
Heterogeneous Randomized Response for
Differential Privacy in Graph Neural Networks

Khang Tran, Phung Lai, NhatHai Phan∗
New Jersey Institute of Technology, USA

{kt36, tl353, phan}@njit.edu

Issa Khalil
Qatar Computing Research Institute, Qatar

ikhalil@hbku.edu.qa

Yao Ma, Abdallah Khreishah
New Jersey Institute of Technology, USA

{yao.ma, abdallah}@njit.edu

My T. Thai
University of Florida, USA

mythai@cise.ufl.edu

Xintao Wu
University of Arkansas, USA

xintaowu@uark.edu

Abstract—Graph neural networks (GNNs) are susceptible to
privacy inference attacks (PIAS) given their ability to learn joint
representation from features and edges among nodes in graph
data. To prevent privacy leakages in GNNs, we propose a novel
heterogeneous randomized response (HETERORR) mechanism to
protect nodes’ features and edges against PIAS under differential
privacy (DP) guarantees, without an undue cost of data and
model utility in training GNNs. Our idea is to balance the impor-
tance and sensitivity of nodes’ features and edges in redistributing
the privacy budgets since some features and edges are more
sensitive or important to the model utility than others. As a result,
we derive significantly better randomization probabilities and
tighter error bounds at both levels of nodes’ features and edges
departing from existing approaches, thus enabling us to maintain
high data utility for training GNNs. An extensive theoretical
and empirical analysis using benchmark datasets shows that
HETERORR significantly outperforms various baselines in terms
of model utility under rigorous privacy protection for both nodes’
features and edges. That enables us to defend PIAs in DP-
preserving GNNs effectively.

Index Terms—differential privacy, GNNs, privacy inference

I. INTRODUCTION

Graph Neural Networks (GNNs) have been well-known for
their ability to learn from graph data, simultaneously leveraging
the nodes’ features and the graph structure [1]. However, GNNs
are vulnerable to PIAs since the nodes’ features and the edges
often contain sensitive information of the participants, which
can be inferred by the adversaries when GNNs are deployed
[2]. Attacks such as membership inference [3], and structure
inference [4] underline privacy risks in GNNs. Hence, to
promote the broader adoption of GNNs, it is essential to protect
graph data privacy in training GNNs while maintaining high
model utility.

Among privacy preserving techniques, differential privacy
(DP), a rigorous formulation of privacy in probabilistic terms
without computational overhead, is one of the golden standards.
DP has been applied to protect either edge privacy [5] or nodes’
feature privacy [6] given graph data. To protect both the graph
structure and node features, a straightforward approach to

∗ Corresponding author

achieve DP protection at both nodes’ feature-level and graph
structure-level in training GNNs is applying both node-feature
and graph-structure DP-preserving mechanisms independently.
However, that treatment can significantly degrade the graph data
utility resulting in poor model performance, especially in the
application of GNNs. This is a challenging and open problem
since a minor privacy-preserving perturbation to either features
of a single node or a local graph structure will negatively affect
its neighbors. In addition, the impact is propagated through
the entire graph. There are two main reasons for this problem:
first, the correlation between the nodes is very high, therefore,
quantifying the privacy risk through the aggregation of GNNs
is intractable and adding a little noise to one node can impact
all of its neighbors; second, most of graphs in practice are
sparse and adding noise to the structure of the graph can easily
destroy the sparsity of it, resulting in low graph structure utility.

Key Contributions. To address this problem, we develop
a new heterogeneous randomized response (HETERORR)
mechanism to preserve nodes’ features and edges privacy
for graph data in GNNs application. Our methods are based
on randomize response (RR) [7], [8] which is an advanced
and effective method for privacy-preserving. HETERORR
leverages the heterogeneity in graph data to optimize the
magnitude of privacy preserving-noise injected into nodes’
features and the graph structure, such that less sensitive and
more important features (to the model outcome) and edges
receive lower probabilities to be randomized (less noisy),
and vice versa. This property of HETERORR enables us to
achieve significantly better utility compared with homogeneous
randomization probabilities in existing mechanisms under the
same privacy guarantee.

Furthermore, HETERORR is applied in the pre-processing
step to create a privacy-preserving graph that can be stored
and reused as a replacement for the original graph. Due to the
post-processing of DP, every analysis on the privacy-preserving
graph satisfies the DP guarantee for the original graph, which
makes HETERORR a permanent RR. Therefore, it provides
longitudinal DP protections without accumulation of privacy
risks over the time.

An extensive theoretical and empirical analysis conducted978-1-6654-8045-1/22/$31.00 ©2022 IEEE

ar
X

iv
:2

21
1.

