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Abstract—Mobile app stores produce a tremendous amount of
data in the form of user reviews, which is a huge source of user
requirements and sentiments; such reviews allow app developers
to proactively address issues in their apps. However, only a small
number of reviews capture common issues and sentiments which
creates a need for automatically identifying prominent reviews.
Unfortunately, most existing work in text ranking and popularity
prediction focuses on social contexts where other signals are
available, which renders such works ineffective in the context
of app reviews. In this work, we propose a new framework,
PPrior, that enables proactive prioritization of app issues through
identifying prominent reviews (ones predicted to receive a large
number of votes in a given time window). Predicting highly-
voted reviews is challenging given that, unlike social posts, social
network features of users are not available. Moreover, there
is an issue of class imbalance, since a large number of user
reviews receive little to no votes. PPrior employs a pre-trained
T5 model and works in three phases. Phase one adapts the pre-
trained T5 model to the user reviews data in a self-supervised
fashion. In phase two, we leverage contrastive training to learn
a generic and task-independent representation of user reviews.
Phase three uses radius neighbors classifier to make the final
predictions. This phase also uses FAISS index for scalability and
efficient search. To conduct extensive experiments, we acquired a
large dataset of over 2.1 million user reviews from Google Play.
Our experimental results demonstrate the effectiveness of the
proposed framework when compared against several state-of-the-
art approaches. Moreover, the accuracy of PPrior in predicting
prominent reviews is comparable to that of experienced app
developers.

Index Terms—App reviews, app analysis, automatic app issues
prioritization.

I. INTRODUCTION

The popularity of mobile apps has grown exponentially over
the last few years, and according to a recent study, users
spend more than four hours a day using mobile apps in the
United States [1]. Such user activity results in lucrative user
feedback, which is usually shared on the app stores such as
Google Play and Apple App store. In addition to posting
reviews, these distribution channels allow users to like or
dislike other users’ reviews. The user reviews include a range
of information, including issues with apps, suggestions for
refinements of apps, and feature requests, among others. It is
important for app developers to acknowledge user reviews (i.e.,
write review responses) and address users’ concerns to stay
competitive and retain users. While some previous work has
focused on automatic review response generation [12], [14],
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Works Terrible I deleted
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Workout don't show the map anymore, 
just black screen, must be some kind of bug

... Whenever I go to try and use my
own music to make a video and click
on the "local music" thing, it just says 
"no music found." ...

Fig. 1: Following the power law distribution, a small percent-
age of user reviews receive higher votes, and most reviews get
little to no attention. Highly-voted reviews help app developers
prioritize features and fix bugs because they typically highlight
precise issues.

identifying critical user feedback from a massive amount of
reviews remains a challenge.

There are several characteristics of user reviews that make
them challenging to analyze. First, manually processing user
reviews is virtually impossible due to their volume, velocity,
and voracity. Second, user reviews are typically written using
mobile phones and often contain noisy words (e.g., misspelled,
repetitive, non-English). Existing research in this direction has
focused on pre-processing reviews [54], filtering reviews [5],
and topic classification [11]. Nonetheless, it is difficult to
identify critical app issues automatically from reviews, since
problems and concerns frequently shift over time and change
across apps.

In this work, we propose a novel framework, PPrior,
for Proactive Prioritization of App issues by automatically
predicting the number of votes (i.e., the number of people
who found that review useful) a given review will receive,
allowing app developers to proactively prioritize those app
issues. PPrior builds upon the following insights. First, many978-1-6654-8045-1/22/$31.00 ©2022 IEEE
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Fig. 2: Overview of PPrior. Contrastive training in phase two is a critical component of the proposed framework.

users of an app may face similar issues and share their
concerns. Second, fixing a few software issues faced by early
users could possibly fix the majority of bugs and problems for
all users [40]. Third, it is in the interest of app developers to
prioritize features or bug fixes that most users would like to
see, following the maximum return criterion. A preliminary
study on a subset of a large-scale dataset of user reviews
from Google Play also confirms these insights, where a small
number of reviews receive a large number of votes, usually
expressing very specific and precise concerns, which many
users experience. To highlight this phenomenon, Figure 1
shows a subset of user reviews. We argue that developers
should prioritize resolving this small subset of issues given
their impact on a large number of users. Figure 1 also shows
a few sample reviews that received little to no votes. For
example, among the reviews with negative sentiment, “Worst
app ever!”, the developer can not make much of such reviews
since they do not highlight any particular issues with the app.
This work aims to accurately predict the number of votes
a negative user review will receive in a certain amount of
time to proactively prioritize those issues. That is, proactively
resolving app issues before they lead to frustrating a large
number of users and result in firefighting situations.

We formulate the task of predicting the number of votes as
a classification task, which seemingly resembles predicting the
popularity of social media posts, e.g., the number of likes or
retweets for a Facebook post or a Twitter tweet, respectively.
It turns out, however, that those tasks are inherently differ-
ent since the existing research [9], [23], [41] in popularity
prediction of social media posts relies heavily on the user’s
social network features that are not available on app stores
where the number of votes is purely determined based on the
content of the user review and whether other users also share
similar concerns or not, which makes this task practically more
relevant, interesting, and challenging.

Our proposed framework, PPrior, leverages the power of
pre-trained language models, sentence transformers [38], and
employs contrastive learning. Figure 2 presents an overview
of the framework that works in three phases and uses a pre-
trained T5 [37] as the backbone model. Language models,
such as T5, are trained on massive amounts of text data in
a self-supervised fashion and have millions of parameters.

Therefore, they are capable of generating rich and accurate
representations of any textual data. Phase one employs the
pre-trained T5 and further performs self-supervised training.
Phase two adapts a contrastive training objective. Contrastive
learning enables task-independent training and forces the
model to learn a generic embedding space where similar user
reviews are located close together and dissimilar reviews are
spread out. The user reviews with zero or a small number
of votes generally do not highlight any specific concern, thus
ending up being close to each other in the high-dimensional
embedding space. Moreover, the generic embedding space
also takes care of the distributional shifts in the reviews. For
efficient similarity search, we store the training samples using
Facebook AI Similarity Search (FAISS) [22] and use radius
neighbors classifier – a better choice as compared to classical
KNN when data is not uniformly sampled [60] – to predict
the number of votes for a given user review in phase three.

