
To test, or not to test: A proactive approach for
deciding complete performance test initiation

1st Omar Javed
Department of Informatics, Università della svizzera italiana

Lugano, Switzerland
omar.javed@usi.ch

2nd Prashant Singh
Department of Information Technology, Uppsala University

Uppsala, Sweden
prashant.singh@scilifelab.uu.se

3rd Giles Reger
School of Computer Science, University of Manchester

Manchester, United Kingdom
giles.reger@manchester.ac.uk

4th Salman Toor
Department of Information Technology, Uppsala University

Uppsala, Sweden
salman.toor@it.uu.se

Abstract—Software performance testing requires a set of inputs
that exercise different sections of the code to identify performance
issues. However, running tests on a large set of inputs can be a
very time-consuming process. It is even more problematic when
test inputs are constantly growing, which is the case with a large-
scale scientific organization such as CERN where the process of
performing scientific experiment generates plethora of data that
is analyzed by physicists leading to new scientific discoveries.
Therefore, in this article, we present a test input minimization
approach based on a clustering technique to handle the issue
of testing on growing data. Furthermore, we use clustering
information to propose an approach that recommends the tester
to decide when to run the complete test suite for performance
testing. To demonstrate the efficacy of our approach, we applied
it to two different code updates of a web service which is
used at CERN and we found that the recommendation for
performance test initiation made by our approach for an update
with bottleneck is valid.

Index Terms—Recommendation system, Performance analysis,
Unsupervised learning, Software testing.

I. INTRODUCTION

performance issues during the early stage of software de-
velopment is crucial to avoid software failures [1]. It has
been shown that performance bugs can cause critical software
failures that can result in the abandonment of big projects [2].
Furthermore, performance bugs are often very costly to di-
agnose because their consequences are not easily observable,
which leads to many hours of diagnosis and fixing [1].

One approach to performance bug detection is unit testing.
However, anecdotal evidence shows that unit testing for per-
formance analysis is not nearly as common as unit testing of
code correctness (i.e., functional bug detection) [3]. One of the
reasons is that performance issues arise only with particular
inputs. Hence, they can easily escape into production.

To overcome this issue, studies have shown that profiling
unit tests with different inputs can lead to identifying perfor-
mance bugs [1], [4]. Furthermore, these studies use inputs that
are gathered from analyzing bug patches. However, they do not
consider large-scale input sets used by real users.

A big challenge for performance testing is to identify
interesting input space i.e., inputs that can expose performance
bugs [4]. This makes performance testing over a large set of
inputs a very time-consuming process. The reason is that unit
tests are executed repeatedly on different inputs to evaluate
the performance of the software on code changes (i.e., perfor-
mance regression testing).

Furthermore, the high testing time can be more problematic
for systems in organizations that deals with generation of
growing data. For example, CERN (the European Organization
for Nuclear Research) processes prodigious amounts of data
every day (in the order of Petascale) [5]. Moreover, the
Large Hadron Collider (LHC) which is the “most powerful
particle accelerator” facilitate different detectors such as the
Compact Muon Solenoid (CMS), ATLAS etc in carrying out
experiments, produces a large volume of data i.e., 90 PetaByte
each year [5]. The issue for such system is the dependency on
the stored data that grows over time. Therefore, it is necessary
for performance testing to account for that growth.

To avoid the overhead and turnaround time involved in
checking for performance issues on code change. Existing
studies [6], [7] have proposed different strategies for opti-
mizing performance regression testing based on either test
selection or code metrics. However, these studies do not
consider the effect of data growth.

Therefore, in this article, we use a web service, employed
by the CMS experiment at CERN called Conditions Uploader
service [8] as a use case to demonstrate the problem of
performance regression testing with increasing number of test
inputs. We use the Conditions uploader service because it adds
a level of complexity to the traditional performance testing
paradigm i.e., the data growth problem. Here, the growth
problem is because of the continued running of LHC that
further generates more data. This growing data is used as test
inputs for the testing of CMS uploader service. Consequently,
making performance regression testing on increasing inputs a
challenging task.

ar
X

iv
:2

20
5.

14
74

9v
1

 [
cs

.S
E

]
 2

9
M

ay
 2

02
2

A. Motivating example

Input

Performance testing

Development line

Development line for CMS uploader Service

Frequent updates

Updates

Fig. 1. Figure showing the development timeline of CMS uploader service.

0

200

400

600

800

1000

1200

1400

1600

Co
mm

it-1

Co
mm

it-2

Co
mm

it-3

Co
mm

it-4

Co
mm

it-5

Co
mm

it-6

Co
mm

it-7

Co
mm

it-1
0

Co
mm

it-1
4

Ti
m

e
(m

in
ut

es
)

Updates

Timeout

Fig. 2. Figure demonstrating performance testing with increasing inputs. It
shows the increase in execution time of testing with the increase in inputs at
each commit. Commit-1 is the oldest update whereas Commit-14 is the latest.

Figure 1 and 2 uses the CMS uploader service to demon-
strate two key problems of performance regression testing with
growing data. The problem is demonstrated in the context
of Continuous Integration (CI) which is now a widely used
practice, as it performs automated builds and regression tests
(i.e., functional and non-functional) of software. We discuss
these two problems as follows:

1) Frequent Update Problem: The first problem is the exe-
cution of a test suite on frequent updates (as demonstrated by
red circles in the Figure 1). The figure provides an illustration
of the practice of running a test suite on frequent updates to
check for performance bugs. This practice is often impractical
and challenging for developers, since the waiting time for
performance tests is high. Therefore, developers run tests in
batches i.e., testing is done on a weekly or monthly basis
or when there is an important update [9]. This infrequent
execution of the tests makes it difficult for developers to detect
which update caused the issue [9].

2) Data growth Problem: The second problem is the ex-
ecution of the test suite after the addition of new data (or
test inputs) leading to a higher execution time; this can be
seen in Figure 2 which represents the actual part of update
history of CMS uploader web service. The figure highlights
the time taken when increasing data i.e., number of inputs
at each update. Furthermore, we observe from the figure that
regression testing with growing test inputs can quickly lead to

a timeout in CI; this is because existing CI services limit the
use of resources for a longer duration of time.

Based on this premise, we propose an approach to over-
come the aforementioned problems of performance regression
testing.

B. Contribution of the article

We present three key contributions of this study, which are
as follows:

1. We discuss and address the issue of (ever) growing data in
the context of web service testing. This study is timely since
many organizations are facing (or will face) this imminent
issue.

2. We demonstrate test input minimization approach. With our
approach, testers can overcome the problem of high test
execution time with growing data.

3. We propose a recommendation approach to help developers
in deciding when it is feasible to initiate performance test-
ing. This recommendation approach can address the problem
of costly test execution at each update.

C. Structure of the article

The article is divided into separate sections, which are as
follows:

• Section II presents the background and related work in this
area of study.

• Section III explains our approach for the recommendation
of performance regression testing.

• Section IV and V presents evaluation and our findings.

• Section VI provides our conclusion for the study.

• In appendix, we present our analytic system for CI and also
significance test.

D. Resources

We provide implementation of our algorithms for recom-
mending performance testing, which are available in a public
repository website [10]. Furthermore, we also provide source
code of our CI analytic system as well as the instructions for
setting up the front-end and back-end of our analytic system.
This can also be found in a public repository [11].

II. BACKGROUND AND RELATED WORK

In this section, we provide a background of the CMS
uploader service. Furthermore, we explore the existing state-
of-the-art in the area of performance regression tests and input
selection. Finally we show existing CI tools and services as
well as highlight CI tools used in performance regression
testing.

A. CERN CMS Uploader service

Data growth is becoming a big problem for systems in
organizations that deals with ever growing data. One such
example is CERN which has world’s largest and most pow-
erful particle accelerator known as Large Hadron Collider
(LHC). Furthermore, the Compact Muon Solenoid (CMS) is
a general-purpose detector at one of the interaction points
on the LHC [12]. Physics analysis requires a process of
reconstruction that makes use of collision events as well as
alignment and calibration or “conditions” data. During LHC
runs, conditions data begins with its computation and ends
with its upload to a central Conditions database.