05
76

6v
1

 [
cs

.L
G

]
 1

0
N

ov
 2

02
2

on benchmark datasets employing GNNs as a motivating
application shows that HETERORR significantly outperforms
baseline approaches in terms of data and model utility under the
same privacy protection. Importantly, HETERORR are resilient
against PIAs by reducing the attack success rate to a random
guess level without affecting the GNNs’ model utility. Our
implementation and supplemental documents can be found
here: https://github.com/khangtran2020/DPGNN.git

II. BACKGROUND

This section provides an overview of GNNs, privacy threat
models, and existing defenses.

a) Graph Learning Setting: A service provider possesses
a private graph G(V, E) constructed from its users’ data, where
V is the set of nodes, E is the set of edges. Each node v ∈ V
has its raw (data) input x and a ground-truth one hot vector
y ∈ {0, 1}C with C is the number of output classes. Each node
(user) v ∈ V has a set of public (non-sensitive) edges and a
set of private (sensitive) edges (i.e., E = Epub ∪ Epri). This is
a practical setting in many real-world applications.

For instance, in a FLICKR network [9], an edge between
a pair of images (nodes) can be created by a mutual friend
connection of the image owners. These edges can expose
private friend connections among the image owners; thus, they
are sensitive and need to be protected. Meanwhile, an edge
between a pair of images constructed based on either shared
galleries or common tags is considered public since the edge
does not expose private connections among the image owners.

In practice, one can use a pretrained model g(·) to extract
a d-dimension embedding vector z = g(x) as an initial
representation of each node v ∈ V . A K-layer GNN learns the
embedding representation for each node v ∈ V through a stack
of K graph convolutional layers. Each layer k ∈ [1,K] takes
as input the embedding h

(k−1)
v for v ∈ V from the previous

layer, then updates the embedding as follows:

h
(k)

N (v) = AGG
(
h(k−1)
v ∪ {h(k−1)

u , u ∈ N (v)}
))

(1)

h(k)
v = σ

(
W (k)h

(k)

N (v)

)
(2)

whereN (v) is the neighborhood of node v, h(0)
v = zv , AGG(·)

is an aggregation function, W (k) is the trainable parameters
of layer k, and σ(·) is a non-linear activation function.

In this work, we consider a node classification task, in which
each node is classified into one of the output classes. At the
inference time, the service provider releases APIs to query the
trained model in applications. This is a practical setting of
ML-as-a-service (MLaaS) for GNNs [4].

b) Privacy Threat Models: Given the graph learning
setting, we consider the threat model as in Figure 1. An
adversary aims to infer the nodes’ raw (data) input and the
private connections in the private graph G. Firstly, the adversary
collects the auxiliary information of the nodes’ features and
the public edges from the public sources to infer the private
connections by conducting the LinkTeller attack [4]. Secondly,
the adversary uses the auxiliary information with the inferred

Fig. 1. Privacy threat

set of edges to perform an inference attack to infer nodes’
embedding features [10]. Finally, the adversary uses the inferred
embedding features to reconstruct the raw (data) input. This
threat model leads to severe privacy leakages in using sensitive
graph data in GNNs.

c) Differential Privacy (DP) [11]: DP is a privacy-aware
computational approach that assure the output of a mechanism
is not strongly dependent on a particular data-point. However,
in graph data, features of a particular node can be inferred by
neighboring nodes’ features. To address this problem, one can
employ local DP (LDP) to ensure that the privacy-preserving
randomization of every each node’s features is independently
its neighboring nodes. The definition of LDP is as follows:

Definition 1 (Local DP). A randomized algorithmM satisfies
ε-LDP if and only if for any pair of inputs z, z′ in the input
space, and the output space S ⊆ Range(M), it satisfies

Pr[M(z) ∈ S] ≤ eεPr[M(z′) ∈ S] (3)

where ε is the privacy budget. The privacy budget ε control
how the output distribution conditioned by z and z′ may differ.
A smaller value of ε ensure a better privacy protection.

One of effective methods to preserve LDP is applying
randomized response (RR) mechanisms [7], [8]. Existing
RR methods consider a homogeneous scenario where every
features in the input space have the same sensitivity and
importance which is not utility-optimal since the input space
is heterogeneous in most of real-world tasks. Departing from
existing approaches, we derive heterogeneous randomization
probabilities across features by balancing their sensitivity and
importance; thus achieving better graph data privacy-data utility
trade-offs in HETERORR.

d) DP Preservation in Graph Structure: DP preservation
in graph analysis can be generally categorized into node-level
DP [12] and edge-level DP [13]. Node-level DP and edge-level
DP aims to protect the presence of the set of nodes or edges,
respectively. In this work, we focus on edge-level DP to protect
the privacy of graph structure, defined as follows:

Definition 2 (Edge-level DP [13]). A randomized algorithm
M satisfies edge-level ε-DP if for any two neighboring graphs
G(V, E) and G′(V, E ′) differ in one edge while they share the
same set of nodes and an output space O ⊆ Range(M),

P (M(G) ∈ O) ≤ eεP (M(G′) ∈ O) (4)

https://github.com/khangtran2020/DPGNN.git

(a) Graph G(V, E) (b) HRG model (D,{pr})
Fig. 2. An instance of HRG model (b) represents a given graph G (a).
Considering the common ancestor of the leaves (1) and (2): since there are one
leaf in the left child and one leaf in the right child, the number of possible edges
is one. Since there are one edges between node (1)-(2) in G, the probability
pr at this internal node r is 1/1.

where ε is the privacy budget. Edge-level DP ensures that the
adversary cannot infer the existence of a targeted edge with
high confidence.