To evaluate the effectiveness of PPrior, we first crawled a
dataset that consists of over 2.1 million negative user reviews
from about 10,000 Google Play apps [17]. We also recorded
the number of votes each review received in a month after
being posted because the number of votes a user review
receives is also dependent on the length of time that has
passed since the review was posted. Existing user reviews
datasets [12], [14] do not cover a large number of apps.
Moreover, these datasets do not record the number of votes
for reviews after a fixed amount of time after they were
posted. We conduct extensive experimental evaluations using
the large dataset and compare against several state-of-the-art
transformer architectures [4], [10], [37], [50] that leverage
several strategies to overcome the class imbalance issue [26],
[51]. We also compare against state-of-the-art approaches
for predicting the social media post’s popularity [9], [41].
Our results show that PPrior outperforms all the competing
approaches by at least 27.97% and 24.50% on Matthew’s
correlation coefficient (MCC) [7] score for binary and multi-
class classification tasks, respectively. Moreover, our human
study shows that the performance of PPrior is comparable
to experienced software developers in identifying critical app
issues. The source code and dataset are available publicly1.

1https://github.com/MultifacetedNLP/PPrior

https://github.com/MultifacetedNLP/PPrior


In summary, the contributions of this paper are as follows:
• We release a big dataset containing over 2.1 million

negative user reviews from Google Play for around 10,000
apps along with the number of votes each review received
in a month.

• We introduce a novel framework for predicting the number
of votes for a specific user review in order to enable
proactive prioritization of app issues.

• We use our large dataset to conduct extensive experi-
ments and compare PPrior with state-of-the-art methods.
Automatic metrics and real user studies confirm PPrior’s
competitiveness with significant improvements.

The remainder of the paper is organized as follows. We
present the preliminaries in Section II, PPRIOR in Section III,
followed by our experimental setup in Section IV and evalua-
tion results in Section V. Finally, we discuss the related work
in Section VI and conclude the paper in Section VII.

II. PRELIMINARIES

Our proposed framework, PPrior, builds upon several ma-
ture components from natural language processing (NLP) lit-
erature. We provide a brief overview of those in the following.

Unsupervised Representation Learning and Pre-trained
Language Models. Unsupervised (or self-supervised) latent
representation learning [48] and pre-trained language models
have contributed greatly to recent NLP success [10], [35],
[36], [50], including facilitating zero-shot learning [47], [49].
The unsupervised learning technique enabled the development
of more robust NLP systems due to the abundance of textual
data. We need to optimize the proposed framework using
unsupervised representation learning techniques to handle dis-
tributional shifts [45], [46] in a robust manner so that it
can handle new unseen app issues accurately. The language
models (e.g., GPT-2 [35], BERT [10], T5 [37]) are trained
using unsupervised techniques by utilizing vast amounts of
text data. These models can capture both general semantic
and syntactic information effectively, due to the size of the
model and training dataset. In this work, we employ T5,
a pre-trained language model, as the backbone model in
our framework. We also leverage a variation of Sentence-
BERT [39] architecture to learn sentence-level representations.
Instead of BERT, we use a more powerful pre-trained language
model T5 for learning sentence embeddings. The T5 model
follows transformers [53] architecture, contains both encoder
and decoder stacks, and has produced state-of-the-art results
on several NLP benchmarks, including SuperGLUE.

T5 Model. Inspired by the idea of casting every NLP task
as question answering [31], T5 treats every task as a text-to-
text problem. With a text-to-text framework, virtually every
task can be addressed with the same model, objective, train-
ing process, and decoding process. T5 Adapts the original
transformers architecture for multi-task learning, as it has
both encoder and decoder stack as opposed to BERT (i.e.,
only encoder stack is more suitable for natural language
understanding tasks) and GPT (i.e., only decoder stack is

more appropriate for natural language generation tasks). The
transformers architecture is primarily based on self-attention
block [6] – an attention variant where each element of the
sequence is replaced by a weighted average of the remaining
elements in the sequence [2], [18]. T5 encodes text using
SentencePiece [24] as WordPiece tokens [43] and adapts the
denoising and corrupting span objective that is inspired by
masked language modeling and word dropout technique [3] in
BERT, to train the model to predict missing spans (or corrupted
spans) of text in the input. Figure 2 illustrates an example
of the input and output of the T5 model. The example text,
“Works Terrible I deleted”, the input becomes, “Works <X>
I <Y>”, after replacing the dropped-out spans with unique
single sentinel tokens “<X>” and “<Y>”. Then, the target is
to predict only sentinel tokens and all other input tokens are
replaced by the sentinel token “<X>” and “<Y>”. In our
example, the output becomes, “<X> Terrible <Y> deleted”.
Predicting only sentinel tokens is computationally cheap as
compared to predicting everything in the target. The T5 model
is trained on the colossal clean crawled corpus (C4) dataset
(about 750 GB of data). The C4 is a cleaner version of text
extracted from the web in April 2019. In this work, we employ
T5 as a backbone model in our framework and fine-tune it
in three phases to capture generic patterns that are robustly
transferable to the test dataset. Our choice to use T5 is mainly
guided by its multi-task learning capabilities and robustness
to effectively learn in the distributional shifts scenarios. We
perform self-supervised training to adapt the model to the
reviews dataset in phase one, further train it for the contrastive
loss in phase two, and finally leverage the radius neighbors
classifier to make final predictions about reviews.