The service responsible for uploading conditions data is the
CMS Uploader service. It performs correctness checks before
conditions data are uploaded. The CMS uploader service has
65 test cases and approximately 40K test inputs representing
conditions data that continues to grow due to LHC runs.
Therefore, adequate test size, growing input space, and its
usage by real users at CERN make the CMS uploader service
a reasonable use case for our study.

Furthermore, the importance of automated performance
analysis and testing over different inputs for the CMS uploader
service has already been demonstrated in previous works [13],
[14]. In this study, we will address the issues and challenges
of performance regression testing of the CMS uploader service
with growing data.

B. Regression performance test selection

Traditional regression test selection techniques focus mostly
on correctness tests. There are few studies that focus on perfor-
mance regression test selection [6], [7], [15]. These studies use
previous commit information on making test selection. In con-
trast, our approach helps developers in deciding when to run
performance tests. Our approach is based on approximating
the slowdown of the system by sampling minimal information
of code behavior with respect to test inputs. Therefore, our
approach, does not require historical code change information
to make predictions, rather uses information about current code
modifications to make a decision.

Furthermore, there are studies based on heuristics to identify
potential performance changes e.g., assigning costs to source
code changes [16], prioritizing performance tests based on the
impact a code change has on the system’s performance [17]
and selection of test inputs to determine a performance model
(e.g. the function of the response time) [18], [19]. We draw
inspiration from these studies to build a recommendation
approach that identifies regression performance test opportu-
nities.

C. Input selection for testing

Existing study on input selection [4] tries to understand the
effectiveness of performance bug detection. A specific set of
inputs is generated based on the information present in the
bug report. To select inputs based on program behavior, Qi
Luo [20] proposed an approach that analyzes the performance
behavior of the program and tries to connect the behavior

with test input data. This work is similar to ours in terms
of selecting inputs based on program behavior. Furthermore,
one of the state-of-the-art approach DeepGini [21] prioritizes
test inputs by measuring the confidence of Deep Neutral
Networks (DNN) for classifying each test input. Test inputs are
prioritized higher based on similar probabilities for all classes.
Moreover, a study [22] aims to estimate the accuracy of the
DNN model by selecting a small set of test inputs. Compared
to these studies, we use unsupervised learning to reduce the
number of test inputs that exercise similar program behavior
based on unit test execution.

D. Continuous Integration services
Continuous integration (CI) is the practice of integrating

different code changes by multiple developers. It consists
of automatically checking correctness of the code before
integration. There are a number of popular CI options available
such as CircleCI [23], TravisCI [24], Codeship [25], Bitbucket
pipelines [26], SemaphoreCI [27], and many more. These CI
tools allow developers to automatically execute unit tests (in a
remote server) before pushing changes to the code on a code
repository service like GitHub. Hence, a CI process provides
a separation of concern (i.e., one service handles code version
control, while a different service handles fault detection).

However, many existing CI services only provide func-
tionality for correctness tests. There are separate tools and
plugins that support performance testing in CI e.g., Jenkins
uses the Taurus tool for load testing [28]. PeASS [29] is a tool
which identifies performance degradation between two code
versions. Similarly, PerfCI [14] is a toolchain for automated
performance testing which allows developers to specify the
number of test inputs to be used for performance testing. Our
approach could be helpful in such scenarios where the cost
of performance tests is quite high due to a large number of
inputs.

III. APPROACH FOR RECOMMENDING PERFORMANCE
TESTS

Profiling Clustering Inspection Sampling Sample
Profiling

Slow down
Detection

Decision

Fig. 3. Our approach for recommending performance test initiation

This section describes our approach for recommending
performance test initiation. Our approach consists of several
stages as shown in figure 3. Therefore, we explain different
stages that work together to assist developers in making
informed decisions about test initiation.

Our approach works on two different types of updates; 1)
addition of test inputs and 2) code modifications. Profiling,
clustering and inspection are three stages that are applied
to cluster test inputs. On the other hand, sampling, sample
profiling and slow down detection are applied on code updates.

A. Profiling

We apply static and dynamic analysis to observe program
behavior and collect different program information such as ex-
ecution time, memory usage, size of the input etc. In machine
learning terminology, we refer to each program information
(such as execution time, memory usage etc) as attributes.

A test suite consists of several test cases; each test case
executes a part of the application code. Therefore, the test
suite is executed repeatedly on different test inputs to exercise
different section of the application code.

Therefore, profiling (or code analysis) is performed during
test execution to apply unsupervised machine learning algo-
rithms to group test inputs based on similar attributes. The
selection of attributes (or program information) is based on
our experience with performance analysis of CMS uploader
service and from previous test case minimization studies [30].
We further explain each one of the attributes as follows:
• Execution time: The total time it takes for the test suite to

complete execution on each test input.

• Memory usage: The memory used during the execution of
the test suite on each test input.

• Total number of iterations: This represents the accumulated
number of loop iterations executed in different sections of
the code exercised by the test cases in a test suite on each
test input.

• Total statements executed: Statements which are executed
by the test suite on each test input.

• Function calls: Function calls made during the execution of
the test suite on each test input.

• Conditional executed: Sequence of conditions taken in the
execution of the test suite on each test input.

• Input Size: Input represent various aspects of the CMS
detector’s configuration. Therefore, the size of each input
varies based on the information it contains about the detector
configuration.
1) Minimizing measurement perturbations: One of the is-

sues of profiling program’s resources such as execution time
is measurement perturbation. Instrumentation inserted in the
code can perturbate measurements resulting in incorrect mea-
surement of execution time [31]. To overcome this issue, we
use PerfCI [14] to carry out our profiling task. PerfCI allows
developers to write pluggable user-defined analysis for CI. It
leverage stages [32] in a CI process to allow different profiling
analysis to execute separately. Therefore, one can measure
resources such as execution time in a different stage and other

attributes can be collected in a separate stage. Furthermore,
stages can be executed in parallel to quickly complete profiling
and ensure that profiling itself does not lead to perturbations
of profiling results.

B. Clustering

Identifying similar code behavior by clustering has been
carried out in previous software testing studies [33]–[35].
However, our study addresses the issue of performance regres-
sion testing in growing test inputs. Furthermore, clustering of
test inputs provides the benefit of gaining useful insights about
the test inputs with respect to code behavior. This information
would be useful for developers when selecting test inputs.

Reduction of test inputs is carried out by clustering data
points collected from profiling. These data points represents
program behavior on each test input. After clustering of test
inputs, there is a stage called inspection which allows devel-
oper to check whether the clustering applied is appropriate.

C. Inspection

It is not always easy to identify clear clusters. The order
in which data points are arranged may affect the clusters.
Furthermore, another issue with identification of clear clusters
is with data which has many missing values [36].

The arrangement of initial clusters is also important. A
careful and comprehensive analysis of data is required. If the
initial clusters are not carefully and properly chosen, then after
some iterations, clusters may become empty [36]. Therefore,
cluster inspection is necessary to ensure correct clustering
is done. In this regard, different clustering algorithms and
parameters are used for correct clustering. In appendix, we
present our dashboard that allows inspection of clustering data.

We now explain sampling, sample profiling and slow down
detection with the help of fig 4 along with algorithm 1 and
2. This makes the core decision making part of our approach.

D. Sampling

After clustering of inputs, our approach is prepared for iden-
tifying performance regression testing opportunities based on
code updates. We use the number of executed statements and
execution time as the two key attributes for decision making.
Intuitively, these two attributes should exhibit correlation as
executed statements has an impact on the execution time [37].
We further demonstrate the correlation of these attributes in
the evaluation section.

Figure 4A shows selection of data points by random
sampling. Sampling is done to collection minimum program
information based on new code updates. Therefore, we kept
the sampling size at a minimum e.g., we use 3 data points
from each cluster. These data points contain information about
specific test inputs which are used by sample profiling.