Previous edge-level mechanisms consider the whole set of
edges is private. That may not be practical in certain real-world
scenarios. Therefore, HETERORR focuses on protecting the
set of private edges and leverages the information from the
public edges to optimize the model utility.

e) Hierarchical Random Graph (HRG) [14]: To design
an edge-level DP-preserving mechanism, one of the state-of-
the-art approaches is representing the given graph G as a HRG
model [14]. HRG is a statistical inference model that represents
a hierarchical property of a given graph G by a binary tree
dendrogram D as illustrated in Figure 2. In the dendrogram D,
the number of leaves equal to the number of nodes in G. Each
internal node r ∈ D is associated with a probability of having
a connection between the left and right child of r. Clauset et
al. [14] proposed using Monte Carlo Markov Chain (MCMC)
sampling to find the best HRG model to present a given graph.
Xiao et al. [15] proposed to use the exponential and Laplace
mechanisms to randomize the sampling process of HRG under
DP. Then the DP-preserving HRG is used to sample a DP-
preserving graph Ḡ which is released to the public. Different
from [15], HETERORR leverages public edges to optimize the
structural utility while providing edge-level DP guarantees to
protect private edges. We achieve these two objectives in a
unified edge-level DP-preserving MCMC sampling algorithm.

III. HETERORR: DP PRESERVING IN GNNS

In this section, we formally introduce HETERORR mecha-
nism to preserve private information of both the nodes’ embed-
ding features and the private edges against the aforementioned
threat model while maintaining high data utility.

Overview of HETERORR. HETERORR consists of
two main components feature-aware randomized response
(FEATURERR) and edge-aware randomized response
(EDGERR) which provide nodes’ feature-level and edge-level
privacy protection respectively. First, FEATURERR randomizes
every embedding feature to generate εf -LDP-preserving
embedding features for every node. Second, EDGERR
represents a given graph with an HRG model under DP
protection and then uses the HRG model to sample an
εe-DP-preserving graph as a replacement for the original
graph. Finally, we combine the εf -LDP-preserving embedding

Fig. 3. The overall score θ with γ = 0.5

features and the εe-DP-preserving graph structure to create a
final and permanent DP preserving graph for training GNNs.

To optimize the data utility, first, FEATURERR balances the
sensitivity and importance of each feature and randomize every
feature such that less sensitive and more important features
have lower probabilities of being randomized and vice versa.
Secondly, in EDGERR, we propose a novel HRG model to
capture the hierarchy of public and private edges in the original
graph called and construct the PHRG by iteratively applying
a new MCMC sampling process in which (1) we add noise to
the MCMC to protect the private edges; and (2) we leverage
public edges to preserve the original graph structure. As a result,
HETERORR achieves better data utility under DP protection.

A. Feature-aware Randomized Response (FEATURERR)

a) Sensitivity and Importance: Let us present our method
to determine the sensitivity and importance of the embedding
features. In the input x, some input features are more sensitive
or more important to the model outcome than others. This
triggers a simple question: “How could we quantify the
sensitivity and importance of an embedding feature given an
input feature?” To answer this question, first, we quantify the
sensitivity of an embedding feature as the maximal magnitude
it can be changed by completely removing the sensitive input
features from the input x. Therefore, we mask all of the
sensitive input features out in a masked version x̂ and extract its
embedding features ẑ = g(x̂). Then, we quantify the sensitivity
βi of an embedding feature i as follows:

∀i ∈ [d] : βi =
|zi − ẑi|
‖z − ẑ‖1

(5)

Regarding the importance of the embedding feature i,
denoted αi, we employ the SHAP metric [16], one of the
most well-applied model explainers, to quantify the influence
of feature i on a model’s decision. The importance score is
quantified as follows:

∀i ∈ [d] : αi =
|SHAP (zi)|
‖SHAP (z)‖1

(6)

where SHAP (zi) is the SHAP score of the embedding feature
zi and SHAP (z) is a vector of the SHAP scores for all the
embedding features in z. In practice, we can compute SHAP
scores for the embedding features by using a pretrained model
that is trained on a publicly available dataset to avoid any extra
privacy risks. Figure 3 shows the distribution of sensitivity and
importance scores across embedding features.