FAISS and KNN. The Faiss library facilitates efficient simi-
larity searches and clustering of dense vectors and supports
a range of comparison operations, including L2 distance,
dot product, and cosine similarity. By adding an indexing
structure on top of raw vectors using scalable approaches
such as hierarchical navigable small worlds (HNSW) [29]
and navigating spreading-out graphs (NSG) [13], FAISS en-
ables effective searching of billions of vectors. In terms of
implementation, it is implemented in C++ for the most part,
with only BLAS as its dependency. Further speeding up
the inference can be achieved with GPU (both single and
multi-GPU) indexes, supported via CUDA. Due to its Python
interface, it is compatible with all deep learning frameworks.
In this work, we employ FAISS to index our training dataset
in phase three of our proposed framework PPrior. Then, we
use the radius neighbor classifier to make predictions. The
radius neighbor classifier makes predictions by taking the most
common label among the neighbors in the given radius. Since
there is a class imbalance in our reviews dataset, this is better
suited compared to the classical KNN algorithm. Moreover,
phase three does not need any training and thus any other
algorithm can be plugged-in depending on the distribution of
the data at inference time. In our experiments, we also use
weighted KNN as an alternative.
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Fig. 3: Phase two of PPrior framework. The contrastive training enables learning generic representations of the user reviews
where similar reviews are forced to stay close to one another. These robust and generic representations empower simple methods
like KNN to identify critical user concerns effortlessly.

III. PROACTIVE PRIORITIZATION FRAMEWORK: PPrior

In this work, we introduce PPrior, a novel framework for
proactively prioritizing app issues by automatically predicting
how many votes a given review will receive, which enables
app developers to proactively prioritize those app issues. The
number of votes a user review receives is a direct observation
of the number of people who found that review useful. PPrior
employs the pre-trained T5 model as a backbone model and
works in three phases. Figure 2 presents an overview of the
framework. Phase one loads the pre-trained T5 and further
performs self-supervised training on the reviews dataset using
the original training objective of denoising and corrupting span
objective. As T5 is pre-trained on the C4 dataset, which is
fundamentally different from the app reviews data, this step
overcomes the data distribution shift issue. Phase two adapts a
contrastive training objective that promotes task-independent
and generic representation learning. Since user reviews with
zero or few votes dominate the dataset, there is an issue of
class imbalance. The training in phase two also addresses this
challenge by generating negative samples and pairing samples
with a high number of votes to those with a small number
of votes (i.e., the minority class is exposed more often to the
model). Thus, the effect of the class imbalance is minimized.
Moreover, the generic embeddings space also takes care of
the issue of the frequent issue shifts in user reviews. Phase
three of the framework does not require any training and
uses the learned representations from phase two to make
inference. This phase uses FAISS to store large-scale user
reviews training data in a scalable index and performs efficient
similarity search to make final predictions. This phase uses a
radius neighbors classifier that has been shown to perform
better when data is non-uniformly sampled. Since this phase
does not require any training, the prediction algorithm can be
replaced on the fly depending on the distribution of the test
set. In the following, we provide further details about each
phase of the PPrior.

A. Phase One: Self-Supervised Training

We exploit the power of the pre-trained language models by
initializing phase one of our framework with the pre-trained

T5 model. Our implementation uses t5-base that has 220
million parameters. It has been pre-trained on C4 dataset (750
GB of English textual data) for 524,288 steps and the vocabu-
lary size is 32,000 wordpieces. Both the encoder and decoder
contain 12 blocks, where each block contains self-attention
(with 12 attention heads), encoder/decoder attention, and a
feed-forward layer. The embedding layer has 768 dimensions.
Moreover, it also uses dropout with a probability of 0.1 for
regularization.

Phase one kicks off the training of the PPrior by loading the
pre-trained t5-base and performing self-supervised training
using the user reviews dataset to adapt the model to the
distribution of the user reviews. This phase does not change
the original training objective (of T5 model), which corrupts
the input spans randomly and tries to predict the masked-
out spans. We randomly sample and drop out 15% of the
tokens. The consecutive dropped-out token spans are replaced
by unique special tokens, called sentinel IDs. We use cross-
entropy loss and maximum likelihood using teacher forc-
ing [55] with AdaFactor optimizer [44]. The greedy decoding
is used that chooses the tokens with the highest probability
at every timestep. The self-supervised training phase is also
presented in Figure 2 (left part). The output of phase one is the
trained T5 model that has been adapted to the user reviews.

B. Phase Two: Contrastive Training

This phase initializes with the T5 that was adapted to
the user reviews data (i.e., the output of phase one) to take
care of the distributional shift between web data (T5 is pre-
trained on web data) and user reviews data that may contain
semi-technical language. We further fine-tune the T5 model
with a contrastive objective. Figure 3 presents an overview
of the contrastive training. For training PPrior in phase two,
we leverage negative sampling to capture the correspondence
between user reviews. That is, shift the high-dimensional
representations of the user reviews that receive a similar
number of votes closer to one another and push away the
representations of user reviews with a huge gap in the number
of votes they receive. We achieve this by randomly choosing
K negative samples for each positive pair. The positive pair
represents two training samples that receive a similar number
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of votes, whereas the negative pair contains two samples with
a very different number of votes. Figure 3 shows how training
data is prepared for this phase. We leverage contrastive loss
to guide the training in phase two. Our training approach
enables generic transferable associations between user reviews
that are capable of handling new unseen emerging issues in
the apps. Moreover, negative sampling manages to expose the
minority class samples (e.g., very few user reviews receive a
high number of votes) to the model as much as majority class
instances. In the following, we provide further details about
the training process.

Sentence Transformer. The Sentence Transformer, also
known as Sentence-BERT, was designed to solve the compu-
tational overhead issues involved in sentence pair regression
task, encountered while using BERT [10] and RoBERTa [27]
like architectures. The Sentence Transformer addressed this
challenge by using siamese and triplet loss [42]. In this work,
we employ Sentence Transformer jointly with T5 for our
contrastive learning-based training. We modified Sentence-
BERT architecture by replacing the BERT model with our T5
model to calculate sentence embeddings. Figure 4 represents
the modified Sentence-BERT architecture with integrated T5.

Negative Sampling. Assume that X = {X1,X2, · · · ,Xn}
represents the user reviews and yi ∈ R represents the number
of votes ith review Xi received. Given two training samples
Xi and Xj , we assign the label 1 if |yi−yj | < λ (i.e., positive
pair). For each positive pair Xi and Xj , we replace Xi (or Xj ,
one at a time) with an instance Xq such that |yi − yq| ≥ λ
and assign it label 0 (i.e., negative pair). For each positive
pair, we generate K negative pairs. That is, for the given two
samples, if the absolute difference of the number of votes
they received is smaller than λ, we assign labels of 1, and
0 otherwise. In our experiments, we use negative sampling of
1:4 and λ is set to 100 and 4 for binary classification and multi-
class classification tasks, respectively, with added constraints:
i) instances in a negative pair should not come from the same
class, and ii) positive pair contains both instances from the
same class.

