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Abstract—Fraud detection is considered to be a challenging
task due to the changing nature of fraud patterns over time
and the limited availability of fraud examples to learn such
sophisticated patterns. Thus, fraud detection with the aid of
smart versions of machine learning (ML) tools is essential to
assure safety. Fraud detection is a primary ML classification task;
however, the optimum performance of the corresponding ML tool
relies on the usage of the best hyperparameter values. Moreover,
classification under imbalanced classes is quite challenging as it
causes poor performance in minority classes, which most ML
classification techniques ignore. Thus, we investigate four state-
of-the-art ML techniques, namely, logistic regression, decision
trees, random forest, and extreme gradient boost, that are
suitable for handling imbalance classes to maximize precision and
simultaneously reduce false positives. First, these classifiers are
trained on two original benchmark unbalanced fraud detection
datasets, namely, phishing website URLs and fraudulent credit
card transactions. Then, three synthetically balanced datasets
are produced for each original data set by implementing the
sampling frameworks, namely, random under sampler, synthetic
minority oversampling technique (SMOTE), and SMOTE edited
nearest neighbor (SMOTEENN). The optimum hyperparameters
for all the 16 experiments are revealed using the method
RandomzedSearchCV. The validity of the 16 approaches in the
context of fraud detection is compared using two benchmark
performance metrics, namely, area under the curve of receiver
operating characteristics (AUC ROC) and area under the curve
of precision and recall (AUC PR). For both phishing website
URLs and credit card fraud transaction datasets, the results
indicate that extreme gradient boost trained on the original data
shows trustworthy performance in the imbalanced dataset and
manages to outperform the other three methods in terms of both
AUC ROC and AUC PR.

Index Terms—Cybercrime, fraud detection, classification, im-
balance classes, hyperparameter tuning

I. INTRODUCTION

Technological innovation has drastically altered how we
interact with our surroundings through the internet. From
simple tasks like browsing the web to complex tasks like
diagnosing patients, the internet has highly influenced peoples’
daily lives [30], [37]. This surge in usage has unintentionally
increased cybercrime and heightened concerns about potential
fraud and cybersecurity dangers [47]. Email spam is the
method most frequently employed to help carry out these
online frauds, in which botnets are utilized to send a large
number of unwanted emails to naive recipients that contain

malicious URLs or phishing websites [5]. These botnets are
also used to distribute malicious software known as malware
[24] to damage or exploit computers with the sole purpose
of monitoring the activities of the victim. Some examples of
malware are viruses, ransomware, Trojan horse, spyware, etc.
[43].

Phishing is an illegal attempt to deceive people by employ-
ing social engineering and technological trickery to acquire
their passwords, financial account information, and personal
information [3], [23]. The objective of phishing is to trick
users into visiting a fake website by sending spam emails. The
widespread use of social media and the increase in the sharing
of personal information without any security measures has
made phishing attempts increasingly common recently [13].
Anti-Phishing Working Group, a not-for-profit organization
dedicated to eradicating fraud and identity theft caused by
phishing and related incidents, [3] shows a steady rise in
phishing activities with its highest observation in the first
quarter of 2022 of over a million phishing attacks (see Fig. 1).
The use of firewalls and antivirus software is a typical phishing
protection technique since phishing assaults can result in
identity theft and credit card fraud.

Fig. 1. Phishing activities (red color) and its linear fit (dotted line), from
the 2-nd quarter of 2021 to the 1-st quarter of 2022 available in Ref. [3].
The y-axis measures the total number of phishing attacks globally reported
by APWG members and by members of the public.