E. Sample profiling

In this stage, profiling is done with sampled test inputs
on code update. Program information such as ”number of
executed statements” and ”execution time” is collected in this

��	�����
����	

��
�
�	
���

�	
�	
��
�	
��
��
��
	�

	

��

��	�����
����	

��
�
�	
���

�	
�	
��
�	
��
��
��
	�

	

��

(A) (B) (C)

��	�����
����	

��
�
�	
���

�	
�	
��
�	
��
��
��
	�

	

��

��
�

��

(D) (E) (F)

��	�����
����	

��
�
�	
���

�	
�	
��
�	
��
��
��
	�

	

��

�

��

����

��	�����
����	

��
�
�	
���

�	
�	
��
�	
��
��
��
	�

	

��

����

��

���

��

��	�����
����	

��
�
�	
���

�	
�	
��
�	
��
��
��
	�

	

��

�
��

�

�
��

Fig. 4. Figure demonstrating different steps taken by our approach for recommending performance regression testing. Fig.3 A) shows sampling of datapoints
in clusters, B) selects cluster (in normal black color) one at a time, C) & D) identification of time threshold, E) gradient measurement and F) handling of
outlier datapoint.

Algorithm 1: Decision to Perform Testing
Decide(Du:updated data point, Th: time threshold,

C: current cluster, Al: acceptable limit)
1. Initialize decision D to False
2. IF time information Tu in Du > Th

3. Set D to True
4. ENDIF
5. IF D is not True
6. Get time information Tp in previous data point

from current cluster C
7. Get no. of executed statement information Sp in

previous data point from current cluster C
8. Get time information Tu in Du

9. Get no. of executed statement information Su in Du

10. Calculate gradient G on points (0, Tp) , (0,Sp)
11. Calculate gradient G1 on points (0, Tu) , (0,Su)
12. Calculate gradient change Gc between G and G1

13. IF Gc > Al

14. Set D to True
15. ENDIF
16. ENDIF
17. Return D

stage. Further optimization can be achieve in sample profiling.
Instead of running all tests on sampled test inputs, one can
execute test cases which exercise application code that has
been updated. This can be achieved by identifying difference
between commits. A git diff command [38] can be used for

this purpose.

F. Slow down detection and decision making

After sampling and sample profiling stage, our algorithm
maps new updated data points to their respective clusters. This
mapping is done by selecting one cluster at a time as shown
in figure 4B, where selected cluster is highlighted in black.

To detect a slow-down, our algorithm initially tries to find
a time threshold value for the updated data point. Therefore,
it attempts to detect the location of the updated data point in
its cluster. We demonstrate this in figure 4C, if the ”number
of executed statements” attribute of the updated data point
matches with the ”number of executed statements” attribute
in any previous data point. Our algorithm tries to find a data
point that has the highest execution time” attribute among all
data points sharing the same ”number of executed statement”
attribute. This will be adjudged as the time threshold (indicated
as th) in figure 4C.

As shown in figure 4C, there are two cases where the
updated data point can lie; one is that the ”execution time”
attribute is decreased which is indicated as D1. In the second
case, there is an increase in the ”execution time” beyond the
time threshold Th as indicated by D2 that is approximated
as a slowdown. Therefore, a decision to initiate performance
testing is made by the algorithm. This operation is shown on
line 3-5 of algorithm 1.

On the other hand, if the ”number of executed statement”
attribute of the updated data point does not match with the
”number of executed statement” attribute of any previous data
point then time threshold is identified based on the location

Algorithm 2: Cluster data point evaluation
DataPointEvaluation(Cl: list of clusters, Dd: list of

updated data points)
1. FOR EACH c in Cl

2. FOR EACH d in Dd

3. IF num. of executed statements se in d equal to se
in c

4. Get time information t for se in c.
5. return Decide (d, t, c)
6. ELSE
7. Get data points above and below the datapoint d

in cluster c
8. IF datapoint above (or below) d does not exist
9. Get max time information tm for datapoint

below (or above) in cluster c
10. return Decide (d, tm, c)
11. ELSE
12. Find max time information ta of datapoint in c

above d
13. Find max time information tb of datapoint in c

below d
14. Calculate mid-point tmd of ta and tb
15. return Decide (d, tmd, c)
16. ENDIF
16. ENDIF
17. END FOR
18. END FOR

of two data points which are above and below the updated
data point. Moreover, data points (above and below) that have
maximum “execution time” attribute are used to determine the
time threshold; this is done by calculating the mid point of the
“execution time” attribute of the data points above and below
shown as T1h for D1 or T2h for D2 in figure 4D. After setting
the time threshold, same conditions are applied to make a
decision i.e., does the execution time attribute of updated data
point cross the time threshold value as indicated for D2 in
figure 4D. This operation is accomplished in line 7,12-15 of
algorithm 2.

Furthermore, figure 4D demonstrates a case where “ex-
ecution time” attribute of the updated data point is close
to the time threshold. Even though there is an increase in
the execution time for the data point but algorithm will not
decide in favor of initiation performance testing from this
observation because the updated data point does not cross
the time threshold. Hence missing out on a performance test
opportunity.

To handle this issue, the gradient of the lines from the origin
to either data points (i.e., original and updated) are measured.
This is shown in figure 4E as G and G1. To check whether
there is a decrease of gradient from G to G1, a change is
measured which is indicated as C in figure 4E. This allows one
to estimate the slow-down of the time between the original and
updated data point. In section V, we demonstrate the advantage

for using gradient in making decisions for performance testing.
Our algorithm for slow-down detection also takes outliers

into account i.e., the updated data point falls outside of the
boundary of cluster. Depending on where the updated data
point lies, the data point in the cluster closet to the updated
data point is selected. For example, the data point having
maximum execution time attribute below the outlier data point
is selected as shown in figure 4F and the operation is shown
on line 8-10 in algorithm 2.

Therefore, cluster data point evaluation algorithm (i.e.,
algorithm 2) identifies the position of updated data point with
reference to original data point. The decision making is then
done by Decision to Perform Tests algorithm. To make a
decision, the algorithm will always first check whether time
threshold condition is met line 2-3. On a false condition, it
will measure gradients of the data points and identify whether
the change is within the acceptable limit or not. Acceptable
limit is the limit on slow-down i.e., how much slow-down is
acceptable for the software. This parameter can be tuned by
the developer.

IV. EVALUATION

The analysis of this study has been conducted on a SNIC
science cloud [39] with Ubuntu Linux 16.04.4 LTS operating
system. Furthermore, the configuration of the virtual machine
is 4x 2.2 GHz vCPUs, 8 GB of RAM.

We use Gitlab CI pipeline at CERN [40] for executing test
suite. The web service that we have used for our case study
is CMS uploader service which is developed at CERN [8].
Furthermore, time measurements are taken an average of 3
repeated runs.

In our evaluation, we will begin by demonstrating the
relationship between the variables (i.e., attributes) used for
clustering. We used correlation test which is most widely used
statistical measure to assess relationships among variables.

Secondly, we demonstrate minimization of test inputs by
applying different clustering algorithms. Finally, we use two
different code updates for demonstrating the feasibility of our
recommendation approach.

A. Correlation between variables representing program be-
havior

In figure 5, we demonstrate a correlation between different
variables that are selected by profiling. These variables rep-
resents the behavior of the code during the execution of test
suite. The relationship in figure 5 is based on executing test
suite with 4000 different test inputs. This is because addition of
more test inputs was not changing the behavior of our analysis.
This is demonstrated in figure 11.

