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Abstract—Inferring the source information of greenhouse
gases, such as methane, from spatially sparse sensor observations
is an essential element in mitigating climate change. While it is
well understood that the complex behavior of the atmospheric
dispersion of such pollutants is governed by the Advection-
Diffusion equation, it is difficult to directly apply the governing
equations to identify the source location and magnitude (inverse
problem) because of the spatially sparse and noisy observations,
i.e., the pollution concentration is known only at the sensor
locations and sensors sensitivity is limited. Here, we develop
a multi-task learning framework that can provide high-fidelity
reconstruction of the concentration field and identify emission
characteristics of the pollution sources such as their location,
emission strength, etc. from sparse sensor observations. We
demonstrate that our proposed framework is able to achieve
accurate reconstruction of the methane concentrations from
sparse sensor measurements as well as precisely pin-point the
location and emission strength of these pollution sources.

Index Terms—Physics-informed Machine Learning, Uncer-
tainty Quantification, Climate and Sustainability.

I. INTRODUCTION

Methane is one of the potent greenhouse gasses [5], [6],
[16] that is emitted into the atmosphere through leakages in
natural gas systems, raising livestocks, or via natural sources
such as wetlands. These methane emissions caused by human
activities have further been identified as a major contribu-
tor to climate change [3], [14], [15]. The global warming
potential of methane is 25 times larger than CO2, over a
100 year, and most emission are preventable with monitoring
and sensing solutions [2].Thus, inferring the location and
emission strength of pollution sources such as methane leaks
are both essential in monitoring the air-quality as well as
mitigating the climate change. However, one of the major
challenges in localization of these emission sources is the
unavailability of high-resolution methane concentration maps,
and these individual pollution sources are to be estimated from
the limited concentration measurements from a sparse sensor
network.

Digital twins are information system that create digital
replication of the physical state and temporal evolution con-
strained by observations and the governing laws of physics
[12]. Planetary digital twins are proposed to be developed

§Work done during internship at IBM T.J.Watson Research Center.

to better understand the long term impact of climate change
[1]. Digital twins can model the complexity of the forward
propagation of multi source dispersion [8] and enable a
digital playground to study the best measurement approach
to reconstruct information and identify sources. The digital
twin can be informed by sensors and satellite measurements
as realistic constrain of methane dispersion [18]. Here we
demonstrate how a dynamic, two dimensional propagation of
pollution plumes [19], [20], under realistic scenario can be
used to reconstruct the propagation field and identify sources
using a data driven approach.

Here, we consider atmospheric inverse models that aim
to either reconstruct the concentration field [10] or identify
pollution source information [7] of airborne pollutants. While
atmospheric inverse models have been studied extensively, due
to the ill-posed nature of the inverse problem, it still remains
as a challenging topic. Recently, potential of deep learning
approaches for the inverse problem has been demonstrated [4]
[11]. We are interested in developing a deep-learning-based
atmospheric inverse model, utilizing a digital twin to generate
a range of possible emission scenarios.

We develop a multi-task learning framework that can pro-
vide a high-fidelity reconstruction of the spatio-temporal con-
centration field and identify the emission characteristics of the
pollution sources such as their location, and emission strengths
from a time series of sensor measurements. We propose a
novel 3D diffusive masked convolution to gradually propagate
the information from the sensor locations to the unobserved
field using a diffusion process. We demonstrate that our multi-
task model is able to achieve accurate reconstruction of the
pollution concentrations from sparse sensor measurements as
well as precisely pin-point the location and emission strength
of these pollution sources.

II. BACKGROUND AND PROBLEM SETUP

Here, we assume that there is a digital twin for the domain
of interest, Ω. The digital twin consists of a numerical weather
simulation model, that can generate a meteorological condi-
tion, such as the wind velocity field, u, a computational model
for atmospheric dispersion, and prior information, such as the
locations of the potential emission sources, possible emission
scenarios, and the locations of the sensors. We assume a
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Fig. 1: Neural Network Architecture of our proposed multi-task learning framework.

two-dimensional domain, which is discretized by equispaced
Nx ×Ny grid points in the east-west (x) and the north-south
(y) directions.