Every year, credit card fraud—a type of identity theft
involving unauthorized use of another person’s credit card
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information—leads to staggering financial losses [35]. In 2018,
the total value of fraudulent transactions using cards issued
within the Single Euro Payments Area, a European Union pro-
gram for payment integration that simplifies euro-denominated
bank transactions, amounted to C1.80 billion [4]. By 2025,
gross fraud loss worldwide is projected to be about $35.31
billion [35]. A physical duplicate of a card is required for
transactions made at ATMs and point-of-sale (POS) terminals
under card-present (CP) schemes, whereas a card-not-present
(CNP) scheme allows for transactions to be made over the
phone, online, or by mail without the need for a physical copy
of the card [25]. CP payment methods have been in use for
longer than CNP payment methods, and they are more resistant
to fraudulent trends because they use cutting-edge technology
like biometric identification and two-factor authentication to
monitor and control CP fraud. To reduce the risk of CNP fraud,
the authorization process for a transaction uses a dynamically
changing visa card verification value. [36]. Gross CP fraud
losses from ATMs decreased by 1.8% from 2018 [35], and
according to the European Central Bank report of 2020, CNP
fraud accounted for about 79% of the total fraud transactions
in 2018 [4] as shown in Fig. 2.

Fig. 2. Total value of card frauds from 2014-2018 available in Ref. [4]. Left-
hand scale: total fraud cost (in millions of Euros); right-hand scale: fraud cost
as a % of transaction cost (percentages). Card-not-present (CNP) accounted for
a majority of the transaction report. The volume of automated teller machines
(ATMs) and point-of-sale (POS) terminal frauds as a share of total fraud
decreased in 2018 compared with 2017, whereas the volume of card-not-
present (CNP) fraud as a share of total fraud increased.

Robust systems to detect frauds would have great impacts
on global finance through reduced fraud mitigation costs [36],
increased customers’ trust in merchants, and reduced victims’
loss costs [35]. Phishing and CNP fraud prevention are ar-
guably challenging due to their volatility in fraud patterns over
time as fraudsters take advantage of advances in technology
(i.e., botnets, and malware) to exploit the vulnerabilities of
computer users [35]. Fraud detection systems are used to
identify unusual behavior or pattern in users’ transaction data.
Historically, statistical methods such as regression analysis
[31], discriminant analysis [29], and Markov chain Monte
Carlo analysis [1] have been applied to fraud detection. A
major drawback however is that pure statistical tools are not
suitable for adaptive learning and may not easily recognize the
constantly evolving fraud patterns [33].

Over the past few decades, a wide range of machine learning
(ML) approaches has been employed for fraud detection [32],
[34], [39], [41]. Fraud detection is a type of anomaly detec-
tion where fraud observations are referred to as ”anomalies”
[25]. Manifold learning frameworks as the ones presented
in Refs. [15], [16], [18], are capable of accurately detecting
anomalies of a diverse range of datasets, but these methods
are not adequately tested on fraud detection. These anomalies
can be detected using either supervised ML techniques such
as autoencoders [20] or unsupervised ML approaches such as
low-rank matrix completion [17]. Logistic regression, decision
trees, and naive Bayes are popular baseline models used in
supervised learning owing to their simplicity and interpretabil-
ity [25]. Rule-based expert systems, k-nearest neighbor, and
Support Vector Machine (SVM) produce low precision scores
[32] and require more training time [34]. The hidden Markov
model (HMM) is used in many fraud detection systems due
to its ability to find unknown or hidden patterns in a skewed
dataset. Ref. [33] proposed an optimized semi-hidden Markov
model to improve model performance nevertheless, HMM
and its optimized variants are computationally complex [34].
Ensemble learning has proven to be very effective and versatile
in automated decision-making systems [25]. Random forests
and boosting methods are able to avoid overfitting the training
data [34]; however, they can easily become complex with
many trees and require a lot of computation time. Fraud
detection systems that rely on the flexibility of artificial neural
networks require a large amount of training data to learn
patterns and successfully detect outliers [9]. These models
are however computationally expensive and are susceptible to
overfitting [34]. Hybrid techniques which combine statistical
methods like discriminant analysis, bayesian, and HMM to
neural networks have shown great promise in minimizing
the misclassification of fraudulent observations [28]. Isolation
forest and local outlier factor are unsupervised methods that
can easily find new and unusual patterns in a dataset and
have shown great performance in fraud detection, but they can
become computationally complex and require a large amount
of data to learn from [32].