To capture the correlation between sensitivity and importance
scores, we define a unifying score θi by a linear combination
of αi and βi, as follows:

θi = γαi + (1− γ)
[
βmin + (βmax − βi)

]
(7)

where γ ∈ [0, 1] is a weighted parameter to balance between
the sensitivity score βi and the importance score αi, βmin =
minj∈[d] βj , βmax = maxj∈[d] βj , The idea of Eq. 7 is to
separate between two set of features: the features have small
values of αi and high values of βi (top-left corner of Figure 3);
and the features have high values of αi and small values of βi
(bottom-right corner in Figure 3) For the other features, since
they are both more (less) important and more (less) sensitive
(located within the top-right and bottom-left corner in Figure
3), Eq. 7 will smoothly combine the important and sensitive
scores as a trade-off between importance and sensitiveness
through the hyper-parameter γ

b) Randomizing Process: Given the unifying score θi,
we randomize the feature i such that more important and
less sensitive features (higher values of θi) will have higher
probabilities to stay the same, and vice versa. That enables us
to achieve better data utility. To achieve our goal, we assign
a heterogeneous privacy budget εi = εfθi to the feature i.
Then, we randomize each feature such that we provide εi-LDP
for feature i while addressing the privacy-utility trade-off. We
tackle this by minimizing the difference between the original
and randomized value of feature i as follows.

Without loss of generality, considering the value of each
feature is in the domain [0, 1]. To optimize the data utility,
we design a randomizing process such that the randomized
values should fall in the original domain and the values nearer
to the original value will have higher sampling probability.
However, by considering the continuous domain, the sampling
probability of each point in the domain is minuscule, therefore,
we discretize the domain [0, 1] by k bins, resulting in a discrete
domain { 1

k , . . . , 1}. This discretizing process will limit the
outcomes, leading to a higher probability for each value. Then,
we transform the value of each embedding feature from the
[0, 1] domain to the discrete domain. Formally, the value zi
of embedding feature i will have the value t

k if t−1
k ≤ zi ≤

t
k , t ∈ {1, 2, . . . , k}. This can done as a data preprocessing
step without extra privacy risks.

We randomize the value of each feature by the following
rule: Given the value of the embedding feature i is zi = t

k ,
we randomize embedding feature i such that it will have a
randomized value u

k ,∀u ∈ {1, . . . , k}, with the probability

Pr
(u
k

∣∣∣ t
k

)
=

1

Ct
exp

(
− |u− t|

kσi

)
(8)

where σi is the noise scale of feature i and Ct is the
normalization parameter and quantified by:

Ct =

k∑
u=1

exp
(
− |u− t|

kσi

)
(9)

Eq. 8 ensures that the values of u
k that are closer to the original

value t
k will have a higher sampling probability, resulting in a

(a) Graph G(V, Epub ∪ Epri) (b) HRG model (D,{pr, p̄r})

Fig. 4. An instance of HRG model. In (a), the red and black edges are the
private and public edges, respectively. In (b), the black and red values are the
values of pr and p̄r respectively.

(a) D(r) (b) Two possible versions of D′(r)
Fig. 5. Possible structures of subtree at an internal node r.

closer distance of the original and randomized value of feature i
which optimizes the data utility. To satisfy the assigned privacy
budget εi for feature i, we introduce the noise scale parameter
σi, bounded to satisfy the guarantee of εi-LDP in section IV.

Finally, we randomize each feature by applying FEATURERR
on every features independently. The randomized features are
concatenated together to create a randomized feature vector
z̃, which is used in the training process. The pseudo codes of
FEATURERR is presented in Algorithm 1 (Appendix C in our
supplemental documents).

B. Edge-aware Randomized Response (EDGERR)

We present our EDGERR mechanism in this section. First,
we introduce PHRG model, an alternative to the HRG model.
Second, we introduce our MCMC sampling process of PHRG,
which leverages the public edges to optimize the utility of the
PHRG while providing privacy protection for private edges

a) PHRG model: Let us define a PHRG model (Figure
4) by a tuple (D, {pr, p̄r}) where D is a dendrogram with the
number of leaf nodes n = |V|, the set of probabilities {pr, p̄r}
is associated with each internal node r in D. In this work, pr
(p̄r) is the probability of having a public (private) edge between
the leaf nodes from the left of r and all the leaf nodes from
the right of r. We define the likelihood of a dendrogram D as
a product of the likelihood of public edges and the likelihood
of private edges as follows:

L(D, {pr, p̄r}) = Lpub(D, {pr})Lpri(D, {p̄r})

=
∏
r∈D

perr (1− pr)LrRr−er × p̄ērr (1− p̄r)L̄rR̄r−ēr (10)

where er and ēr are the public and private edges between the
leaf nodes from the left of r and leaf nodes from the right of
r; Lr and Rr are the numbers of leaf nodes from the left and
the right of r respectively, such that each node has at least
one public edge; and L̄r and R̄r are the numbers of nodes
from the left the right child of r respectively, such that each
node has at least one private edge. In addition, by maximum
likelihood, pr = er

LrRr
and p̄r = ēr

L̄rR̄r
.