In the digital twin, the concentration for a particular emis-
sion scenario can be computed by solving the following
advection-diffusion equation,

∂φ

∂t
+ u·∇φ−K∇2φ =

Ns∑
i=1

qi(x, t); x ∈ Ω, t ∈ R+ (1)

where φ is the concentration, u is the wind velocity field, K is
the turbulent diffusivity, qi(x, t) is the emission strength of the
i− th source, and Ns denote the total number of sources. The
emission sources are point sources; qi(x, t) = ciδ(x − xsi ),
where ci is the emission strength, xsi is the location of the
source, and δ(.) is the Dirac delta function.

Let the time-series of measurements from the No sensors be
Φ = {Φ1, ...,ΦNo}, where Φi denotes the time series of the
measurements of the i-th sensor, i.e., Φi = [Φ1

i ,Φ
2
i , ...,Φ

Nt
i ],

with Nt denoting the number of time steps. The location of
the i-th sensors are denoted by xΦ

i .
Problem Statement: Given the time series of the sen-

sor measurements Φ ∈ RNo×Nt , their locations xΦ =
{xΦ

1 ,x
Φ
2 , ...,x

Φ
No
}, and the wind velocity field u, we aim to es-

timate the concentration φ on the Nt×Nx×Ny spatio-temporal
grid. Additionally, we are also interested in estimating the
emission characteristics of the Ns potential emission sources,
such as their constant emission strengths c = [c1, c2, ..., cNs

],
and their locations xs = {xs1,xs2, ...,xsNs

}. We assume that
the digital twin platform can be used to generate the data on
the Nt ×Nx ×Ny grid for all possible emission scenarios.

III. PROPOSED METHOD

A. Multi-task learning framework

Multi-task learning [17], [21] is a learning paradigm, where
the knowledge from one task can be utilized to improve the
performance of the model on other similar tasks. Here, we
aim to leverage the strong correlation between the two tasks
of identifying the source information and reconstructing the
concentration field. Note that, through the advection-diffusion
equation, the concentration field is strongly coupled with the
source characteristics given the wind velocity field u. We
propose to learn a shared encoder g(θ) : [Φ,xΦ,u]→ z which
aims to learn a latent representation z. Then, this latent repre-
sentation z, is fed into task-specific decoders f1(ω) : z → φ
and f2(ψ) : z → [c,xs] to find the solution of the inverse
problem and obtain the reconstructed field.

The multi-task learning framework can then be optimized
using the objective function L(θ,ω,ψ) = Lrecon(θ,ω) +
Linverse(θ,ψ), where Lrecon(θ,ω) is the loss function for
reconstructing the spatio-temporal concentration field, and
Linverse(θ,ψ) is the loss function for the inverse problem. The
schematic of our proposed multi-task learning framework is
shown in Figure 1.

B. Field Reconstruction using Diffusive Masked Convolution

We employ a series of masked convolutions for the recon-
struction of the spatio-temporal concentration field from the
sparse observations. We first define a “masked” convolution
operation by restricting the convolution operation on the
masked region centered around the sensor locations where



we actually have the observations. The masked convolution
operation is defined as,

x′ =

{
WT (X �M) sum(1)

sum(M) + b, if sum(M) > 0

0, otherwise
(2)

where W and b, respectively, denote the weights and bias of
a convolutional filter, X is the current feature (pixel) values
for the convolutional sliding window, M is a corresponding
real-valued mask between 0 and 1 (i.e., Mij ∈ [0, 1]),
and � represents element-wise multiplication operation. Note
that the masked convolution is defined similar to the Partial
Convolutions [9] introduced for an inpainting problem.

Then, the mask, M , is updated using a diffusion process
after each masked convolution layer. The diffusion process is
modeled by a Spatial Gaussian Convolutional Kernel of size
k × k denoted by W̃k ∈ Rk×k+ as follows:

W̃k(i, j) = exp(− 1

2σ2
k

[
(i− k − 1

2
)2 + (j − k − 1

2
)2
]
); (3)

i, j ∈ {0, 1, .., k − 1},

where i, j are the i-th row and j-th column of the k × k
kernel, σk is the only learnable parameter and represents the
standard deviation of the spatial kernel. In other words, if
σk is large then the spatial-convolution kernel W̃k would
diffuse the mask values over a larger spatial region. Thus, the
learnable-parameter σk controls the rate of diffusion between
the different layers.