A common challenge that becomes apparent with ML
fraud detection systems is that the limited amount of fraud
observations causes a large discrepancy between the number
of observations in each class, making it difficult for classi-
fiers to learn predictive information from the highly skewed
dataset [10], [14], which can lead to a bias towards the
majority class (genuine observations). A standard practice
to address class imbalance in datasets is the use of four
common strategies [21]: algorithm-level approach, data-level
approach, cost-sensitivity learning approach, and ensemble
approach [25], [27]. In order to account for the importance
of the minority class, the algorithm-level approach develops
new algorithms or alters those that already exist [45]. Cost-
sensitivity learning considers the misclassification costs by
modifying the optimization function in the training step of the
learning algorithm [25]. For instance, a classifier may give
false negatives a higher cost than false positives, emphasizing



any right classification or mistake relating to the positive
class [2]. In the data-level approach, the class distribution
of the dataset is rebalanced by adding a preprocessing step
before the training algorithm is implemented [7]. To do this,
the imbalance ratio in training data is decreased by either
using under-sampling or over-sampling methods [2]. Under-
sampling eliminates fewer data instances from the majority
class, whereas over-sampling duplicates data instances from
the minority class [26]. Ensemble approaches are intended
to boost the accuracy of a single classifier by training many
classifiers and merging their decisions to produce a single
class label [38]. These strategies aim to skew the decision
boundaries in favor of the minority class [25].

There is great potential to advance fraud detection using
ML techniques; thus, it is worthwhile to carefully inves-
tigate the capabilities of hybrid frameworks for fraud de-
tection. This paper studies the effect of 3 resampling ap-
proaches: RandomUnderSampler (RUS) [25], Synthetic Mi-
nority Oversampling Technique (SMOTE) [11], and a com-
bination of oversampling–SMOTE and undersampling–Edited
Nearest Neighbor (ENN), denoted as SMOTEENN. These
data-level resampling strategies are trained on 4 optimized ML
classifiers, namely, logistic regression, decision tree, random
forest, and extreme gradient boost.

To describe the performance of these four classifiers more
accurately, two performance metrics were investigated, namely
area under the curve of receiver operating characteristics (AUC
ROC) and area under the curve of precision and recall (AUC
PR). This experiment attempts to increase fraud detection and
reduce the number of legitimate observations that are incor-
rectly labeled as frauds. Resampling strategies’ potential to
create classifiers with a superior AUC ROC was demonstrated
through a comparison of all methodologies. The investigation
also revealed that extreme gradient boost is robust to class
imbalance.

The rest of this paper is organized as follows. Section II
outlines the investigated ML approaches. Section III describes
the data and experimental setup. Section IV reports the details
of the experimental results and discussion about the compar-
ative analysis. We conclude in Section V and suggest future
areas of research. Table I presents all the abbreviations used
in this paper.

II. METHODS

Methods include, 1) four classifiers that are used to classify
fraud and genuine data instances; and 2) two metrics that we
use to assess the performance of the classifiers.

A. Classifiers

Here, we present four classifiers logistic regression, deci-
sion tree, random forest, and extreme gradient boosting (or
XGBoost), that are used in our analysis.

1) Logistic Regression: Logistic regression (LR) is the most
widely used learning algorithm for binary classification tasks
because of its simplicity [42]. Taking the fraud observations
as 1’s and the genuine observations as 0’s, LR models the

TABLE I
ABBREVIATIONS USED IN THIS PAPER AND THEIR DESCRIPTIONS.

