not nodes itself. Moreover, dGDD fails to capture the
long term behavior of the diffusion process by considering the discrepancy of the
diffusions of the networks at a single time point t. Our simulation study confirms
that the network flow distance outperforms dGDD significantly in distinguishing
networks under various settings and in using the distances for clustering network
objects.

3.2. An efficient computation scheme. In this subsection, we discuss our method
for computing the distance defined in the last subsection. In particular, we propose
a computation scheme that enables fast computation of our network flow distance
dNLD. For convenience, let fi(t) := c1i (t)− c2i (t). From equation (3), we know that

|ḟi(t)| decays exponentially to 0 as t → ∞. Truncating the improper integral in
equation (6) at a properly chosen Tmax yields the approximation

(8)

∫ ∞
0

|ḟi(t)|dt ≈
∫ Tmax

0

|ḟi(t)|dt.

Using finite difference method, we have the following approximation

(9)

∫ Tmax

0

|ḟi(t)|dt ≈
N∑

k=1

|fi(tk)− fi(tk−1)|,

where t0 = 0 and tN = Tmax. With simple arithmetrics, we know the right hand side
of (9) has cancellations due to the alternating nature of the terms fi(tk)− fi(tk−1)
when fi(t) is monotone on an interval I. Note that fi(0) = 0 and for connected

graphs fi(t) → 0 for t → ∞, then we see that
∫∞
0
|ḟi(t)|dt is determined by all

extreme values of fi(t). It is interesting to compare with definition (5). In equation
(5) the max is taken globally for all nodes with respect to time, while in definition
(7), we take sum of extreme values for each individual nodes.

From the original definition of the Laplacian flow in equation (2), we see that

using fi(t) instead of ḟi(t) in (9) reduces the multiplication by graph Laplacians,
which is crucial since iterative multiplications by graph Laplacians can be compu-
tationally expensive. Define

(10) A(t,L1,L2) = exp(−tL1)− exp(−tL2).
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It is well known that a graph Laplacian L is symmetric and positive semidefinite
so that we have the following spectral decomposition:

(11) L = ΛDΛT .

Then we have

(12) exp(−tL) = Λ exp(−tD)ΛT .

For a matrix M , we define g as the sum of absolute values of the off-diagonal
entries of M , i.e.,

(13) g(M) =
∑
i 6=j

|Mij |.

By equations (6),(7) and (9), we have

(14) dNLD(G1, G2) ≈
N∑
i=1

g(A(ti,L1,L2)−A(ti−1,L1,L2)).

In the next section we will provide simulation examples in which our definition
gives stronger and more precise cluster structure than that obtained using dGDD

or the Hamming distance or the Frobenius norm distance between corresponding
Laplacians of networks defined by

dF (Gi, Gj) := ||Li − Lj ||F .

4. Simulation Study

In this section, we demonstrate the success of our distance using several exam-
ples in a simulation study. It can be shown that our distance can detect distances
between certain networks while the popular Hamming distance or Frobenius dis-
tance between graph Laplacians can not. We then apply the distance to clustering
network objects based on a spectral clustering algorithm.

4.1. Distance between networks with one edge deletion. Let G1 be a graph
with 20 nodes distributed equally to form two communities C1 and C2. We generate
G1 from a stochastic block model (SBM) with edges between two nodes in C1 (resp.
C2) with probability P11 = 0.75 (resp. P22 = 0.6) and generate inter-community
edges with probability P12 = 0.04. We use a uniform distribution to generate entries
of the adjacent matrices with the probability above. The graph G1 generated using
R with the above parameters has two bridges between its two communities C1 and
C2. G2 and G6 are obtained from G1 by removing one of the bridges. The other
graphs are obtained from G1 by removing a within-community edge. Since a bridge
in general plays a more important role in a network, we expect that G2 and G6

have larger distances to G1 than other graphs. Our numerical computation plotted
in Figures 4 and 5 shows that this is indeed the case. We take Tmax = 40 and
use 1200 sample points in our computation. The computation process takes only
seconds on a MAC desktop with 3.6 GHz Intel Core i7 Processor. Note that the
Hamming distance between these graphs is 1 or 2 and it completely fails to tell the
difference between a bridge edge and a within community edge.
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Figure 1. G1.
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Figure 2. G2.
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Figure 3. G3.
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Figure 4. Network flow distance dNLD.
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Figure 5. Network diffusion distance dGDD.

Now we compare the distance matrices obtained using dGDD, the maximal dis-
tance defined in Section 3 with our distance dNLD. The distance matrix of dGDD

is plotted in Figure 5. We see that in this case our proposed distance outperforms
the distance dGDD significantly. The cluster structure in Figure 4 is so strong that
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Figure 6. Two eigenvectors of dNLD.

the desired cluster structure can be obtained directly using the k-means algorithm.
Indeed, we apply the k-means algorithm to any column or row of the distance ma-
trix in Figure 4 with cluster number 2 and find that the output cluster vector by R
separates G2 and G6 from the other graphs. For this example, we can also obtain
our desired cluster structure using the spectral clustering algorithm. Indeed, if we
define a similarity matrix S by

(15) Sij = exp(−dNLD(Gi, Gj)/σ),

where σ is the standard deviation of Sij , then we obtain the two eigenvectors of S
with largest two eigenvalues in Figure 6.