Input Embeddings. Let Fθ denote our modified sentence
transformer model and (Xi,Xj) be a training example. We
acquire the representations Ui and Uj for Xi and Xj , respec-
tively, using:

Ui = Fθ(Xi) (1)

Uj = Fθ(Xj) (2)

Where θ represents the model parameters.

Objective Function. We use a contrastive objective function
to fine-tune sentence-level embeddings. For the given positive
training example (Xi,Xj) with a label of 1 and negative
training example (Xi,Xq) with label 0, the constrastive loss
forces the positive samples Xi and Xj closer together in the
embedding space, while pushes away the negative samples Xi
and Xq . After we acquire the reviews embeddings using the
sentence transformer for the positive training example (Xi,Xj)
as Ui and Uj , and negative training example (Xi,Xq) as Ui
and Uq , the training loss can be defined as:

Li,j = − log
exp (Ui • Uj/τ)∑

q∈Q
exp (Ui • Uq/τ)

(3)

where the • is the similarity function (e.g., dot product), τ ∈
R+ is a scalar parameter for temperature, and Q is the set of
negative pairs.

Generalization to New Unseen Reviews. The proposed
contrastive objective design learns generic representations of
the user reviews that focus on learning the association between
reviews in such a way that review pairs with high affinity
are pulled together, while those not bearing much similarity
are pushed away in the high dimensional manifold. By doing
that, the model’s objective is refined towards learning generic
features, rather than learning the dataset-specific distribution
and their corresponding characteristics. Moreover, the text-
to-text framework of T5 and the generic nature contrastive
learning enables multi-task learning. The trained T5 model in
this phase can be used for a range of tasks such as binary
classification, multi-class classification or regression without
the need to re-train any component.

C. Phase Three: Radius Neighbor Classification

The phase three of the proposed framework is employed
only for inference and does not require any training or fine-
tuning. Since the training dataset is huge in size, we use
FAISS to index the user reviews for scalable and efficient
retrieval of similar reviews that are used to make predictions.
Specifically, we pass all the training reviews through the
trained T5 (i.e., the output of phase two) and use the output
of the last hidden layer as the embedding vector for the given
user review. An overview of FAISS has been provided in
Section II and interested readers are referred to [22] for details.
Phase three is presented in Figure 2 (right part). To make
predictions, we use the radius neighbor classification (RNC)
algorithm that uses neighbors in the given radius and selects
the most common label as its predictions. In our experimental
evaluation, we conduct experiments for binary classification
as well as multi-class classification tasks. Moreover, we also
experiment with weighted KNN as a replacement for the
radius neighbor classifier. We use a radius of 2 and choose
the number of nearest neighbors to be 101. Since this phase
is only employed for inference, the indexing mechanism and
classification algorithm can be changed effortlessly depending
on the speed needs and data distribution.



TABLE I: Dataset Statistics.
Train Validation Test

Review dates 1 Oct. 21 to 31 Jan. 22 1 Feb. 22 to 28 Feb. 22 1 Mar. 22 to 31 March 22
Number of reviews 1,176,261 422,267 570,588
Min. votes per review 0 0 0
Max. votes per review 44,178 50,476 47,798
Average votes per review 13.3 13.65 9.09
Number of Apps 9,572 8,350 8,369

IV. EXPERIMENTAL SETUP

In this section, we describe the dataset details along with
data collection and pre-processing steps, evaluation metrics,
and competing methods.

A. Dataset

Data Collection and Preprocessing. We collected over 2.1
million negative user reviews (i.e., reviews with ratings 1 and 2
only) from 9869 apps across 48 categories from Google Play.
The reviews range from October 01, 2021, to March 31, 2022.
Additionally, we tracked the number of votes each review
received after one month, as the number of votes a user review
receives is also determined by how long it has been since it was
posted. For example, if a user review is posted on November
01, 2021, we record its number of votes on December 01,
2021. The novelty of our new dataset is that many apps are not
covered in existing user review datasets [12], [14], and reviews
are not recorded after a fixed timeframe. Moreover, for each
user review, we collected other useful features such as app
name, app category, the total number of reviews for the app,
price, and content rating, among others. Noise is often present
in user reviews [15]. In order to minimize the noise in the
dataset, we followed the best practices for data filtering [12].
Table I presents important statistics about the dataset along
with training, validation, and test split details and Figure 5
shows the distribution for the number of votes (clipped to
100), and reviews received in a month.

Dataset Analysis. Based on a manual analysis of a subset of
the dataset (500 user reviews), we found that a small number
of reviews received a large number of votes. Additionally,
we noticed that high-voted reviews often highlight specific
app issues, and the concerns are actionable. This highlights
many users of an app face similar (or the same) app issues,
and those issues should be prioritized following the maximum
return criterion. On the other hand, there is a large number of
reviews that do not receive any votes. Moreover, such reviews
do not contain any actionable complaints. Figure 1 presents a
few sample user reviews.

B. Evaluation

We formulate the problem as binary classification as well as
multi-class classification. In binary classification, we consider
whether a given user review will receive more than 100 votes
in a month or not. Similarly, in the multi-class classification
task, we consider five classes: 0 vote, 1-5 votes, 6-25 votes,
26-100 votes, and 100+ votes. The effectiveness of PPrior
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is evaluated using both quantitative automatic metrics and
subjective human studies.

Automatic Metrics. Accuracy, F1 score, and MCC score are
standard metrics for the quantitative evaluation of classification
tasks. In our evaluation, we use macro F1 score which is a
better metric for class imbalance tasks. Moreover, we also use
MCC score which has been proven to be a more robust and
reliable metric.

Human Study. To conduct a human study, we recruited 10
graduate students each with at least 4 years of app development
experience. We randomly selected 100 user reviews weighted
by their corresponding votes (clipped to 100) and assigned
each review to three different students and asked them to
classify the review whether it highlights any critical issue or
not.