To find the most suitable PHRG model representing the
graph G, we need to find the optimal dendrogram D∗ that

maximize the log-likelihood of Eq. 10, as follows:

D∗ = arg max
D

(
Lpub(D) + Lpri(D)

)
= arg max

D

[
−
∑
r

Nrχ(pr)−
∑
r

N̄rχ(p̄r)
]

(11)

where Lpub(D) =
∑
rNrχ(pr), Lpri(D) =

∑
r N̄rχ(p̄r),

{r} is the set of all internal nodes in D, Nr = LrRr, N̄r =
L̄rR̄r, and χ(τ) = τ log τ + (1− τ) log(1− τ).

b) Edge-level DP MCMC Sampling: It is expensive to
find D∗ by generating all (2n− 3)!! possible dendrograms. To
address this problem, we propose a max-max MCMC process
to approximate D∗ while preserving the edge-level DP of Epri.
Starting from a random dendrogram D0, each MCMC sampling
step consist of two processes: (1) optimizing the dendrogram
using the subgraph Gpub(Vpub, Epub) and (2) optimizing the
dendrogram using the subgraph Gpri(Vpri, Epri) where Vpub
(Vpri) are the set of nodes in graph G that has at least one
public (private) edge.

At a MCMC sampling step t, process (1) randomly samples
a dendrogram D′, and updates the current dendrogram Dt as:

D(1)
t =

{
D′, with probability η
Dt−1, with probability 1− η

(12)

where the acceptance probability η = min
(

1,
expLpub(D′)

expLpub(Dt−1)

)
.

To sample D′, we randomly choose an internal node r (not the
root) in Dt−1 and randomly choose one of the two alternative
possible structures of r as D′ (Figure 5).

Similarly, at the (2) process EDGERR randomly samples D′
and updates the current dendrogram Dt as follows:

Dt =

{
D′, with probability η̄

D(1)
t , with probability 1− η̄

(13)

where the acceptance probability η̄ is computed as

η̄ = min
(

1,
exp (εe1

∆e
Lpri

(
D′)
)

exp
(
εe1
∆e

Lpri(Dt′−1)
)) (14)

with ∆e is the global sensitivity of Lpri(·) bounded in Lemma
4 and a privacy budget εe1. Since, the MCMC sampling process
is reversible and ergodic [15], there exists only one equilibrium
state, which assures the convergence condition.

After the sampling process, given (D∗, {pr, p̄r}), we em-
ploy CalculateNoisyProb algorithm (Algorithm 3 in
Appendix C) [15] to add Laplacian noise to {p̄r} with a privacy
budget εe2. We use the perturbed dendrogram to generate the
edge-level DP-preserving subgraph G̃pri, then, we merge G̃pri
with the public graph Gpub to construct the (complete) edge-
level DP-preserving graph G̃ = Gpub ∪ G̃priv. The graph G̃
will be used to train the GNNs as the replacement for G to
preserve the privacy of private edges Epri. The pseudo codes
of EDGERR is presented in Algorithm 2 (Appendix C).

IV. PRIVACY GUARANTEES

This section analyzes the privacy guarantee of HETERORR
at the embedding feature-level LDP and the edge-level DP.

(a) FLICKR-MIR (b) PPI

Fig. 6. Model performance of the feature-level protection.

Bounding σi in FEATURERR: To satisfy εf -LDP for the
embedding feature z, we need to bound the noise scale σi to
assure ε-LDP for the embedding feature z.

Theorem 3. For each feature i ∈ [d], if σi ≥ (k−1)
kεθi

, then our
mechanism preserves ε-LDP for the whole feature vector x.

The proof of Theorem 3 is in the Appendix A of our
supplemental documents.

Edge-level DP: First, we bound the global sensitivity ∆e.

Lemma 4. ∆e monotonically increases as n→ +∞, and

∆e = logNmax + log
(

1 +
1

Nmax − 1

)
(15)

where Nmax = |V̄|2
4 when |V̄| is even and Nmax = |V̄|2−1

4
when |V̄| is odd with V̄ ⊂ V is the set of private nodes.

The proof of Lemma 4 is in the Appendix B of our supplemental
documents. Given the bounded sensitivity ∆e in Lemma 4,
our HRG sampling process satisfies edge-level εe1-DP, since
the exponential mechanism has been proved satisfying the DP
constraint with a desired privacy budget εe1 [11].

Regarding the CalculateNoisyProb algorithm, for two
neighboring graphs G and G′ that are different at one private
edge, the global sensitivity is 1. Thus, perturbing the sampled
dendrogram D∗ satisfies εe2-DP to protect private edges.
Following the sequential composition theorem [11], EDGERR
satisfies εe-DP with εe = εe1 + εe2 to protect private edges.

V. EXPERIMENTAL RESULTS

We conduct extensive experiments on benchmark datasets
to illustrate interplay between privacy budget and model utility
in HETERORR at the feature level, the edge level, and how
well it can defend against the PIAs at both levels.

a) Datasets, Model and Metrics: We consider two
datasets including FLICKR-MIR and PPI [17]. For the PPI
dataset, we select the proportion of private edges ρ ∈
{0.05, 0.1, 0.2} to construct the set of private edges in each
graph. For the FLICKR-MIR dataset, we consider the edges
constructed by “taken by friends” private (ρ ≈ 0.305) and
others are public edges. We use ResNet-50 [18] with ImageNet
weights and RetinaFace [19] to extract embedding features and
faces from the images.