We can see from the figure that 5 out of 7 variables (or
attributes) demonstrates a positive correlation i.e., variables
move in the same direction. However, there is also a negative
correlation between two variables; this is between input size
and executed conditions. This is quite intuitive since increasing
input size should not have an effect on how conditionals are
executed since conditionals are based on the evaluation of

size FunCalls TExeStmt TNoItr ExeCond mem time

size

FunCalls

TExeStmt

TNoItr

ExeCond

mem

time

1 0.77 0.91 0.91 -0.027 0.07 0.85

0.77 1 0.89 0.88 0.41 0.42 0.71

0.91 0.89 1 1 0.053 0.09 0.81

0.91 0.88 1 1 0.032 0.076 0.81

-0.027 0.41 0.053 0.032 1 0.48 0.0072

0.07 0.42 0.09 0.076 0.48 1 0.13

0.85 0.71 0.81 0.81 0.0072 0.13 1
0.0

0.2

0.4

0.6

0.8

1.0

Fig. 5. Correlation matrix between different variables; where labels such as Size represents Input size, FunCalls represents total function calls, TExeStmt
represents total executed statements, TNoItr represents number of iterations, ExeCond represents executed conditionals, Mem represents memory used during
execution of test suite, and Time represents the total execution time

expressions. Furthermore, we also see that other variables
have negligible (or very low) correlation with executed
conditionals.

Furthermore, input size demonstrates a strong correlation
with function calls, executed statements, iterations as well as
execution time. This means that increasing input size will
increase the number of fuction calls, executed statements,
number of loops and executed time of the test suite. On the
other hand, there is a weak correlation between input size and
memory usage.

This indicates that CMS uploader service is not a memory
intensive application. We try to see whether the correlation
are statistically significant by conducting a P-value test. This
is shown in appendix-B.

2 4 6 8 10
k

0

1

2

3

4

5

Di
st

or
tio

n

1e9

Optimal

Fig. 6. Elbow method for determining the number of clusters in dataset

B. Identification of clusters

We use clustering to minimize inputs based on similar code
behavior. We apply most popular distance-based clustering
such as K-means [41]. Moreover, identification of the optimal
number of clusters is done by a heuristic technique called the
elbow method [42].

This method consists of plotting the variations (or distor-
tions) representing how well the dataset is clustered by the

Input Size

0.0
0.2

0.4
0.6

0.8
1.0

St
at

em
en

ts

0.0

0.2

0.4

0.6

0.8

1.0

Ti
m

e

0.0

0.2

0.4

0.6

0.8

1.0

0.0

0.5

1.0

1.5

2.0

2.5

3.0

Fig. 7. Three dimensional view of clustering done by distance-based cluster-
ing algorithm

model. Therefore, the number of clusters is selected when the
variations stop or the curve becomes smooth. Figure 6 shows
the elbow method applied on our dataset. It can be seen that
distortion is minimized at 5 which is shown with an red arrow
in figure 6.

After identifying optimal number of clusters by elbow
method the result of clustering by KMeans is shown in
figure 7. The figure shows a 3D scattered plot based on
3 dimensions such as input Size, executed statements and
execution time. It can be seen that proper clusters are not
formed based on five clusters with Kmeans. This is because
clustering in KMeans is an iterative process; user has to update
the number of clusters iteratively. Furthermore, the data in
figure 7 shows that the more appropriate number of clusters
can be either 2 or 3. We will now apply different clustering

Input Size
0.0

0.2

0.4

0.6

0.8

1.0

Ex
ec

ut
ed

 S
ta

te
m

en
ts

Distance-based clustering (KMeans)

Input Size
0.0

0.2

0.4

0.6

0.8

1.0

Ex
ec

ut
ed

 S
ta

te
m

en
ts

Distribution-based clustering (GMM)

Input Size
0.0

0.2

0.4

0.6

0.8

1.0

Ex
ec

ut
ed

 S
ta

te
m

en
ts

Hierarchical-based clustering (Agglomerative)

0.0 0.2 0.4 0.6 0.8 1.0
Input Size

0.0

0.2

0.4

0.6

0.8

1.0

Ex
ec

ut
ed

 S
ta

te
m

en
ts

Density-based clustering (DBSCAN)

Fig. 8. Different Clustering algorithms demonstrating the number of clusters

algorithms and check which of the algorithm provides a better
clustering.

C. Clustering based on different algorithms

Figure 8 shows clustering applied based on different types
of clustering algorithm. This is shown with a scattered plot
based on two features i.e., input size on x-axis and number of
executed statements on y-axis.

We have applied 4 different clustering algorithms such as
density-based (K-means), distribution-based (Gaussian mix-
ture model), hierarchical (Agglomerative), message passing
based (Affinity Propagation) and Density-based (DBSCAN).
We also used Affinity propagation but we realized that it was
not able to create clusters; it was reporting convergence issue.
We found out that this is due to a bug which is reported in
the issue page of scikit-learn repository 1.

Figure 8 gives a comparison of different clustering algo-
rithms. It is evident that kmeans, GMM and agglomerative
shows that clusters are being overlapped. The clustering done
by DBSCAN algorithm seems more appropriate. It divides the
clusters into two group.

1) Significance of cluster inspection: Our clustering analy-
sis gives a good indication why we need to have an inspection
in our approach. An incorrect number of cluster would not

1https://github.com/scikit-learn/scikit-learn/issues/17657

only affect our approach significantly but it will also not give
a useful insight into our data.

With DBSCAN, the clustering behavior remains consistent
compared to other clustering techniques. Furthermore, clus-
tering done by DBSCAN shows that test inputs containing
very low input size will have a program behavior where fewer
statement are executed, fewer iteration will be made resulting
in lower execution time. On the other hand, large input
size will lead to high number of statements being executed
resulting in higher execution time.

We will now demonstrate our decision making algorithm by
selecting data points from each cluster and apply changes to
the code.

V. RECOMMENDATION ON CODE CHANGE

In this section we demonstrate the feasibility of our decision
making part of the approach which comprises of Algorithm
1 (decision to perform tests) and Algorithm 2 (cluster data
point evaluation). We have described both algorithms and their
working principle in section III.

We apply our algorithms on two code changes 1) A known
bug in test suite which has been taken from previous study [14]
and 2) code review based on code analysis tool — PyLint [43]
which is used for error checking in the code.

This provides a reasonable evaluation of our decision mak-
ing algorithm since one update already has a bug and the other
update requires changes in different source files.

A. Code update 1: Bottleneck in test suite

There is a bottleneck in a constructor which occupies
99% of the total time taken by the unit test execution. This
bottleneck slows down the overall total CI execution time by
an average of 38%. More information about the performance
bug can be found in the study [14].

The idea of our algorithm is to obtain minimal information
to provide an informed decision about initiation of perfor-
mance tests. Therefore, three data points are selected from
each cluster. We also keep the acceptable limit of slow-down
to 38% since this was the overall slow-down observed due to
the performance bug in test suite.

TABLE I
DEMONSTRATION OF THE DECISION CHECKS FOR CODE UPDATE 1

Checks C11 C12 C13 C21 C22 C23
Timethreshold True False False True True False

Gradient x True False x x True

Table I shows how the two decision checks provides their
verdict on the slow down. In table I, Cij refers to the cluster
number and the selected inputs respectively. For example,
C11 corresponds to the first cluster and first input. The cross
(x) indicates that Gradient check was not required since the
condition of time threshold holds true. It can be seen that
50% of updated data points (i.e., C12, C13 and C23) did not
pass the conditions for time threshold. Gradient check adds a
valuable asset in the decision making since it detects the rate

https://github.com/scikit-learn/scikit-learn/issues/17657

of slow down between previous data point and its updated
one. For example, C12 and C23 has a rate of slow down of
>50% (i.e., 66% for C12, and 99% for C23) which exceeds
the acceptable limit of 38% that has been set. Hence, our
algorithm gives positive decision to initiation a performance
tests based on the decision checks of 5 out of 6 data points.

In case of C12, both checks did not pass, even though there
was rate of slow down of 20%. Developers can tune the
acceptable limit based on the need of the system. For example,
in some applications, it may not be feasible to have a slow-
down greater than 20%.

The recommendation for code update 1 is correct since there
is a bottleneck in the code.