C. Competing Approaches

We conduct extensive experimental evaluations using the
large-scale dataset and compare it against several state-of-the-
art transformer architectures [4], [10], [37], [50] that leverage
several strategies to overcome the issue of class imbalance.
Similarly, we also compare against state-of-the-art social me-



dia popularity prediction models [23], [41]. In the following,
we provide a brief overview of the competing models.
BERT [10]: BERT follows transformers architecture, uses

only the encoder stack, and is considered a state-of-the-
art model for many NLP tasks. We use several variants of
the BERT for comparisons, such as the one that employs
binary cross-entropy loss (BCE) and cross-entropy loss
(CE). Moreover, we consider class imbalance strategies
such as imbalanced dataset sampler, dice loss, and focal
loss [26], [51]. Finally, we also consider another variant
of BERT where we get the last hidden layer’s output and
use it as a representation for the user review. We make
predictions using weighted KNN that assigns weights to
the neighbors by their distances. In our comparison, we
use the pre-trained DistilBert model.

GPT-2 [4]: GPT-2 is based on the decoder stack of the
transformers architecture. We use distilgpt2 in our
comparison. For GPT-2 too, we use all the strategies,
employed for BERT.

T5 [37]: The T5 model follows text-to-text architecture (both
encoder and decoder stacks). In contrast to our proposed
framework, this T5 baseline does not employ contrastive
training and instead is trained using the same strategies as
mentioned above for BERT and GPT-2. For comparison,
we use the same model t5-base that is employed in
PPrior as the backbone model. This baseline also highlights
the importance of contrastive training in our proposed
framework.

MPNet [50]: MPNet leverages the best of masked language
modeling (e.g., BERT [10]) and permuted language mod-
eling (e.g., XLNet [57]) for pre-training. For comparison,
we employ all the above-mentioned training strategies for
MPNet as well.

EUSBoost [23]: The state-of-the-art approach for predict-
ing retweets employs evolutionary undersampling boosting
strategy and uses several features including the user’s
network, the content of the tweet, and time, among others.

DTP [41]: The state-of-the-art approach for predicting news
popularity relies on initial tweeting behavior and temporal
characteristics.

V. RESULTS

In this section, we discuss the quantitative results as well
as the findings of the human study. Moreover, we also present
the results of the ablation study.

Automatic Metrics. Table II presents the results of the binary
classification task, where we consider whether a given user
review will receive more than 100 votes or not. The results
that perform the best for each metric have been highlighted in
bold. We see that PPrior with weighted KNN inference per-
forms the best for the accuracy metric. Whereas PPrior with
radius neighbor classification strategy performs the best for
F1 score as well as MCC score. Both MCC score and macro-
averaged F1 score are considered more robust metrics for
class imbalance tasks. It is important to highlight that the best

TABLE II: Results of the binary classification task.
Model Approach Accuracy F1 MCC

BERT [10]

BCE Loss 0.5934 0.0612 0.1297
Imbalanced Sampler 0.7873 0.1059 0.1958
Dice Loss 0.8719 0.1451 0.2252
Focal Loss 0.9584 0.0958 0.0855
KNN 0.5575 0.0592 0.1215

GPT-2 [4]

BCE Loss 0.6702 0.0981 0.1748
Imbalanced Sampler 0.8887 0.1750 0.2664
Dice Loss 0.9099 0.2230 0.2773
Focal Loss 0.8960 0.1033 0.0914
KNN 0.5125 0.1125 0.2698

T5 [37]

BCE Loss 0.4705 0.0393 0.1026
Imbalanced Sampler 0.9405 0.2474 0.2443
Dice Loss 0.8078 0.1347 0.2127
Focal Loss 0.9394 0.0876 0.1022
KNN 0.5642 0.0580 0.1295

MPNet [50]

BCE Loss 0.5276 0.0745 0.1205
Imbalanced Sampler 0.7163 0.1372 0.1887
Dice Loss 0.8217 0.1820 0.2525
Focal Loss 0.9511 0.1016 0.1166
KNN 0.5298 0.1270 0.2446

EUSBoost [23] Undersampling 0.2664 0.0355 0.0661
DTP [41] Temporal Propagation 0.2430 0.0395 0.0690

PPrior
KNN 0.9798 0.3201 0.3108
RNC 0.9784 0.3465 0.3409

approach among the competitors for the F1 score is T5 with an
imbalanced dataset sampler, which is roughly 10 percentage
points below PPrior (0.2474 vs 0.3465). Similarly, GPT-2 with
dice loss performs the best among the competitor approaches
for MCC score that is over 6 percentage points lower than
our proposed framework. This performance gain over state-
of-the-art models that follow transformers architecture can be
attributed to the training strategies such as self-supervised and
contrastive training. The self-supervised training in phase one
of PPrior adapts the model to the new distribution of the
dataset (i.e., user reviews) in an unsupervised way. Similarly,
phase two performs contrastive training that proves to be
robust against the class imbalance challenge, and produces
generic and accurate representations of the user reviews.
Moreover, we also noticed that the contrastive training strategy
is robust against the continuous distributional shift among
the issues in the apps since there are over 200 apps in the
test set that were not part of the training set. Moreover, we
also pay attention to the worst performance of state-of-the-art
models for social media posts popularity prediction ESUBoost
and DTP. The lack of features such as the user’s network
and temporal interactions could be the cause of their worst
performance.