We employ the Graph Convolutional Network (GCN) [20]
in every experiment. We use an average aggregation function
for each layer in the GCN models as in [20]. We use F1-score
to evaluate the model performance on the PPI dataset, and we

(a) FLICKR-MIR (b) PPI

Fig. 7. Model performance of the edge-level protection.

use ROC-AUC metric to evaluate the model performance on
the FLICKR-MIR dataset. All statistical tests are 2-tail t-tests.

b) Baselines: We consider well-known state-of-the-art
LDP mechanism baselines for the feature-level privacy protec-
tion, including Duchi mechanism [21], Piecewise mechanism
[22], Hybrid mechanism [22], Three-output mechanism [23],
Sub-optimal mechanism [23], and (LPGNN) [6]. Regarding
the edge-level, we consider three baselines: privHRG [15],
EdgeRand [4], and LapGraph [4]. We include the clean model
(non-DP) to show the upper bound of the model performance.

c) Results on the Embedding Feature-Level: Figures 6
illustrates the GCN performance associated with the change
of εf . FEATURERR achieves the best model performance
compared to the baselines in all three datasets. For the FLICKR-
MIR dataset, FEATURERR has 7.6% improvements on average,
respectively, i.e., p-value = 3.0e− 05, compared with the best
baseline (LPGNN). In the PPI dataset, FEATURERR improves
the model performance 2.6% compared with the best baseline,
i.e., the Three-output mechanism, with p-value = 0.0031.

d) Results on the Edge-level: Figures 7 illustrate the
results on the FLICKR-MIR, and PII datasets. In the
FLICKR-MIR, EDGERR outperforms all the baselines where
textscEdgeRR improves 6.3% over the best baseline (LapGraph)
with p-value = 3.6e − 09. In the PPI dataset (Figure 7(b)),
we compare the model performance of each algorithm given
different values of ρ. We observe that the F1-score of GCN
trained is higher when ρ is smaller since the lower ρ reduces
the number of private edges being randomized.

e) Defending against PIAs: We conduct the LinkTeller
[4] and Image Reconstruction [24] attack to the GNNs under
the protection of HETERORR to test its defensive power.

Defending the LinkTeller [4]. We evaluate EDGERR
against the LinkTeller attack to analyze its ability in protecting
private edges. For the non-DP model, the LinkTeller shows
an efficient attack performance (ROC-AUC is 0.91) on the
FLICKR-MIR dataset. When we apply EDGERR to protect the
private edges, the performance of the LinkTeller is significantly
reduced to nearly random guess [0.52, 0.54] given a wide range
of the privacy budget εe ∈ [0.1, 1.0]. Therefore, EDGERR is
effective in defending the LinkTeller attack.

Defending image reconstruction attack [24]. We train an
attacker on the ImageNet dataset to reconstruct the images from
embedding features extracted from the pre-trained ResNet-50
model; then, we use the trained attacker to reconstruct the

Fig. 8. Results of [24] attack reconstructing the raw images from embedding
features extracted from the layer 7th over 176 layers of ResNet-50

image from the embeddings The results of the reconstructed
and original images are in Figure 8. We found that FEATURERR
successfully prevent the attacks due to the power of LDP which
is consistent with the previous studies.

VI. CONCLUSION

In this paper, we present HETERORR, a mechanism to
simultaneously protect nodes’ embedding features and private
edges under LDP and DP protections in training GNNs. By
balancing the sensitivity and importance of features and edges
HETERORR retains high data and model utility under the same
privacy protection in training GNNs compared with existing
baseline approaches. Also, our HETERORR is resistant to PIAs,
such as LinkTeller and image reconstruction attacks.

ACKNOWLEDGEMENT

This work is partially supported by grants NSF IIS-2041096,
NSF CNS-1935928/1935923, NSF CNS-1850094, and unre-
stricted gifts from Adobe System Inc.

REFERENCES

[1] Z. Wu, S. Pan, F. Chen, G. Long, C. Zhang, and S. Y. Philip, “A
comprehensive survey on graph neural networks,” IEEE TNNLS, 2020.

[2] V. Duddu, A. Boutet, and V. Shejwalkar, “Quantifying privacy leakage
in graph embedding,” in EAI MobiQuitous 2020, 2020.

[3] H. et al., “Node-level membership inference attacks against graph neural
networks,” arXiv preprint arXiv:2102.05429, 2021.

[4] F. Wu, Y. Long, C. Zhang, and B. Li, “Linkteller: Recovering private
edges from graph neural networks via influence analysis,” S&P 2022,
2021.

[5] C. Y. et. al., “Secure deep graph generation with link differential privacy,”
in IJCAI 2021, 8 2021.

[6] S. Sajadmanesh and D. Gatica-Perez, “Locally private graph neural
networks,” in CCS’21, 2021.

[7] S. Kim, H. Shin, C. Baek, S. Kim, and J. Shin, “Learning new words
from keystroke data with local differential privacy,” TKDE’20, 2020.

[8] D. Wang and X. Jinhui, “On sparse linear regression in the local
differential privacy model,” in ICML, 2019.

[9] J. McAuley and J. Leskovec, “Image labeling on a network: using social-
network metadata for image classification,” in ECCV, 2012.