Applying the k-means algorithm to the two vectors in Figure 6 with cluster
number k = 2, then we obtain our desired cluster structure. However, it will be
another case if we use Hamming distance instead. Indeed, the Hamming distance
is given by dHamming(i, j) = 2 for i, j 6= 1 and i 6= j and dHamming(1, i) = 1 for
i 6= 1. If we compute the corresponding similarity matrix using Hamming distance
and apply the spectral clustering algorithm, then we find that the output cluster
vector given by R is (2, 1, 2, 2, 2, 2, 2). The cluster vector singles out G2 from the
other graphs. However, from our construction we know that G2 and G6 are more
similar. If we use distance dF , then we compute the distance matrix using that
||Li − Lj ||F = 2

√
2 for i 6= j and i, j 6= 1 and that ||L1 − Lj ||F = 2 for j 6= 1. If

we apply spectral clustering algorithm to the similarity matrix SF for the distance
dF , then we obtain cluster vector (1, 1, 1, 1, 2, 2, 1) using R. In this case, graphs G5

and G6 are put in one cluster, which is different from our desired cluster containing
G2 and G6. The failure of Hamming distance dHamming and Frobenius distance
dF is not surprising since both distances assign the same weight to two apparently
different types of edges.

Another feature that the network flow distance outperforms the Hamming dis-
tance and the distance dF is that the network flow distance is floating according
to the dynamics of a network graph. In a dynamical network, the role of an
edge may change in various ways. For instance, in the game of Go, the value of
a previous move is floating as the game tree develops. Keep the notation of Gi in
the last example, but we now add more bridges to the graphs, then the distances



8 DIANBIN BAO, KISUNG YOU, AND LIZHEN LIN

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

0

1

2

3

4

5

6

7

Figure 7. Network flow distance matrix with one more bridge
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Figure 8. Network flow distance matrix with two more bridges

dNLD(G1, G2) and dNLD(G1, G6) are expected to decrease since the importance of
one bridge is diluted. Indeed, see the distance matrices in Figure 7 (resp. Figure
8 ), which is obtained by adding one bridge (1, 11) (resp. two bridges (1, 11) and
(2, 12)) in Gis.

We see that dNLD(−, G2) and dNLD(−, G6) are decreasing as expected by com-
paring Figures 4, 7 and 8.
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Figure 9. Cluster vectors (first two rows use dNLD and last two
rows use dGDD)

4.2. Illustration of the distance matrices between a collection of graphs.
In this example we use a different setting. We only fix bridges and generate within-
community edges randomly with a fixed probability p. For simplicity, we use a two-
block model and each block has 10 nodes. The probability of an edge between two
nodes within the same block is p and the cross-block edges are fixed. We generate
20 graphs, in which the first 10 have 5 fixed bridges and the other 10 graphs have 10
fixed bridges. Our simulation shows that network flow distance dNLD outperforms
the Frobenius norm distance dF and the diffusion distance dGDD in this scenario.
In our simulation we choose p = 0.8 , Tmax = 4 and we use 400 sample points to
estimate the integral in (6). Then we apply the k-means algorithm to the rows or
columns of the distance matrix after replacing the diagonal terms by an average.
Then we find that our network flow distance gives very precise cluster structure,
which tells apart the two different ways for constructing the graphs. However,
the cluster structure obtained using the Frobenius norm distance dF or diffusion
distance dGDD is unreliable.

The distance matrices are plotted in Figures 10, 11 and 12. One sees that the
network flow distance dNLD shows the strongest cluster structure. We also noticed
that only the distance dNLD gives very precise cluster structure if we apply k-means
algorithm to the distance matrices. We plot 4 cluster vectors in Figure 9, where the
first two vectors are obtained by applying k-means algorithm to the 1st and 11th
rows of the distance matrix using dNLD. The first gives a perfect cluster structure
and the second has 2 misses (G2,G11). The 3rd and 4th cluster vectors are similarly
obtained using dGDD and both vectors misclassified 8 out of 20 objects so that the
cluster structure is poorly obtained in some sense.

In this case, we can also apply the spectral clustering algorithm. Again, we
define similarity matrix S by equation (15) and obtain the two eigenvectors of S
with the largest two eigenvalues using R. See Figure 16.
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Figure 10. Network flow distance dNLD.
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Figure 11. Frobenius norm distance dF .

In particular the signs in the second eigenvector show a clear cluster structure.
Apply k-means algorithm to the two vectors in Figure 16 using R, then we obtain
a perfect cluster structure.