Table III shows the results of the multi-class classification
task, where we formulate the task as a 5-class classification
task. The main reason behind considering this task is that
oftentimes developers might want to consider how critical a
given user review will become on a scale of 1 to 5, instead of
a binary prediction. On the multi-class classification task, our
proposed PPrior is a clear winner on all three quantitative
metrics, accuracy, F1 score, and MCC score. Specifically,
PPrior with KNN performs the best on the accuracy metric that
is over five percentage points better than the best competitor
(i.e., GPT-2 with an imbalanced dataset sampler). Similarly, on



TABLE III: Results of the multi-class classification task.
Model Approach Accuracy F1 MCC

BERT [10]

CE Loss 0.5377 0.2914 0.2355
Imbalanced Sampler 0.5543 0.3004 0.2651
Dice Loss 0.5660 0.3425 0.2392
Focal Loss 0.5618 0.3340 0.1212
KNN 0.5062 0.2989 0.2232

GPT-2 [4]

CE Loss 0.4566 0.1985 0.1938
Imbalanced Sampler 0.6109 0.3512 0.2975
Dice Loss 0.5710 0.3438 0.2514
Focal Loss 0.5557 0.3115 0.1397
KNN 0.5023 0.2886 0.2775

T5 [37]

CE Loss 0.4257 0.1980 0.1792
Imbalanced Sampler 0.5749 0.3549 0.2810
Dice Loss 0.5248 0.3161 0.2309
Focal Loss 0.5503 0.2963 0.1489
KNN 0.5094 0.3029 0.2459

MPNet [50]

CE Loss 0.3591 0.1521 0.1357
Imbalanced Sampler 0.4899 0.2726 0.2058
Dice Loss 0.5152 0.2865 0.2285
Focal Loss 0.5928 0.3051 0.1795
KNN 0.5167 0.3311 0.2507

EUSB [23] Undersampling 0.3121 0.1265 0.0913
DTP [41] Temporal Propagation 0.3189 0.1115 0.1045

PPrior
KNN 0.6687 0.4211 0.3442
RNC 0.6685 0.4245 0.3455

the F1 score, PPrior with RNC outperforms the best competing
approach (T5 with imbalanced data sampler) by 19.61%. If
we consider the MCC score, GPT-2 with an imbalanced data
sampler is the best competing approach that is about five
percentage points worse than PPrior with RNC. We also notice
that among the competing approaches there is no clear winner.
However, an imbalanced dataset sampling strategy that seems
a very simple approach tends to work better for the most
part. Our contrastive training strategy employed in phase two
mimics imbalance dataset sampling in a way that exposes
minority class instances more often to the model by negative
sampling, though contrastive learning has other advantages as
well. Approaches like EUSB and DTP are once again among
the worst performing models for the multi-class classification
task because of the same reasons (as binary classification task).
We also investigated the effect of the dice and focal loss
functions that have been specifically designed to overcome the
issue of class imbalance in the datasets. We noted that these
loss functions are almost always better than cross-entropy or
binary cross-entropy loss functions which validates that these
loss functions take care of the class imbalance issue to some
extent. To summarize the results of the quantitative evaluation,
PPrior is a clear winner on both tasks on all the metrics.

The readers might not be impressed with the accuracy
of PPrior which is slightly over 66% for the multi-class
classification task. We also dig deeper into this and found
out that most of the mistakes are on the boundary of classes
upon further error analysis. For example, reviews that receive
25 votes and 26 votes, respectively, are not any different from
each other, but they belong to different classes in our dataset
based on the class partition boundary. Moreover, the value of λ
is set to four in our experiments, which does not contrast the
reviews with the number of votes difference less than four.
To overcome such cases, we also tried smaller values of λ

that addressed this issue, but overall performance deteriorated.
Finally, we conducted another analysis where we considered
whether the top two predicted classes are among the true class
or not. In this experiment, PPrior was able to achieve an
accuracy of over 98%.

Ablation study. We specifically employed T5 baseline model
as a competitor to highlight the improvement of our proposed
training strategies. We notice that there is always a significant
performance difference between PPrior and all the variants of
the T5 baseline on both binary as well as multi-class classi-
fication tasks for all metrics. Moreover, we also introduced a
KNN-based variant for all the transformers models to point
out that the performance gain in PPrior is not due to off-the-
shelf implementation of KNN. Specifically, we used the last
hidden layer’s output of all the models and further used KNN
for inference. Experiments based on T5 and incorporation of
KNN component in all the competing models highlight that
PPrior’s performance gain is mainly due to the contrastive loss
and self-supervised training.

Human Study. For human study, for a given review, when
at least two (out of three) students agreed that the review
highlights a critical issue, we assign it a label of 1, otherwise
0, and consider these labels as ground truth. In this process, we
ended up having 13 out of 100 user reviews with critical issues.
To compare the performance of PPrior with real software
developers, we used a binary classification task and see if
PPrior predicts whether a given review will receive more than
100 votes. If so, we consider it a critical issue. Similarly,
we recruited another set of 10 graduate students with similar
experience and asked them to predict whether a given user
review is critical or not. Based on the experiment of the
human study, we found out that PPrior achieves competitive
performance to the experienced app developers, since PPrior
made only three mistakes (out of 100 predictions) in predicting
critical app issues as compared to two mistakes by humans.

VI. RELATED WORK

Software Feature Prioritization. Recent works studied soft-
ware release planning including feature improvements and
fixing issues by utilizing user feedback. Maalej et al. [28]
discussed state-of-the-art and future directions for data-driven
requirement engineering. Ciurumelea and others [8] devel-
oped a classification system for app reviews, furthermore
to resolve issues mentioned in reviews they recommend a
recommendation system to suggest code changes. Nayebi
and Ruhe [32] utilize software feature properties such as
value and cohesiveness to select features for the next release
planning. Later, they proposed Asymmetric Release Planning
(ARP) [33], where they model asymmetric feature evaluation
and formulate release planning as a bi-creation optimization
planning. More recently, Zhang and others [58] studied user
reviews and formulate software feature prioritization as an
optimization problem that targets maximizing app ratings for
a certain user group. Yang et al. [56] use a semi-automated



approach to prioritize bugs to fix, they study 6 apps and extract
fourteen features to classify reviews.

In comparison, our approach develops on a much larger
dataset as compared to existing studies and develops a novel
way to utilize user likes and dislikes which has been ignored
by existing work. Furthermore, our work complements many
existing techniques, e.g., the combination of code changes
recommendation in [8] and PPRIOR could gain more benefits.

Social Posts Popularity Prediction. Many studies focus on
social media platforms to predict the popularity of posts and
analyze social behavior [25]. Nesi et al. [34] developed a
predictive model to anticipate whether a certain tweet will be
retweeted by a user or not [34]. Tsugawa and Kito [52] utilize
user retweets to find user relationships based using a prediction
model. Zhang et al. [59] collected Twitter feed for six months
to predict correlation to stock market performance including
Dow Jones, NASDAQ, and S&P 500. Daga et al. [9] predicted
likes and retweets for Twitter posts. Similarly, Khoerunnisa et
al. [23] utilized the user profile, content, and time to predict
retweets. Saeed and others [41] predicted the news popularity
based on initial tweeting behavior on Twitter. On the contrary,
PPRIOR focuses on user reviews on App stores, which do
not contain user profiles compared to social networks such
as Facebook and Twitter and this work bridges this gap.
Furthermore, we predict the likability of user reviews which
is not explored by existing work.