B. Code update 2: Code review with PyLint

PyLint is a static code analysis tool for used error checking.
It is a popular tool for assuring code quality that gives an
overall rating to the code. Furthermore, it is also used by many
developers as well as big tech companies like Google [44].
Therefore, it is a feasible tool to use for demonstrating a code
update in our case study.

After analyzing the project, PyLint reported around 78%
of errors and warnings. Most of these errors can be referred
to as cosmetic bugs e.g., errors related to the use of imports
(Import checker messages 2) or too many boolean expressions
(Design Checker Messages). Therefore, we identified only
those errors that are related to code refactoring. For example,
use of enumerate instead of iterating with range and length
functions.

We identified 7 places in the project were this error occurs
and we updated the code by replacing range() and len() with
enumerate(). The reason for selecting this type of ”error”
is two-fold; firstly, we don’t want to refactor the code too
much such that it introduce additional errors, and secondly
enumerate has an impact on the execution time.

Table II shows that none of the conditions for TimeThresh-
old and Gradient are met i.e., all the conditions are False.
Furthermore, we also observed the rate of slow-down remained
under 0.5%.

TABLE II
DEMONSTRATION OF THE DECISION CHECKS FOR CODE UPDATE 2

Checks C11 C12 C13 C21 C22 C23
Timethreshold False False False False False False

Gradient False False False False False False

For code update 2, the recommendation is to skip perfor-
mance testing.

C. Importance of data point sampling

Developers can be skeptical about the use of recommen-
dation for bug identification since a miss opportunity of a
performance bug detection can lead to dire consequences and
their fix can be quiet time-consuming and costly [45]. In this

2https://vald-phoenix.github.io/pylint-errors/

regard, developers can face a situation where decision is 45-
55% i.e., 45% of the data points are in favor of initiating
performance test and 55% are in favor of skipping the tests.

To increase developers confidence, our approach allows
developers to increase the sample size of the data points during
sampling stage (section III-D), and see if the decision changes
i.e., more data points are in favor of initiating performance
tests. However, there is a trade-off in increasing the sample
size. Every time a new sample is used; a quick test is need to
be run. Therefore, it is important to select sample size wisely
when there is a doubt in recommendation.

VI. CONCLUSION

Software performance testing is a crucial software quality
assurance mechanism. However, performance testing is a time-
consuming process since it requires a set of inputs to exercise
different code sections. Therefore, running performance tests
on every code update makes it challenging for developers
because the time it takes for testing to complete. Furthermore,
this becomes impractical in organizations that deals with (ever)
growing data i.e., more test inputs are added to test the code.
To overcome these difficulties, we propose an approach that
recommends developers when to run or skip performance tests
by using minimal information from the code. We demonstrate
the feasibility of our approach by applying it to two code
updates and we found that our approach makes sound recom-
mendations.

APPENDIX A
CI ANALYTICS SYSTEM

Continuous IntegrationPerfCI toolchain Streaming CI analytics

CI Stages Source code profiling Resource profiling Plugin

Fig. 9. Overview of CI analytic system

Figure 9 shows the overall architecture of our CI analytic
system. There are four key stages of the architecture such
as PerfCI toolchain, Continuous Integration, Streaming and
Analytic. We briefly explain each of these four stages.

Stage 1 (PerfCI toolchain): We built our system on top of
our previous work — PerfCI [14] which allows developers to
write pluggable user-defined analysis for Continuous Integra-
tion. The structure of PerfCI analysis is shown in the following
code fragment. Developer implement three methods which are
in the abstract class InstrumentEvents. The analysis is added
to the test suite by instrumenting test cases and rewriting the
CI configuration file.

c l a s s R e s o u r c e C o l l e c t o r (I n t r u m e n t E v e n t s) :
def s t a r t m e a s u r e m e n t (s e l f) :

. . . .

def end measurement (s e l f) :
. . . .

def r e c o r d d a t a (s e l f , * a r g s) :
. . . .

Stage 2 (Continuous Integration): When the CI process
runs, the start measurement() and end measurement()
methods are executed on per unit test basis which gathers
the resource information such as execution time and memory
utilization. Furthermore, code-level metrics such as number of
function calls are also gathered based on the PerfCI analysis
defined by the user.

Stage 3 (Streaming): One of the problems with Continuous
Integration services is that it does not allow the storage of
large volume of data (i.e., maximum storage size is 1GB).
This is only allowed for limited time duration i.e., it will
delete the storage information after a week. To overcome this
issue, we use streaming framework such as Apache pulsar [46]
which streams our profiling data and offloads it out of the
continous integration service to a remote server. This provides
two advantages 1) one can perform real-time analysis and
2) large volumes of data can be handled. Furthermore, we
use Apache pulsar because of its multi-tenancy feature which
allows for increase scalability, cost reduction and improve
security. This is quite crucial for organization like CERN.

Stage 4 (Analytics): The analytic system has a front-end
which is implemented in plotly dash []. This allows the
development of interactive visualization. The main advantage
of dashboard is that the developers can visualize the clustering
data i.e., inspection. Once the developer is satisfied with the
clustering information. S/he can apply sampling, sample profil-
ing and slow down detection to evaluate whether performance
testing is required. This is one of the main advantage of our
CI analytic system.

We now highlight some important features of our CI analytic
system’s dashboard. These are labeled in numbers in figure 10.
We briefly explain each of these numeric labels as follows:

1. Different code updates. These are displayed as commit hash.
This allows developers to observe changes in the test data
on each update.

2. Execution time of each unit tests. Different unit test’s
execution time can be compared.

3. Total execution time of test suite. This gives a quick
overview of the performance of the test at each update.

4. Memory utilized during the execution of each test case.

5. To identify correlation between different variables.

1

2

3

4 5

6

7

Fig. 10. Analytic Dashboard

6. Cluster Panel which provides different options such as selec-
tion of different clustering algorithm, changing visualization
between 2D and 3D. This is an important feature of our
dashboard that is used for inspection.

7. Three-dimensional view of clustering data. This can be
used by developers if there is difficulty in identifying clear
clusters.

APPENDIX B
P-VALUE TEST

Figure 11 shows the trend of P-values over 5 different
updates to test inputs. This test is applied on the variables
whose correlation is presented in section IV-A. On x-axis are
the five commits i.e., updates to inputs and Y-axis shows the
P-values. The title represents the two variables whose p-values
are being calculated. The trends in diagonal (starting from top-
left) should be ignored as they represent statistical significance
between same two variables or attributes. Variables which
demonstrate high correlation also has high stable statistical