The spatial kernel W̃k can be repeated across time once
(since the size of the kernel along time is one to ensure time-
invariance) and the input Cin and output Cout channels to
form the time-invariant Diffusion Kernel W diff

k , and the mask
is updated using the diffusion as follows:

M ′ = (W diff
k )TM (4)

After the mask update we additionally clip the mask values
greater than one. We first initialize the mask at the input
layer M0 by the sparse sensor-network locations, as shown
in Equation 5.

M0(x) =

{
1, if x ∈ xΦ

0, otherwise
(5)

Then, we stack multiple Diffusive Masked Convolution lay-
ers so that the mask M0 gradually grows after each convolution
layer and ultimately we can reconstruct the full field from
the sparse sensor measurements. Note that this formulation
using the Diffusive Masked Convolution can encode arbitrarily
placed sensors as the input mask. Thus, by training such a
model with different sparse sensor measurements, it is possible
to predict the concentration fields on unseen sensor-network
configurations.

C. Gaussian Negative Log-likelihood Formulation for Uncer-
tainty Quantification

In this problem setup, we are also interested in obtaining
the uncertainty estimates of the predicted concentration fields.

Here, we employ a Gaussian model, where φ ∼ N (φµ, σ
2) to

quantify the uncertainty in the predicted concentration field.
The negative log-likelihood loss function [13] is given as,

Lrecon =
1

2
Ex∼pdata

[log σ2 +
(φtrue − φµ)2

σ2
] (6)

where φµ and σ2 and denote the predicted mean and
variance of the concentration field respectively. Later, in
Section IV we demonstrate that the Gaussian negative log-
likelihood loss formulation prevents over-fitting on the ground
truth concentration field and offers a smooth estimation of the
predicted mean concentration φµ.

D. Emission Characteristics Estimation

Next, we consider the task of solving the inverse problem of
estimating the emission characteristics. One of the challenges
is that the number of potential sources can vary, thus, the
decoder f2 should be able to handle this varying output size.
We propose to divide the 2D spatial domain (Nx ×Ny) into
a S × S grid. For each cell in the S × S grid we predict
the following source characteristic vector [pi, xi, yi, ci], where
i ∈ {1, 2, ..., S2}, pi is the probability of containing a source
in the grid cell i, xi and yi represent the relative location of
the source with respect to the top left corner of the cell, and
ci represents the emission strength of the source.

The objective function for estimating the emission charac-
teristics can be evaluated as follows:

Linverse =λsrc

S2∑
i=1

1srcij [(xsi − x̂i)2 + (ysi − ŷi)2]

+ λsrc

S2∑
i=1

1srcij [(σ(p̂i)− 1)2]

+ λnosrc

S2∑
i=1

1nosrcij [(σ(p̂i))
2]

+ λsrc

S2∑
i=1

1srcij [(ci − Softplus(ĉi))2] (7)

where, 1srci denotes if the source occurs in the grid cell i. Note
that we use a SoftPlus activation function on the predicted
emission strengths Softplus(ĉi) to enforce that the emission
strengths are always positive, i.e., ci ∈ R+.

IV. RESULTS

A. Experiment and Evaluation Setup

Experimental Setup: We performed our experiments on 4000
simulations of the forward problem of the advection-diffusion
equation, with varying source locations and their emission
strengths under stochastically generated wind conditions. In
each simulation, the number of sources is randomly selected
between one to four, and then randomly placed within the
domain. These set of simulations were there divided into
training and test sets to train our proposed multi-task learning
framework. The proposed multi-task learning framework was
trained on 80% of the simulations and tested on the rest.
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Fig. 2: Demonstrating the reconstruction of the global field from sparse sensor measurements on a representative test example.
The white crosses denote the position of the sensors. Top row: shows the ground truth concentration fields at various time
stamps, Bottom row: the predicted mean of the concentration fields

During every epoch, for each simulation in the training set we
first randomly select the number of sensors, such that Ns varies
between 30 and 100, and then placed them randomly inside
the domain. This sampling strategy allows us to generalize on
the field reconstruction task from any arbitrary sensor-network
during the inference stage.

Reconstruction
RMSE Precision Recall Source Mag.

MSE
Rel. Loc.