Analysis of App Reviews. Many existing studies analyze
app reviews from different perspectives, including app feature
requests [19], app store analysis [30], developer response gen-
erations [12], [14] and so on. Martin and others [30] studied
app stores, they concluded that app reviews are important and
contain useful information. MARA [21] utilized app reviews
to predict feature requests by the users. Gu and Kim [19]
developed an app review parser to find out user opinions on
different app features. A study [20] on 4.5 million reviews
observed the importance of developer replies to app reviews.
Similarly, a Google study [16] highlighted that developer
responses to reviews result in better app ratings. PPRIOR
extends the findings of existing research by providing a large
dataset of reviews and prioritizes app issues based on user
reactions.

VII. CONCLUSION

We have presented PPRIOR, a novel framework to automat-
ically prioritize app issues to allow developers to proactively
resolve critical app issues. PPRIOR is motivated by the impos-
sibility to process a large and continuously growing number
of user reviews at a rapid pace. It enables app developers to
automatically identify critical app issues that are important to
resolve for users’ satisfaction, thanks to the accurate prediction
power of the proposed PPRIOR. Our proposed framework
relies on the power of pre-trained language models and
self-supervised learning strategies. The contrastive training
in phase two of the framework produces generic, accurate,
and robust representations of the user reviews and empowers
simple approaches like KNN to make reliable predictions.

Moreover, we leverage the FAISS library to speed up the
inference. To conduct extensive experimental analysis, we
crawled a large-scale dataset of over 2.1 million negative user
reviews from about 10,000 Google Play apps. Our extensive
experimental evaluations demonstrate that PPrior outperforms
a wide range of transformers architecture such as BERT,
GPT, T5, and MPNet on well-accepted quantitative metrics
consistently. Moreover, our approach proved to be better
than state-of-the-art social media posts’ popularity prediction
approaches by a large margin. Specifically, PPrior is at least
27.97% and 24.50% better than all the competitors on the
MCC score. Last but not least, our human study shows that
the performance of PPrior is as good as senior app developers.
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search with GPUs. IEEE Transactions on Big Data, 7(3):535–547, 2019.

[23] Ghina Khoerunnisa, Widi Astuti, et al. Prediction of retweets based on
user, content, and time features using eusboost. Jurnal RESTI (Rekayasa
Sistem Dan Teknologi Informasi), 6(3):442–447, 2022.

[24] Taku Kudo and John Richardson. Sentencepiece: A simple and lan-
guage independent subword tokenizer and detokenizer for neural text
processing. arXiv preprint arXiv:1808.06226, 2018.

[25] Kyumin Lee, Jalal Mahmud, Jilin Chen, Michelle Zhou, and Jeffrey
Nichols. Who will retweet this? detecting strangers from twitter to
retweet information. ACM Transactions on Intelligent Systems and
Technology (TIST), 6(3):1–25, 2015.

[26] Tsung-Yi Lin, Priya Goyal, Ross Girshick, Kaiming He, and Piotr Dollár.
Focal loss for dense object detection. In Proceedings of the IEEE
international conference on computer vision, pages 2980–2988, 2017.

[27] Yinhan Liu, Myle Ott, Naman Goyal, Jingfei Du, Mandar Joshi, Danqi
Chen, Omer Levy, Mike Lewis, Luke Zettlemoyer, and Veselin Stoyanov.
Roberta: A robustly optimized bert pretraining approach. arXiv preprint
arXiv:1907.11692, 2019.

[28] Walid Maalej, Maleknaz Nayebi, Timo Johann, and Guenther Ruhe.
Toward data-driven requirements engineering. IEEE software, 33(1).

[29] Yu A Malkov and Dmitry A Yashunin. Efficient and robust approxi-
mate nearest neighbor search using hierarchical navigable small world
graphs. IEEE transactions on pattern analysis and machine intelligence,
42(4):824–836, 2018.

[30] William Martin, Federica Sarro, Yue Jia, Yuanyuan Zhang, and Mark
Harman. A survey of app store analysis for software engineering. IEEE
transactions on software engineering, 43(9):817–847, 2016.

[31] Bryan McCann, Nitish Shirish Keskar, Caiming Xiong, and Richard
Socher. The natural language decathlon: Multitask learning as question
answering. arXiv preprint arXiv:1806.08730, 2018.

[32] Maleknaz Nayebi and Guenther Ruhe. Optimized functionality for super
mobile apps. In 2017 IEEE 25th international requirements engineering
conference (RE), pages 388–393. IEEE, 2017.

[33] Maleknaz Nayebi and Guenther Ruhe. Asymmetric release planning:
Compromising satisfaction against dissatisfaction. IEEE Transactions
on Software Engineering, 45(9):839–857, 2018.

[34] Paolo Nesi, Gianni Pantaleo, Irene Paoli, and Imad Zaza. Assessing
the retweet proneness of tweets: predictive models for retweeting.
Multimedia Tools and Applications, 77(20):26371–26396, 2018.

[35] Alec Radford, Jeffrey Wu, Rewon Child, David Luan, Dario Amodei,
Ilya Sutskever, et al. Language models are unsupervised multitask
learners. OpenAI blog, 1(8):9, 2019.

[36] Colin Raffel, Noam Shazeer, Adam Roberts, Katherine Lee, Sharan
Narang, Michael Matena, Yanqi Zhou, Wei Li, and Peter J Liu. Explor-
ing the limits of transfer learning with a unified text-to-text transformer.

[37] Colin Raffel, Noam Shazeer, Adam Roberts, Katherine Lee, Sharan
Narang, Michael Matena, Yanqi Zhou, Wei Li, Peter J Liu, et al.
Exploring the limits of transfer learning with a unified text-to-text
transformer. J. Mach. Learn. Res., 21(140):1–67, 2020.