Abbreviation Description

AUC ROC Area Under the Curve of Receiver Operating Character-
istics

AUC PR Area Under the Curve of Precision and Recall
FN False Negative
FP False Positive
FPR False Positive Rate
TN True Negative
TP True Positive
TPR True Positive Rate
LR Logistic Regression
DT Decision Tree
RF Random Forest
XGB Extreme Gradient Boosting (XGBoosting)
orig original imbalanced dataset
RUS RandomUnderSampler
SMOTE Synthetic Minority Oversampling Technique
ENN Edited Nearest Neighbor
SMOTEENN SMOTE + ENN

probability of a transaction being identified as fraudulent given
other features in the dataset at a specified threshold [42]. If
the probability is greater than the threshold it is fraud else,
non-fraud [42]. Let, x ∈ Rm denote the input feature vector
of length m, then the response z is given as a straight line
z = w · x + b, where w is the weights and b is the bias term
estimated during training. Thus, the logistic function is given
as

g(z) =
1

1 + e−z
, 0 < g(z) < 1. (1)

Then, the LR model given the probability fw,b(x) is

fw,b(x) =
1

1 + e−(w·x+b)
, 0 < p(z) < 1. (2)

For threshold t, probability corresponding to the positive class
1 is interpreted as fw,b(x) = P (y = 1|x;w, b). LR is
reliable and requires less computation time for the training
phase. However, for datasets with extreme class imbalance,
this supervised learning approach is less likely to produce
competitive outcomes [34].

2) Decision Tree: Decision tree (DT) has a hierarchical tree
structure that consists of a root node, branches, internal nodes,
and leaf nodes [46]. DT chooses what feature, i.e., xi’s, to split
at a node based on what choice of feature reduces entropy. Let,
p1 be the fraction of the data instances that belong to the first
class of interest (i.e., fraudulent) in a binary classification, then
the entropy H(p1) is defined as

H(p1) = −p1log2(p1)− (1− p1)log2(1− p1). (3)

A stump of a decision tree is defined as a parent node and its
two children and information gain is a function, computed at
each stump, that is defined as the entropy of a parent minus the
entropy of its candidate splits, i.e., children. This recursive al-
gorithm is trained with the data so that the DT model estimates
the best splitting while maximizing the total information gain.
We train a DT with unlimited depth and min samples split=2
so that training continues until all leaves are pure or until



all leaves contain less than min samples split instances. Like
LR, DTs are simple to build and easy to understand however,
they can easily become complex with more depths and require
more computation time for the training phase [34].

3) Random Forest: Given a training set, random forest
(RF) is an ensemble of decision trees, where each tree in
the ensemble is comprised of a data sample drawn from the
training set repeatedly, say k times, with replacement [8].
This creates a random forest for the dataset and then makes
classifications using RFs. Out-of-bag sampling is used to give
ongoing estimates of the generalization error of the combined
ensemble of trees. The model prediction is made by taking
the majority vote from all classification trees. RFs give better
predictions when compared with a single model and are less
likely than DTs to overfit during training but this classifier’s
processing time increases with complexity.

4) Extreme gradient boosting (or XGBoosting): Extreme
gradient boosting (XGB) [12], improves predictive power
by building an ensemble of trees that uses sampling with
replacement to create new training sets. Instead of picking each
data instance with equal probability as with RFs, XGB makes
it more likely to pick instances that the previously trained tree
misclassified. Let, xi ∈ Rm is a vector of m features, the
tree ensemble model of interest uses K additive functions to
predict the output ŷi as

ŷi =

K∑
k=1

fk(xi), fk ∈ F (4)

Where F = {fk|k = 1, . . . ,K} is the space of regression trees
and each fk corresponds to an independent tree structure, say
qand leaf weights w [12]. If ŷ(t)i is the prediction of the i-th
instance of the t-th iteration, we greedily add ft to minimize
the objective L such that,