MSE
w/o G-NLL 7.96 70.6 94.2 0.178 1.38e-7
w. G-NLL 11.29 73.3 95.6 0.209 1.32e-7

TABLE I: Comparing the performance of the model trained
with and without the Gaussian Negative Log-likelihood (G-
NLL) loss on different evaluation metrics.

Evaluation Metrics: We define the following metrics to
evaluate the performance of our model.

• Reconstruction RMSE: It is defined as the Root Mean-
Squared Error (RMSE) between the predicted concentra-
tion field and the ground truth concentration field on the
test set. A lower value of RMSE indicates higher fidelity
in reconstruction of the concentration field.

• Precision and Recall: To evaluate the reliability of our
model in detecting the emission sources, we utilize the
precision and recall metrics. For an ideal model, both the
precision and recall should be equal to one. Note that the
precision and recall are computed on the detections made
w.r.t. the S × S grid.

• Relative Location MSE: It is defined as the Mean Squared
Error (MSE) between the relative locations of the ground
truth emission sources and the predicted source locations
inside each grid cell. Thus, the Rel. Loc. MSE represents
the efficacy of the model in localizing the sources inside
the each grid. Therefore, by combining the precision,
recall and the Rel. Loc. MSE we are able to fully evaluate
the model’s capability in localizing the emission sources.

• Source Magnitude MSE: It is defined as the MSE between
the predicted source magnitudes and the ground truth
magnitude of the emission sources. It is used as a metric
to quantify the emission strength identification ability of
the model.

Actual Source Locations Predicted Source Location
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Fig. 3: Localization of the pollution sources on a representative
test example.
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Fig. 4: Emission strength estimation on a representative test
example.

B. Comparing Model Performance

Table I shows the comparison of the performance of the
model trained with and without the Gaussian Negative Log-
Likelihood (G-NLL) Loss on the different evaluation metrics.
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Fig. 5: Sensitivity to the number of sensors with varying training set sizes (500-3500 simulations)
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Fig. 6: Sensitivity to the number of pollution with varying training set sizes (500-3500 simulations)

Figure 2 shows an example of the reconstructed concentra-
tion field on a test dataset. The proposed diffusive masked con-
volution models have a Reconstruction RMSE of 7.96 when
trained without the Gaussian NLL loss, but the Reconstruction
RMSE increases to 11.29 when trained with the Gaussian
NLL loss. The larger RMSE of G-NLL is mainly due to the
misfit at the emission source location. In G-NLL, the estimated
concentration field becomes smooth and the delta-function-like
behavior at the source location is treated as a noise. On the
other hand, without G-NLL, the model tries to follow the delta-
function-like behavior, which results in an artificial oscillation
in the solution.

We also demonstrate a fairly high recall of around 95%,
and a precision of 70% for both models. This suggests that the
model is able to recover 95% of the emission sources that were
present in the simulations. However, the low precision suggests
that the model also generates about 30% false positives in its
predictions. Further, we observe that once a grid cell detects
a emission source, both models can exactly pin-point the
location of the source inside the grid with a Rel. Loc. MSE
of around 1.3e− 7.

We also show an accurate estimation of the emission
strength for the sources as two models display a Source Mag.
MSE of 0.18 and 0.21 respectively. Figure 3 and 4 shows
the ability of our proposed framework to accurately identify
the pollution sources as well as approximate their emission
strengths on an example case.

C. Analyzing Sensitivity to the Number of Sensors
Next, we analyze the sensitivity of our model performance

on the number of sensors. We vary the number of sensors
from 20 to 110 and compare the performance of our model
on various training sizes ranging from 500 simulations to 3500
simulations. From Figure 5, it can be seen that all of the eval-
uation metrics gradually improve as the size of the training set
increases. The reconstruction RMSE decreases as the number
of sensors increase. This trend is expected as having more
sensors observations make the reconstruction problem less ill-
posed, thereby making it easier to obtain higher fidelity field
reconstructions. We also observe that the with lower number of
sensors the precision decreases significantly while the recall
remains the same. This suggests that with less sensors the
model is unable to exactly identify the location of the sources
and ends up predicting a large number of false-positives
that decrease the precision. Additionally, having more sensors
improves the Source Mag. MSE, suggesting that the model is
able to better estimate the source magnitudes (i.e., solve the
inverse problem better) with more sensor measurements.