[38] Nils Reimers and Iryna Gurevych. Sentence-bert: Sentence embeddings
using siamese bert-networks. arXiv preprint arXiv:1908.10084, 2019.

[39] Nils Reimers and Iryna Gurevych. Sentence-bert: Sentence embeddings
using siamese bert-networks. In Proceedings of the 2019 Conference
on Empirical Methods in Natural Language Processing. Association for
Computational Linguistics, 11 2019.

[40] Paula Rooney. 80-20 rule applies to bugs, not just
features. http://www.crn.com/news/security/18821726/
microsofts-ceo-80-20-rule-applies-to-bugs-not-just-features.htm.

[41] Ramsha Saeed, Haider Abbas, Sara Asif, Saddaf Rubab, Malik M Khan,
Naima Iltaf, and Shynar Mussiraliyeva. A framework to predict early
news popularity using deep temporal propagation patterns. Expert
Systems with Applications, 195:116496, 2022.

[42] Florian Schroff, Dmitry Kalenichenko, and James Philbin. Facenet: A
unified embedding for face recognition and clustering. In Proceedings of
the IEEE conference on computer vision and pattern recognition, pages
815–823, 2015.

[43] Rico Sennrich, Barry Haddow, and Alexandra Birch. Neural ma-
chine translation of rare words with subword units. arXiv preprint
arXiv:1508.07909, 2015.

[44] Noam Shazeer and Mitchell Stern. Adafactor: Adaptive learning rates
with sublinear memory cost. In International Conference on Machine
Learning, pages 4596–4604. PMLR, 2018.

[45] AB Siddique, Fuad Jamour, and Vagelis Hristidis. Linguistically-
enriched and context-awarezero-shot slot filling. In Proceedings of the
Web Conference 2021, pages 3279–3290, 2021.

[46] AB Siddique, Fuad Jamour, Luxun Xu, and Vagelis Hristidis. Gen-
eralized zero-shot intent detection via commonsense knowledge. In
Proceedings of the 44th International ACM SIGIR Conference on
Research and Development in Information Retrieval, pages 1925–1929,
2021.

[47] AB Siddique, MH Maqbool, Kshitija Taywade, and Hassan Foroosh.
Personalizing task-oriented dialog systems via zero-shot generalizable
reward function. In Proceedings of the 31st ACM International Con-
ference on Information & Knowledge Management, pages 1787–1797,
2022.

[48] AB Siddique, Samet Oymak, and Vagelis Hristidis. Unsupervised
paraphrasing via deep reinforcement learning. In Proceedings of the
26th ACM SIGKDD International Conference on Knowledge Discovery
& Data Mining, pages 1800–1809, 2020.

[49] Muhammad Abu Bakar Siddique. Unsupervised and Zero-Shot Learning
for Open-Domain Natural Language Processing. University of Califor-
nia, Riverside, 2021.

[50] Kaitao Song, Xu Tan, Tao Qin, Jianfeng Lu, and Tie-Yan Liu. Mpnet:
Masked and permuted pre-training for language understanding. Ad-
vances in Neural Information Processing Systems, 33:16857–16867.

[51] Carole H Sudre, Wenqi Li, Tom Vercauteren, Sebastien Ourselin, and
M Jorge Cardoso. Generalised dice overlap as a deep learning loss
function for highly unbalanced segmentations. In Deep learning in
medical image analysis and multimodal learning for clinical decision
support, pages 240–248. Springer, 2017.

[52] Sho Tsugawa and Kosuke Kito. Retweets as a predictor of relationships
among users on social media. PloS one, 12(1):e0170279, 2017.

[53] Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion
Jones, Aidan N Gomez, Łukasz Kaiser, and Illia Polosukhin. Attention
is all you need. In Advances in neural information processing systems,
pages 5998–6008, 2017.

[54] Phong Minh Vu, Tam The Nguyen, Hung Viet Pham, and Tung Thanh
Nguyen. Mining user opinions in mobile app reviews: A keyword-based
approach. ASE ’15, page 749–459. IEEE Press, 2015.

[55] Ronald J Williams and David Zipser. A learning algorithm for con-
tinually running fully recurrent neural networks. Neural computation,
1(2):270–280, 1989.

[56] Cheng Yang, Lingang Wu, Chunyang Yu, and Yuliang Zhou. A phrase-
level user requests mining approach in mobile application reviews:
Concept, framework, and operation. Information, 12(5):177, 2021.

[57] Zhilin Yang, Zihang Dai, Yiming Yang, Jaime Carbonell, Russ R
Salakhutdinov, and Quoc V Le. Xlnet: Generalized autoregressive
pretraining for language understanding. Advances in neural information
processing systems, 32, 2019.

[58] Jianzhang Zhang, Yinglin Wang, and Tian Xie. Software feature refine-
ment prioritization based on online user review mining. Information and
Software Technology, 108:30–34, 2019.

[59] Xue Zhang, Hauke Fuehres, and Peter A Gloor. Predicting stock market
indicators through twitter “i hope it is not as bad as i fear”. Procedia-
Social and Behavioral Sciences, 26:55–62, 2011.

[60] Yujin Zhu, Zhe Wang, and Daqi Gao. Gravitational fixed radius nearest
neighbor for imbalanced problem. Knowledge-Based Systems, 90:224–
238, 2015.

https://android-developers.googleblog.com/2019/05/whats-new-in-play.html
https://android-developers.googleblog.com/2019/05/whats-new-in-play.html
https://play.google.com/store/apps
http://www.crn.com/news/security/18821726/microsofts-ceo-80-20-rule-applies-to-bugs-not-just-features.htm
http://www.crn.com/news/security/18821726/microsofts-ceo-80-20-rule-applies-to-bugs-not-just-features.htm

	I Introduction
	II Preliminaries
	III Proactive Prioritization Framework: PPrior
	III-A Phase One: Self-Supervised Training
	III-B Phase Two: Contrastive Training
	III-C Phase Three: Radius Neighbor Classification

	IV Experimental Setup
	IV-A Dataset
	IV-B Evaluation
	IV-C Competing Approaches

	V Results
	VI Related Work
	VII Conclusion
	References