[10] N. Gong, Zhenqiang, and B. Liu, “Attribute inference attacks in online
social networks,” ACM TOPS), 2018.

[11] C. Dwork, A. Roth et al., “The algorithmic foundations of differential
privacy.” Found. Trends Theor. Comput. Sci., 2014.

[12] S. P. Kasiviswanathan, K. Nissim, S. Raskhodnikova, and A. Smith, “An-
alyzing graphs with node differential privacy,” in Theory of Cryptography,
2013.

[13] C. Bo, H. Calvin, Y. Kasra, and H. Matthew, “Edge differential privacy
for algebraic connectivity of graphs,” 2021.

[14] A. Clauset, C. Moore, and M. E. Newman, “Structural inference of
hierarchies in networks,” in ICML Workshop, 2006.

[15] Q. Xiao, R. Chen, and K. Tan, “Differentially private network data release
via structural inference,” in KDD’14, 2014.

[16] S. M. Lundberg and S. Lee, “A unified approach to interpreting model
predictions,” Advances in neural information processing systems, 2017.

[17] W. Hamilton, Z. Ying, and J. Leskovec, “Inductive representation learning
on large graphs,” NIPS, 2017.

[18] H. Kaiming, Z. Xiangyu, R. Shaoqing, and S. Jian, “Deep residual
learning for image recognition,” in CVPR, 2016.

[19] J. Deng, J. Guo, E. Ververas, I. Kotsia, and S. Zafeiriou, “Retinaface:
Single-shot multi-level face localisation in the wild,” in CVPR, 2020.

[20] T. N. Kipf and M. Welling, “Semi-supervised classification with graph
convolutional networks,” ICLR’17, 2017.

[21] J. Duchi and R. Rogers, “Lower bounds for locally private estimation
via communication complexity,” in Conference on Learning Theory’19.

[22] W. Ning and others., “Collecting and analyzing multidimensional data
with local differential privacy,” in ICDE 2019, 2019, pp. 638–649.

[23] Z. Yang et al., “Local differential privacy-based federated learning for
internet of things,” IEEE IoT Journal, 2020.

[24] T. B. A. Dosovitskiy, “Inverting visual representations with convolutional
networks,” CVPR, 2016.

APPENDIX A
PROOF OF THEOREM 3

Proof. Considering an arbitrary feature i with noise scale σi and score θi. To satisfy εi-LDP, for any pair of input value
t/k, t′/k ∈ { 1

k , . . . , 1}, we bound the following proportion:

Pr(u/k|t/k)

Pr(u/k|t′/k)
≤ arg max

u,t,t′

Pr(u/k|t/k)

Pr(u/k|t′/k)
=
Pr(1/k|1/k)

Pr(1/k|k/k)

= exp[
|1/k − 1/k| − |k/k − 1/k|

σi
] ≤ exp

(k − 1

kσi

)
≤ eεi

Therefore, we have:

σi ≥
(k − 1)

kεi
(16)

By the strong composition theorem, the total privacy budget for the whole feature vector is calculated as follows:
d∑
i=1

εi = εf

d∑
i=1

θi = εf (17)

which completes our proof.

APPENDIX B
PROOF OF LEMMA 4

Proof. Considering two neighbor graphs G(V, Epub ∪ Epri), G(V, Epub ∪ E ′pri) which are different at one private edge. Without
loss of generality, we consider |Epri| = |E ′pri| − 1. First of all, we fix N̄r and let f(ē) = χ(p̄r)− χ(p̄′r) and ∆e = max|f(ē)|.
The second order derivative of h(p̄r) is given by: χ′′(p̄r) = − 1

1−p̄ −
1
p̄ < 0,∀p̄. Therefore, χ′(p̄r) is a monotonically decreasing

function which implies that f(ē) is also a monotonically decreasing function (p̄r > p̄′r). With the monotonic property of f(ē)
we can derive value of ∆e when ē = 1 or ē = N̄max. Fixing ēr = 1 and vary N̄r, therefore, ∆e = maxN̄r

|f(N̄r)|, where

f(N̄r) = 1 log
1

N̄r
+ (N − 1) log

(
1− 1

N̄r

)
(18)

The first order derivative of f(N̄r) = log
(

1 − 1
N̄r

)
< 0,∀N̄r, so that f(N̄r) is monotonically decreasing by N̄r. Since

f(N̄r) < 0,∀N̄r ∈ [1,+∞], we conclude that ∆e = −min(f(N̄r)) = −f(N̄max). Therefore,

∆e = log(N̄max)− (N̄max − 1) log
(N̄max − 1

N̄max

)
= log(N̄max)− log

(N̄max − 1

N̄max

)(N̄max−1)

= log(N̄max)− log
(

1− 1

N̄max

)(N̄max−1)

(19)

According to Cauchy’s inequality, Nmax ≤ (L̄r+R̄r)2

4 and the equality happens when L̄r = R̄r = |V̄ |
2 → Nmax = |V̄ |2

4 when
|V̄ | is even and Nmax = |V̄ |2−1

4 when |V̄ | is odd.