D. Analyzing Sensitivity to the Number of Emission Sources
Similarly, we analyze the sensitivity of the trained model

on the number of emission sources by varying them from
one to five sources. From Figure 6, we can see that the
Reconstruction RMSE linearly increases with the number of
sources. This is because the magnitude of the concentration
field is proportional to the number of emission sources, and
thus the same is reflected on the reconstruction error. We also
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Fig. 7: Analyzing the empirical coverage of the 95% Prediction Interval (shown as the shaded region) for the model trained
on Gaussian Negative Log-likelihood (NLL) loss for a particular spatial slice of y = 30 and y = 37 (a line passing through 3
pollution sources, that can be identified using the peaks in the ground truth) on an example case.

observe that the precision improves as the number of sources
increases and the recall remains almost unaffected. Further, the
source magnitude MSE increases with the number of sources,
as it becomes difficult to disentangle the contributions from
multiple emission sources.

E. Effects of the NLL formulation

We further qualitatively analyze the predictive intervals of
the model trained with the Gaussian Negative Log-likelihood
loss. For a fixed value of the y-coordinate (y = 30 and
y = 37) we plot the variations in the concentration fields
w.r.t. the x-axis at various times in Figure 7. We observe
that the predictive intervals estimated by our model always
engulf the ground truth concentration. Additionally, we show
that the Gaussian-Negative Loglikelihood (NLL) formulation
for estimating uncertainties allows the estimate of the mean
concentration field to be a smooth function, as the large
fluctuations near the pollution sources are taken care by the
predicted variance, thereby preventing an oscillatory solution.
This behavior can also be seen in Figure 8, where we see
that the absolute error without the NLL shows rectangular
oscillatory patterns, which is not observed for the model
trained with NLL.

V. CONCLUSION

We present a multi-task learning framework for identify-
ing potential emission sources and obtaining reconstruction
of spatio-temporal concentration fields from sparse sensor
measurements. We also propose a novel diffusive-masked
convolution operations that employs the diffusion process in
performing masked-convolutions. The diffusive-masked con-
volution is realized by a spatial-Gaussian convolution kernel,
followed by diffusing the mask to nearby regions. Thus,
by stacking multiple such layers we are able to iteratively
diffuse the information from a sparse sensor measurements
(represented using the initial mask) in a principled manner
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Fig. 8: Comparing the Absolute Errors of the model trained
with and without the Gaussian Negative Log-likelihood (NLL)
loss at different time intervals on an example test case.

until the learned representations spread over the entire spatio-
temporal domain. We also demonstrate precise reconstruction
of the concentration field along with accurate localization and
emission strength estimation of the pollution sources on the
test simulations using our proposed framework.



REFERENCES

[1] Peter Bauer, Bjorn Stevens, and Wilco Hazeleger. A digital twin of earth
for the green transition. Nature Climate Change, 11(2):80–83, 2021.

[2] Olivier Boucher, Pierre Friedlingstein, Bill Collins, and Keith P Shine.
The indirect global warming potential and global temperature change
potential due to methane oxidation. Environmental Research Letters,
4(4):044007, 2009.

[3] Mingkui Cao, Keith Gregson, and Stewart Marshall. Global methane
emission from wetlands and its sensitivity to climate change. Atmo-
spheric environment, 32(19):3293–3299, 1998.

[4] Kai Fukami, Romit Maulik, Nesar Ramachandra, Koji Fukagata, and
Kunihiko Taira. Global field reconstruction from sparse sensors with
voronoi tessellation-assisted deep learning. Nature Machine Intelligence,
3(11):945–951, 2021.

[5] Robert W Howarth. A bridge to nowhere: methane emissions and the
greenhouse gas footprint of natural gas. Energy Science & Engineering,
2(2):47–60, 2014.

[6] Robert W Howarth, Renee Santoro, and Anthony Ingraffea. Methane
and the greenhouse-gas footprint of natural gas from shale formations.
Climatic change, 106(4):679–690, 2011.

[7] Youngdeok Hwang, Hang J Kim, Won Chang, Kyongmin Yeo, and
Yongku Kim. Bayesian pollution source identification via an inverse
physics model. Computational Statistics & Data Analysis, 134:76–92,
2019.