Commit
0.05

0.00

0.05

P-
va

lu
e

ExeCond,ExeCond

Commit
0.0

0.5

1.0

P-
va

lu
e

1e 26ExeCond,FunCalls

Commit
0.000

0.005

0.010

P-
va

lu
e

ExeCond,TExeStmt

Commit
0.00

0.02

0.04

P-
va

lu
e

ExeCond,TNoItr

Commit
0

1

2

3

P-
va

lu
e

1e 108ExeCond,mem

Commit

0.25

0.50

0.75

P-
va

lu
e

ExeCond,size

Commit
0.00

0.25

0.50

0.75

P-
va

lu
e

ExeCond,time

Commit
0.0

0.5

1.0

P-
va

lu
e

1e 26FunCalls,ExeCond

Commit
0.05

0.00

0.05

P-
va

lu
e

FunCalls,FunCalls

Commit
0.05

0.00

0.05

P-
va

lu
e

FunCalls,TExeStmt

Commit
0.05

0.00

0.05

P-
va

lu
e

FunCalls,TNoItr

Commit
0.0

0.5

1.0

1.5

P-
va

lu
e

1e 97FunCalls,mem

Commit
0.05

0.00

0.05

P-
va

lu
e

FunCalls,size

Commit
0.05

0.00

0.05

P-
va

lu
e

FunCalls,time

Commit
0.000

0.005

0.010

P-
va

lu
e

TExeStmt,ExeCond

Commit
0.05

0.00

0.05

P-
va

lu
e

TExeStmt,FunCalls

Commit
0.05

0.00

0.05
P-

va
lu

e
TExeStmt,TExeStmt

Commit
0.05

0.00

0.05

P-
va

lu
e

TExeStmt,TNoItr

Commit
0.0000

0.0002

0.0004

0.0006

P-
va

lu
e

TExeStmt,mem

Commit
0.05

0.00

0.05

P-
va

lu
e

TExeStmt,size

Commit
0.05

0.00

0.05

P-
va

lu
e

TExeStmt,time

Commit
0.00

0.02

0.04

P-
va

lu
e

TNoItr,ExeCond

Commit
0.05

0.00

0.05

P-
va

lu
e

TNoItr,FunCalls

Commit
0.05

0.00

0.05

P-
va

lu
e

TNoItr,TExeStmt

Commit
0.05

0.00

0.05

P-
va

lu
e

TNoItr,TNoItr

Commit
0.000

0.002

0.004

0.006

P-
va

lu
e

TNoItr,mem

Commit
0.05

0.00

0.05

P-
va

lu
e

TNoItr,size

Commit
0.05

0.00

0.05

P-
va

lu
e

TNoItr,time

Commit
0

1

2

3

P-
va

lu
e

1e 108mem,ExeCond

Commit
0.0

0.5

1.0

1.5

P-
va

lu
e

1e 97mem,FunCalls

Commit
0.0000

0.0002

0.0004

0.0006

P-
va

lu
e

mem,TExeStmt

Commit
0.000

0.002

0.004

0.006

P-
va

lu
e

mem,TNoItr

Commit
0.05

0.00

0.05

P-
va

lu
e

mem,mem

Commit
0.0

0.1

0.2

0.3

P-
va

lu
e

mem,size

Commit
0.000

0.001

0.002

P-
va

lu
e

mem,time

Commit

0.25

0.50

0.75

P-
va

lu
e

size,ExeCond

Commit
0.05

0.00

0.05

P-
va

lu
e

size,FunCalls

Commit
0.05

0.00

0.05

P-
va

lu
e

size,TExeStmt

Commit
0.05

0.00

0.05

P-
va

lu
e

size,TNoItr

Commit
0.0

0.1

0.2

0.3
P-

va
lu

e
size,mem

Commit
0.05

0.00

0.05

P-
va

lu
e

size,size

Commit
0.0000

0.0025

0.0050

0.0075

P-
va

lu
e

size,time

Commit
0.00

0.25

0.50

0.75

P-
va

lu
e

time,ExeCond

Commit
0.05

0.00

0.05

P-
va

lu
e

time,FunCalls

Commit
0.05

0.00

0.05

P-
va

lu
e

time,TExeStmt

Commit
0.0

0.5

1.0

1.5

P-
va

lu
e

1e 43 time,TNoItr

Commit
0.000

0.001

0.002

P-
va

lu
e

time,mem

Commit
0.05

0.00

0.05

P-
va

lu
e

time,size

Commit
0.05

0.00

0.05

P-
va

lu
e

time,time

Fig. 11. Statistical signficant test (P-value) for variables in evolving inputs.

significance. Furthermore, significance of time and number
of iterations change in the last commit, but the value is still
well close to zero (i.e., the value is in the order of 1.5e−43).
Therefore, there is high statistical significance for the variables
representing program behavior, even with increasing the num-
ber of test inputs. This analysis provides confidence about the
variable or attributes that we have used. We will now minimize
the number of test inputs by grouping attributes that represents
program behavior based on test input.

REFERENCES

[1] G. Jin, L. Song, X. Shi, J. Scherpelz, and S. Lu, “Understanding and
detecting real-world performance bugs,” in Proceedings of the 33rd
ACM SIGPLAN Conference on Programming Language Design and
Implementation, ser. PLDI ’12. New York, NY, USA: Association
for Computing Machinery, 2012, p. 77–88. [Online]. Available:
https://doi.org/10.1145/2254064.2254075

[2] T. Register, https://www.theregister.co.uk/2002/07/03/1901 census site
still down/, 2002, (Accessed on 05/25/2020).

[3] P. Stefan, V. Horky, L. Bulej, and P. Tuma, “Unit testing performance in
java projects: Are we there yet?” in Proceedings of the 8th ACM/SPEC
on International Conference on Performance Engineering, ser. ICPE ’17.
New York, NY, USA: Association for Computing Machinery, 2017, p.
401–412. [Online]. Available: https://doi.org/10.1145/3030207.3030226

[4] X. Han, T. Yu, and D. Lo, “Perflearner: Learning from bug reports to
understand and generate performance test frames,” in Proceedings of
the 33rd ACM/IEEE International Conference on Automated Software
Engineering, ser. ASE 2018. New York, NY, USA: Association
for Computing Machinery, 2018, p. 17–28. [Online]. Available:
https://doi.org/10.1145/3238147.3238204

[5] “Storage — cern,” https://home.cern/science/computing/storage, (Ac-
cessed on 10/07/2021).

[6] A. B. de Oliveira, S. Fischmeister, A. Diwan, M. Hauswirth, and P. F.
Sweeney, “Perphecy: Performance regression test selection made simple
but effective,” in 2017 IEEE International Conference on Software
Testing, Verification and Validation, ICST 2017, Tokyo, Japan, March
13-17, 2017. IEEE Computer Society, 2017, pp. 103–113. [Online].
Available: https://doi.org/10.1109/ICST.2017.17

https://doi.org/10.1145/2254064.2254075
https://www.theregister.co.uk/2002/07/03/1901_census_site_still_down/
https://www.theregister.co.uk/2002/07/03/1901_census_site_still_down/
https://doi.org/10.1145/3030207.3030226
https://doi.org/10.1145/3238147.3238204
https://home.cern/science/computing/storage
https://doi.org/10.1109/ICST.2017.17

[7] D. Alshoaibi, K. Hannigan, H. Gupta, and M. W. Mkaouer, “Price:
Detection of performance regression introducing code changes using
static and dynamic metrics,” in Search-Based Software Engineering,
S. Nejati and G. Gay, Eds. Cham: Springer International Publishing,
2019, pp. 75–88.

[8] J. Dawes, “A python object-oriented framework for the cms alignment
and calibration data,” Journal of Physics: Conference Series, vol. 898,
p. 042059, 10 2017.

[9] A. B. De Oliveira, S. Fischmeister, A. Diwan, M. Hauswirth, and P. F.
Sweeney, “Perphecy: Performance regression test selection made simple
but effective,” in 2017 IEEE International Conference on Software
Testing, Verification and Validation (ICST), 2017, pp. 103–113.

[10] “Jesperstromblad/slowdowndetection: Implementation of slow-
down detection algorithm,” https://github.com/JesperStromblad/
Slowdowndetection, (Accessed on 11/09/2021).

[11] “Jesperstromblad/ci-analytics-system: Continuous integration analytics
system for python-based projects,” https://github.com/JesperStromblad/
ci-analytics-system, (Accessed on 11/09/2021).

[12] C. Collaboration, S. Chatrchyan, G. Hmayakyan, V. Khachatryan,
A. Sirunyan, W. Adam, T. Bauer, T. Bergauer, H. Bergauer, M. Dragice-
vic et al., “The cms experiment at the cern lhc,” JInst, vol. 3, p. S08004,
2008.

[13] J. H. Dawes, G. Reger, G. Franzoni, A. Pfeiffer, and G. Govi, “Vypr2:
A framework for runtime verification of python web services,” in Tools
and Algorithms for the Construction and Analysis of Systems - 25th
International Conference, TACAS 2019, Held as Part of the European
Joint Conferences on Theory and Practice of Software, ETAPS 2019,
Prague, Czech Republic, April 6-11, 2019, Proceedings, Part II,
ser. Lecture Notes in Computer Science, T. Vojnar and L. Zhang,
Eds., vol. 11428. Springer, 2019, pp. 98–114. [Online]. Available:
https://doi.org/10.1007/978-3-030-17465-1 6

[14] O. Javed, J. H. Dawes, M. Han, G. Franzoni, A. Pfeiffer, G. Reger, and
W. Binder, “Perfci: A toolchain for automated performance testing dur-
ing continuous integration of python projects,” in 2020 35th IEEE/ACM
International Conference on Automated Software Engineering (ASE),
2020, pp. 1344–1348.