APPENDIX C
ALGORITHMS

Algorithm 1 Feature level protection (FEATURERR)
1: Input: Privacy budget εf , number of bins k, number of features d, embedding features z, importance score vector α, sensitivity score vector β,

hyper-parameter γ.
2: Output: Perturbed embedding features z̃
3: Normalize the values of z to [0, 1]
4: θi ← γαi + (1− γ)

[
βmin + (βmax − βi)

]
,∀i ∈ [d]

5: θi ← θi∑d
j=1 θj

, ∀i ∈ [d]

6: εi ← θiεf and σi = k−1
kεi

, ∀i ∈ [d]

7: for i ∈ {1, . . . , d} do
8: for t ∈ {1, . . . , k} do
9: if t−1

k
≤ zi ≤ t

k
: zi ← t

k
10: end for
11: end for
12: Initialize empty vector z̃ same shape with z.
13: for i ∈ {1, . . . , d} do

14: z̃i =


1
k
, with probability Pr(1

k
|zi)

. . .
k
k
, with probability Pr(k

k
|zi)

15: end for
16: return z̃

Algorithm 2 Edge level protection EDGERR
1: Input: Input graph G(V, Epub ∪ Epri), privacy budget εe1.
2: Output: randomized graph G̃(V, Epub ∪ Ẽpri)
3: Initialize the MCMC by a random dendrogram Do;
4: A← the adjacency matrix of G
5: for each step t of MCMC do
6: for each public step do
7: Randomly pick an internal node r in Dt−1

8: Sample D′ from a possible structure of substree at r
9: Accept Dt = D′ with propability min

(
1,

exp Lpub(D′)
exp Lpub(Dt−1)

)
10: end for
11: for each private step do
12: Randomly pick an internal node r in Dt−1

13: Sample D′ from a possible structure of substree at r

14: Accept Dt = D′ with propability min
(

1,
exp (

εe1
∆e

Lpri

(
D′)
)

exp
(

εe1
∆e

Lpri(Dt′−1)
))

15: end for
16: if converged then
17: D∗ = Dt
18: end if
19: end for
20: Applying CalculateNoisyProb(Gpri(Vpri, Epri),D∗, εe2, rroot)
21: Initialize Ã be zeros matrix
22: for each pair of u, v ∈ V do
23: if u ∈ Vpri and v ∈ Vpri then
24: Find the lowest common ancestor r of u and v
25: Ãu,v ∼ Ber(1, p̃r) (Bernoulli’s distribution); Ãv,u = Ãu,v
26: else
27: Ãu,v = Au,v ; Ãv,u = Ãu,v
28: end if
29: end for
30: Construct G̃ from Ã and return G̃

Algorithm 3 CalculateNoisyProb(Gpri,D∗, εe2, r) [15]
1: Input: Private graph Gpri(Vpri, Epri), sampled dendrogram D∗, privacy budget εe2, internal node r
2: Output: Perturbed set {p̃r}
3: λb ← 1

εe2L̄rR̄r
; λc ← 1

εe2(L̄r+R̄r)(L̄r+R̄r−1)
4: if λb ≥ τ1 and λc ≥ τe then
5: ẽr ← number of edges in the sub-graph induced from all private leave nodes of sub-tree rooted at r;

6: p̃r ← min
(

1,
ẽr+Lap(1

εe2
)

(L̄r+R̄r)(L̄r+R̄r−1)/2

)
7: for each child internal node r′ of r do
8: p̃′r ← min

(
1,

ẽr+Lap(1
εe2

)

(L̄r+R̄r)(L̄r+R̄r−1)/2

)
9: end for

10: else
11: p̃r ← min

(
1,
ēr+Lap(1

εe2
)

L̄rR̄r

)
12: rL ← left child of r; rR ← right child of r;
13: CalculateNoisyProb(Gpri,D∗, εe2, rL)
14: CalculateNoisyProb(Gpri,D∗, εe2, rR)
15: end if
16: return {p̃r}

APPENDIX D
SUPPLEMENTARY RESULTS

Fig. 9. An overview of feature’s importance and sensitivity indication process.

Fig. 10. Additional results of model performance of the combination of feature-level and edge-level protection of the FLICKR-MIR dataset.

(a) PPI with ρ = 0.05 (F1-SCORE) (b) PPI with ρ = 0.1 (F1-SCORE) (c) PPI with ρ = 0.2 (F1-SCORE)

Fig. 11. Additional results of model performance of the combination of feature-level and edge-level protection for the PPI dataset.

	I Introduction
	II Background
	III HeteroRR: DP preserving in GNNs
	III-A Feature-aware Randomized Response (FeatureRR)
	III-B Edge-aware Randomized Response (EdgeRR)

	IV Privacy Guarantees
	V Experimental Results
	VI Conclusion
	References
	Appendix A: Proof of Theorem 3
	Appendix B: Proof of Lemma 4
	Appendix C: Algorithms
	Appendix D: Supplementary results