[8] Anna Karion, Thomas Lauvaux, Israel Lopez Coto, Colm Sweeney,
Kimberly Mueller, Sharon Gourdji, Wayne Angevine, Zachary Barkley,
Aijun Deng, Arlyn Andrews, et al. Intercomparison of atmospheric trace
gas dispersion models: Barnett shale case study. Atmospheric chemistry
and physics, 19(4):2561–2576, 2019.

[9] Guilin Liu, Fitsum A Reda, Kevin J Shih, Ting-Chun Wang, Andrew
Tao, and Bryan Catanzaro. Image inpainting for irregular holes using
partial convolutions. In Proceedings of the European conference on
computer vision (ECCV), pages 85–100, 2018.

[10] Xiao Liu, Kyongmin Yeo, and Siyuan Lu. Statistical modeling for spatio-
temporal data from stochastic convection-diffusion processes. Journal
of the American Statistical Association, 117(539):1482–1499, 2022.

[20] Chulin Wang, Kyongmin Yeo, Xiao Jin, Andres Codas, Levente J. Klein,
and Bruce Elmegreen. S3rp: Self-supervised super-resolution and predic-
tion for advection-diffusion process. arXiv preprint arXiv:2111.04639,
2021.

[11] Mirco Milletarı, Sara Malvar, Yagna D Oruganti, Leonardo O Nunes,
Yazeed Alaudah, and Anirudh Badam. Source attribution and emissions
quantification for methane leak detection: A non-linear bayesian regres-
sion approach. 2020.

[12] Steven A. Niederer, Michael S. Sacks, Mark Girolami, and Karen
Willcox. A digital twin of earth for the green transition. Nature
Computational Science, 1(5), 2021.

[13] David A Nix and Andreas S Weigend. Estimating the mean and
variance of the target probability distribution. In Proceedings of 1994
ieee international conference on neural networks (ICNN’94), volume 1,
pages 55–60. IEEE, 1994.

[14] Fiona M O’Connor, O Boucher, N Gedney, CD Jones, GA Folberth,
R Coppell, P Friedlingstein, WJ Collins, J Chappellaz, J Ridley, et al.
Possible role of wetlands, permafrost, and methane hydrates in the
methane cycle under future climate change: A review. Reviews of
Geophysics, 48(4), 2010.

[15] Dave Reay and Pete Smith. Methane and climate change. Routledge,
2010.

[16] ED Schulze, S Luyssaert, P Ciais, A Freibauer, IA Janssens, Jean-
François Soussana, P Smith, John Grace, I Levin, B Thiruchittampalam,
et al. Importance of methane and nitrous oxide for europe’s terrestrial
greenhouse-gas balance. Nature geoscience, 2(12):842–850, 2009.

[17] Trevor Standley, Amir Zamir, Dawn Chen, Leonidas Guibas, Jitendra
Malik, and Silvio Savarese. Which tasks should be learned together in
multi-task learning? In International Conference on Machine Learning,
pages 9120–9132. PMLR, 2020.

[18] Theodore G Van Kessel, Levente J Klein, Muralidhar Ramachandran,
Eric J Zhang, and Hendrik Hamann. Satellite guided mobile wireless
methane detection for oil and gas operations. In 2020 IEEE 6th World
Forum on Internet of Things (WF-IoT), pages 1–4. IEEE, 2020.

[19] Chulin Wang, Eloisa Bentivegna, Wang Zhou, Levente Klein, and
Bruce Elmegreen. Physics-informed neural network super resolution
for advection-diffusion models. preprint arXiv:2011.02519, 2020.

[21] Yu Zhang and Qiang Yang. A survey on multi-task learning. IEEE
Transactions on Knowledge and Data Engineering, 2021.


	I Introduction
	II Background and Problem Setup
	III Proposed Method
	III-A Multi-task learning framework
	III-B Field Reconstruction using Diffusive Masked Convolution
	III-C Gaussian Negative Log-likelihood Formulation for Uncertainty Quantification
	III-D Emission Characteristics Estimation

	IV Results
	IV-A Experiment and Evaluation Setup
	IV-B Comparing Model Performance
	IV-C Analyzing Sensitivity to the Number of Sensors
	IV-D Analyzing Sensitivity to the Number of Emission Sources
	IV-E Effects of the NLL formulation

	V Conclusion
	References