[15] J. Chen, W. Shang, and E. Shihab, “Perfjit: Test-level just-in-time
prediction for performance regression introducing commits,” IEEE
Transactions on Software Engineering, pp. 1–1, 2020.

[16] J. P. Sandoval Alcocer, A. Bergel, and M. T. Valente, “Learning from
source code history to identify performance failures,” in Proceedings
of the 7th ACM/SPEC on International Conference on Performance
Engineering, ser. ICPE ’16. New York, NY, USA: Association
for Computing Machinery, 2016, p. 37–48. [Online]. Available:
https://doi.org/10.1145/2851553.2851571

[17] S. Mostafa, X. Wang, and T. Xie, “Perfranker: Prioritization of
performance regression tests for collection-intensive software,” in
Proceedings of the 26th ACM SIGSOFT International Symposium on
Software Testing and Analysis, ser. ISSTA 2017. New York, NY,
USA: Association for Computing Machinery, 2017, p. 23–34. [Online].
Available: https://doi.org/10.1145/3092703.3092725

[18] R. Hashemian, N. Carlsson, D. Krishnamurthy, and M. Arlitt, “Iris:
Iterative and intelligent experiment selection,” in Proceedings of
the 8th ACM/SPEC on International Conference on Performance
Engineering, ser. ICPE ’17. New York, NY, USA: Association
for Computing Machinery, 2017, p. 143–154. [Online]. Available:
https://doi.org/10.1145/3030207.3030225

[19] D. Westermann, R. Krebs, and J. Happe, “Efficient experiment selection
in automated software performance evaluations,” in Computer Perfor-
mance Engineering, N. Thomas, Ed. Berlin, Heidelberg: Springer
Berlin Heidelberg, 2011, pp. 325–339.

[20] Q. Luo, “Input-sensitive performance testing,” in Proceedings of the
2016 24th ACM SIGSOFT International Symposium on Foundations
of Software Engineering, ser. FSE 2016. New York, NY, USA:
Association for Computing Machinery, 2016, p. 1085–1087. [Online].
Available: https://doi.org/10.1145/2950290.2983953

[21] Y. Feng, Q. Shi, X. Gao, J. Wan, C. Fang, and Z. Chen, “Deepgini:
prioritizing massive tests to enhance the robustness of deep neural
networks,” in ISSTA ’20: 29th ACM SIGSOFT International Symposium
on Software Testing and Analysis, Virtual Event, USA, July 18-22, 2020,
S. Khurshid and C. S. Pasareanu, Eds. ACM, 2020, pp. 177–188.
[Online]. Available: https://doi.org/10.1145/3395363.3397357

[22] Z. Li, X. Ma, C. Xu, C. Cao, J. Xu, and J. Lü, “Boosting
operational dnn testing efficiency through conditioning,” in Proceedings

of the 2019 27th ACM Joint Meeting on European Software
Engineering Conference and Symposium on the Foundations of
Software Engineering, ser. ESEC/FSE 2019. New York, NY, USA:
Association for Computing Machinery, 2019, p. 499–509. [Online].
Available: https://doi.org/10.1145/3338906.3338930

[23] “Start a free trial with circleci - circleci,”
https://circleci.com/enterprise-trial-install/?utm
source=google&utm medium=sem&utm campaign=
sem-google-dg--emea-en-brandAuth-maxConv-auth-brand&
utm term=g e-circleci c linux 20210604&utm content=
sem-google-dg--emea-en-brandAuth-maxConv-auth-brand
keyword-text eta-circleCI exact-&gclid=
Cj0KCQjwtrSLBhCLARIsACh6RmglTWkvMbNvM5N3i1pNo09
lBGYnOBVPvJPz GUeYwjfHGxVaOafjsaAn4TEALw wcB,
(Accessed on 10/18/2021).

[24] “Travis ci — test and deploy with confidence,” https://www.travis-ci.
com/, (Accessed on 10/18/2021).

[25] “Cloudbees codeship — software as a service (saas) ci/cd so-
lution,” https://www.cloudbees.com/products/codeship, (Accessed on
10/18/2021).

[26] “Bitbucket pipelines - continuous delivery — bitbucket,” https://
bitbucket.org/product/features/pipelines, (Accessed on 10/18/2021).

[27] “Continuous integration & delivery - semaphore,” https://semaphoreci.
com/, (Accessed on 10/18/2021).

[28] “performance-plugin — performance test running and reporting for
jenkins ci,” http://jenkinsci.github.io/performance-plugin/RunTests.html,
(Accessed on 10/18/2021).

[29] D. G. Reichelt, S. Kühne, and W. Hasselbring, “Peass: A tool for
identifying performance changes at code level,” in 2019 34th IEEE/ACM
International Conference on Automated Software Engineering (ASE),
2019, pp. 1146–1149.

[30] R. Singh and M. Santosh, “Test case minimization techniques: a review,”
International Journal of Engineering Research & Technology (IJERT),
vol. 2, no. 12, 2013.

[31] M. Hauswirth, P. F. Sweeney, A. Diwan, and M. Hind, “Vertical
profiling: Understanding the behavior of object-priented applications,”
SIGPLAN Not., vol. 39, no. 10, p. 251–269, Oct. 2004. [Online].
Available: https://doi.org/10.1145/1035292.1028998

[32] “Ci/cd pipelines — gitlab,” https://docs.gitlab.com/ee/ci/pipelines/, (Ac-
cessed on 10/19/2021).

[33] C. Xia, Y. Zhang, and Z. Hui, “Test suite reduction via evolutionary
clustering,” IEEE Access, vol. 9, pp. 28 111–28 121, 2021.

[34] N. Chetouane, F. Wotawa, H. Felbinger, and M. Nica, “On using k-
means clustering for test suite reduction,” in 2020 IEEE International
Conference on Software Testing, Verification and Validation Workshops
(ICSTW), 2020, pp. 380–385.

[35] A. Vescan and C. Şerban, “Towards a new test case prioritization ap-
proach based on fuzzy clustering analysis,” in 2020 IEEE International
Conference on Software Maintenance and Evolution (ICSME), 2020, pp.
786–788.

[36] P. Agarwal, M. A. Alam, and R. Biswas, “Issues, challenges and tools
of clustering algorithms,” arXiv preprint arXiv:1110.2610, 2011.

[37] J. Erikson, P. Funk, J. Gustafsson, and B. Lisper, “A tool concept
for execution time analysis of legacy systems,” in 14th Euromicro
Conference on Real-Time Systems, Work-in-Progress. Citeseer, 2002.

[38] “Git - git-diff documentation,” https://git-scm.com/docs/git-diff, (Ac-
cessed on 11/04/2021).

[39] P. number SNIC 2021/18-7, “Uppsala – essence,” http:
//essenceofescience.se/tag/uppsala/, (Accessed on 10/20/2021).

[40] CERN, “Gitlab pipeline,” http://gitlab.cern.ch/, (Accessed on
10/20/2021).

[41] J. A. Hartigan and M. A. Wong, “Algorithm as 136: A k-means
clustering algorithm,” Journal of the royal statistical society. series c
(applied statistics), vol. 28, no. 1, pp. 100–108, 1979.

[42] P. Bholowalia and A. Kumar, “Ebk-means: A clustering technique
based on elbow method and k-means in wsn,” International Journal
of Computer Applications, vol. 105, no. 9, 2014.

[43] “Pylint - code analysis for python — www.pylint.org,” https://pylint.org/,
(Accessed on 10/21/2021).