4.3. Clustering network objects from two stochastic block models. Now
we test the difference between utilities of various definitions of distance in an ex-
ample of clustering network objects generated from two SBMs. We generated 10
network objects from one stochastic block model (SBM) with within community link
probabilities P11 = P22 = 0.8 and between community link probability P12 = 0.05.
We generate another 10 networks from another SBM with the same within com-
munity link probabilities but the between community link probability is given by
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Figure 12. Diffusion distance dGDD.
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Figure 13. Network flow distance dNLD.

2P12. The number of nodes for each graph is 20. See the 2D plots for the distance
matrices in Figures 13, 14 and 15.

We can still obtain our desired cluster structure by applying k-means algorithm
to most rows of the distance matrix, but some rows give unreliable output. If we
use spectral clustering algorithm with respect to the similarity matrix S defined
in equation (15), then we obtain the two eigenvectors of S with the largest two
eigenvalues in Figure 17. Applying k-means algorithm to the two eigenvectors
in Figure 17, we obtain the cluster vector in Figure 18, which has only 2 misses
(G9, G17).



12 DIANBIN BAO, KISUNG YOU, AND LIZHEN LIN

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

0

5

10

15

Figure 14. Frobenius norm distance dF .
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Figure 15. Diffusion distance dGDD.

5. Discussion

We proposed a novel distance metric between network objects based on the
Laplacian flow on graphs by exploiting the long term diffusion behavior of individ-
ual networks. With explicit examples, we demonstrated its advantages over various
existing distances such as Hamming distance, Frobenius distance between their cor-
responding graph Laplacians and a maximal diffusion distance. In particular, we
find that our network flow distance can detect structure of a network and can be
used to accurately classify or cluster network objects in subsequent clustering tasks.
Therefore it will serve as an important tool for research areas like brain connec-
tomics and shape recognition. Future directions include extending the distance to
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Figure 16. Eigenvectors corresponding to the largest two eigenvalues
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Figure 17. Eigenvectors corresponding to the largest two eigenvalues

incorporate higher-order connectivity of networks by adopting higher-order (Hodge)
Laplacians.
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[23] Boaz Nadler, Stéphane Lafon, Ronald R Coifman, and Ioannis G Kevrekidis. Diffu-
sion maps, spectral clustering and reaction coordinates of dynamical systems. Applied
and Computational Harmonic Analysis, 21(1):113–127, 2006.

[24] M. E. J. Newman. Modularity and community structure in networks. Proceedings of
the National Academy of Sciences, 103(23):8577–8582, June 2006.

[25] Brandon Pincombe. Detecting changes in time series of network graphs using min-
imum mean squared error and cumulative summation. ANZIAM Journal, 49:450,
October 2007.

[26] Matthieu Roy, Stefan Schmid, and Gilles Trdan. Modeling and Measuring Graph
Similarity: The Case for Centrality Distance. In FOMC 2014, 10th ACM Interna-
tional Workshop on Foundations of Mobile Computing, page 53, Philadelphia, United
States, 2014.

[27] Martin Szummer and Tommi Jaakkola. Partially labeled classification with markov
random walks. In Advances in neural information processing systems, pages 945–952,
2002.

[28] D.C. Van Essen, K. Ugurbil, E. Auerbach, D. Barch, T.E.J. Behrens, R. Bucholz,
A. Chang, L. Chen, M. Corbetta, S.W. Curtiss, S. Della Penna, D. Feinberg,
M.F. Glasser, N. Harel, A.C. Heath, L. Larson-Prior, D. Marcus, G. Michalareas,
S. Moeller, R. Oostenveld, S.E. Petersen, F. Prior, B.L. Schlaggar, S.M. Smith, A.Z.



16 DIANBIN BAO, KISUNG YOU, AND LIZHEN LIN

Snyder, J. Xu, and E. Yacoub. The Human Connectome Project: A data acquisition
perspective. NeuroImage, 62(4):2222–2231, October 2012.

[29] S. V. N. Vishwanathan, Nicol N. Schraudolph, Risi Kondor, and Karsten M. Borg-
wardt. Graph Kernels. J. Mach. Learn. Res., 11:1201–1242, August 2010.

[30] Ulrike von Luxburg. A tutorial on spectral clustering. Statistics and Computing,
17(4):395–416, December 2007.

[31] Richard C. Wilson and Ping Zhu. A study of graph spectra for comparing graphs
and trees. Pattern Recognition, 41(9):2833–2841, September 2008.

316 Sutherland Building, 1600 Woodland Road, Abington, PA,19001

E-mail address: dub835@psu.edu

B02 Hayes-Healy Center, Notre Dame, IN 46556-5641

E-mail address: kyou@nd.edu

Hurley 152A, Notre Dame, IN 46556

E-mail address: lizhen.lin@nd.edu


	1. Introduction
	2. Related Work
	3. Proposed Work
	3.1.  Definition of the Network Flow Distance (NLD)
	3.2. An efficient computation scheme

	4. Simulation Study 
	4.1. Distance between networks with one edge deletion
	4.2. Illustration of the distance matrices between a collection of graphs
	4.3. Clustering network objects from two stochastic block models

	5. Discussion
	Acknowledgments
	References