[44] “Interview: Claudiu popa - using pylint for python
static analysis - sqreen blog,” https://blog.sqreen.com/
interview-pylint-for-python-static-analysis/, (Accessed on 10/21/2021).

[45] S. Zaman, B. Adams, and A. E. Hassan, “Security versus performance
bugs: A case study on firefox,” in Proceedings of the 8th Working

https://github.com/JesperStromblad/Slowdowndetection
https://github.com/JesperStromblad/Slowdowndetection
https://github.com/JesperStromblad/ci-analytics-system
https://github.com/JesperStromblad/ci-analytics-system
https://doi.org/10.1007/978-3-030-17465-1_6
https://doi.org/10.1145/2851553.2851571
https://doi.org/10.1145/3092703.3092725
https://doi.org/10.1145/3030207.3030225
https://doi.org/10.1145/2950290.2983953
https://doi.org/10.1145/3395363.3397357
https://doi.org/10.1145/3338906.3338930
https://circleci.com/enterprise-trial-install/?utm_source=google&utm_medium=sem&utm_campaign=sem-google-dg--emea-en-brandAuth-maxConv-auth-brand&utm_term=g_e-circleci_c__linux_20210604&utm_content=sem-google-dg--emea-en-brandAuth-maxConv-auth-brand_keyword-text_eta-circleCI_exact-&gclid=Cj0KCQjwtrSLBhCLARIsACh6RmglTWkvMbNvM5N3i1pNo09_lBGYnOBVPvJPz_GUeYwjfHGxVaOafjsaAn4TEALw_wcB
https://circleci.com/enterprise-trial-install/?utm_source=google&utm_medium=sem&utm_campaign=sem-google-dg--emea-en-brandAuth-maxConv-auth-brand&utm_term=g_e-circleci_c__linux_20210604&utm_content=sem-google-dg--emea-en-brandAuth-maxConv-auth-brand_keyword-text_eta-circleCI_exact-&gclid=Cj0KCQjwtrSLBhCLARIsACh6RmglTWkvMbNvM5N3i1pNo09_lBGYnOBVPvJPz_GUeYwjfHGxVaOafjsaAn4TEALw_wcB
https://circleci.com/enterprise-trial-install/?utm_source=google&utm_medium=sem&utm_campaign=sem-google-dg--emea-en-brandAuth-maxConv-auth-brand&utm_term=g_e-circleci_c__linux_20210604&utm_content=sem-google-dg--emea-en-brandAuth-maxConv-auth-brand_keyword-text_eta-circleCI_exact-&gclid=Cj0KCQjwtrSLBhCLARIsACh6RmglTWkvMbNvM5N3i1pNo09_lBGYnOBVPvJPz_GUeYwjfHGxVaOafjsaAn4TEALw_wcB
https://circleci.com/enterprise-trial-install/?utm_source=google&utm_medium=sem&utm_campaign=sem-google-dg--emea-en-brandAuth-maxConv-auth-brand&utm_term=g_e-circleci_c__linux_20210604&utm_content=sem-google-dg--emea-en-brandAuth-maxConv-auth-brand_keyword-text_eta-circleCI_exact-&gclid=Cj0KCQjwtrSLBhCLARIsACh6RmglTWkvMbNvM5N3i1pNo09_lBGYnOBVPvJPz_GUeYwjfHGxVaOafjsaAn4TEALw_wcB
https://circleci.com/enterprise-trial-install/?utm_source=google&utm_medium=sem&utm_campaign=sem-google-dg--emea-en-brandAuth-maxConv-auth-brand&utm_term=g_e-circleci_c__linux_20210604&utm_content=sem-google-dg--emea-en-brandAuth-maxConv-auth-brand_keyword-text_eta-circleCI_exact-&gclid=Cj0KCQjwtrSLBhCLARIsACh6RmglTWkvMbNvM5N3i1pNo09_lBGYnOBVPvJPz_GUeYwjfHGxVaOafjsaAn4TEALw_wcB
https://circleci.com/enterprise-trial-install/?utm_source=google&utm_medium=sem&utm_campaign=sem-google-dg--emea-en-brandAuth-maxConv-auth-brand&utm_term=g_e-circleci_c__linux_20210604&utm_content=sem-google-dg--emea-en-brandAuth-maxConv-auth-brand_keyword-text_eta-circleCI_exact-&gclid=Cj0KCQjwtrSLBhCLARIsACh6RmglTWkvMbNvM5N3i1pNo09_lBGYnOBVPvJPz_GUeYwjfHGxVaOafjsaAn4TEALw_wcB
https://circleci.com/enterprise-trial-install/?utm_source=google&utm_medium=sem&utm_campaign=sem-google-dg--emea-en-brandAuth-maxConv-auth-brand&utm_term=g_e-circleci_c__linux_20210604&utm_content=sem-google-dg--emea-en-brandAuth-maxConv-auth-brand_keyword-text_eta-circleCI_exact-&gclid=Cj0KCQjwtrSLBhCLARIsACh6RmglTWkvMbNvM5N3i1pNo09_lBGYnOBVPvJPz_GUeYwjfHGxVaOafjsaAn4TEALw_wcB
https://circleci.com/enterprise-trial-install/?utm_source=google&utm_medium=sem&utm_campaign=sem-google-dg--emea-en-brandAuth-maxConv-auth-brand&utm_term=g_e-circleci_c__linux_20210604&utm_content=sem-google-dg--emea-en-brandAuth-maxConv-auth-brand_keyword-text_eta-circleCI_exact-&gclid=Cj0KCQjwtrSLBhCLARIsACh6RmglTWkvMbNvM5N3i1pNo09_lBGYnOBVPvJPz_GUeYwjfHGxVaOafjsaAn4TEALw_wcB
https://www.travis-ci.com/
https://www.travis-ci.com/
https://www.cloudbees.com/products/codeship
https://bitbucket.org/product/features/pipelines
https://bitbucket.org/product/features/pipelines
https://semaphoreci.com/
https://semaphoreci.com/
http://jenkinsci.github.io/performance-plugin/RunTests.html
https://doi.org/10.1145/1035292.1028998
https://docs.gitlab.com/ee/ci/pipelines/
https://git-scm.com/docs/git-diff
http://essenceofescience.se/tag/uppsala/
http://essenceofescience.se/tag/uppsala/
http://gitlab.cern.ch/
https://pylint.org/
https://blog.sqreen.com/interview-pylint-for-python-static-analysis/
https://blog.sqreen.com/interview-pylint-for-python-static-analysis/

Conference on Mining Software Repositories, ser. MSR ’11. New
York, NY, USA: Association for Computing Machinery, 2011, p.
93–102. [Online]. Available: https://doi.org/10.1145/1985441.1985457

[46] “Apache pulsar,” https://pulsar.apache.org/en/, (Accessed on
11/09/2021).

https://doi.org/10.1145/1985441.1985457
https://pulsar.apache.org/en/

	I introduction
	I-A Motivating example
	I-A1 Frequent Update Problem
	I-A2 Data growth Problem

	I-B Contribution of the article
	I-C Structure of the article
	I-D Resources

	II Background and related work
	II-A CERN CMS Uploader service
	II-B Regression performance test selection
	II-C Input selection for testing
	II-D Continuous Integration services

	III Approach for recommending performance tests
	III-A Profiling
	III-A1 Minimizing measurement perturbations

	III-B Clustering
	III-C Inspection
	III-D Sampling
	III-E Sample profiling
	III-F Slow down detection and decision making

	IV Evaluation
	IV-A Correlation between variables representing program behavior
	IV-B Identification of clusters
	IV-C Clustering based on different algorithms
	IV-C1 Significance of cluster inspection

	V Recommendation on Code Change
	V-A Code update 1: Bottleneck in test suite
	V-B Code update 2: Code review with PyLint
	V-C Importance of data point sampling

	VI Conclusion
	Appendix A: CI analytics system
	Appendix B: P-value test
	References