L(t) =

n∑
i=1

l(yi, ŷ
(t−1)
i + ft(xi)) + Ω(ft), (5)

where Ω(f) = γT+1/2λ‖w‖2. Here, l(f, g) is a differentiable
convex loss function that measures the difference between f
and g, T is the number of leaves in the tree, and γ and λ are
constants. During the training process, this objective L(t) is
optimized using a second-order approximation of it for a fixed
tree structure q and estimates the weights w of the leaves. [12]

The algorithm starts with one weak learner and iteratively
adds new weak learners to approximate functional gradients.
The final ensemble model is constructed by a weighted sum-
mation of all weak learners. The parameter scale pos weight
controls the balance of positive and negative weights. We

keep this parameter relatively small as
√∑n

i=1 y∑n
i=1 ŷ for credit

card dataset since its classes are extremely imbalanced. XGB
contains a regularization term which helps it to avoid overfit-
ting. The hyperparameters of XGB can be tuned to account
for class imbalance, making it an effective learning algorithm
for skewed datasets. However, high computation time is the
biggest disadvantage of this algorithm.

B. Performance metrics

We assess the performance of each of the four classifiers
based on two performance metrics, AUC ROC and AUC PR.
There are four possible outcomes of a classifier: 1) classifying
a fraudulent instance as fraudulent, this is named a true
positive (TP); 2) classifying a fraudulent instance as genuine,
this is named a false positive (FP); 3) classifying a genuine
instance as genuine, this is named as true negative (TN); and
4) classifying a genuine instance as fraudulent, this is named
as false negative (FN) [25]. The confusion matrix of binary
classifiers is given in Table II.

TABLE II
CONFUSION MATRIX

Predicted Class

Genuine (0) Fraud (1)

Actual Class Genuine (0) True Negative(TN) False Positive(FP)

Fraud (1) False Negative(FN) True Positive(TP)

1) Area Under the Curve of Receiver Operating Character-
istics: The receiver operating characteristic (ROC) curve [25],
is especially useful with skewed class distribution because they
are insensitive to changes in class distribution. The ROC curve
is obtained by plotting true positive rate (TPR), also called
recall, i.e., TP

TP+FN , against the false positive rate (FPR), i.e.,
FP

FP+TN , for all possible fraud probability values returned by
a classifier at different thresholds [25]. Area under the curve
of receiver operating (AUC ROC) of a classifier is a scalar
value equivalent to the probability that the classifier will rank
a randomly chosen positive instance higher than a randomly
chosen negative instance [25].

2) Area Under the Curve of Precision and Recall: The
precision-recall (PR) curve [25] is created by graphing the
precision, i.e., TP

TP+FP , against the recall for each conceivable
fraud probability value returned by a classifier at the different
thresholds. The primary benefit of the PR curve is the inclusion
of evidence classifiers with high recall and high precision [25].
Ref. [40] states that high TPR and low FPR values are signifi-
cant in a fraud detection problem therefore, the precision-recall
curve is an essential performance measure for imbalanced
datasets. Area under the curve of precision and recall (AUC
PR) of a given classifier is a single number summary of
the information in the precision-recall (PR) curve, calculated
by computing the average precision at each threshold, with
the increase in recall from the previous threshold used as
the weight. The average precision of a random classifier
decreases as the class imbalance ratio increases, this property
makes AUC PR better reflect the challenge related to a class
imbalance problem.

III. DATA AND EXPERIMENTAL SETUP

A. Data description

Our fraud detection study is performed on two datasets,
namely, phishing website URLs and credit card transactions.



TABLE III
DATASETS WITH PROPORTION OF NEGATIVE AND POSITIVE CLASSES

Dataset Total Genuine Fraud

Phishing website URLs 88647 50000 30647
Credit card fraud 284807 284315 492

• Phishing website dataset. This dataset contains 111
features that are extracted from the collections of web-
site URLs with 88, 647 entries and no missing values
[44]. Phishing is the binary response variable to predict,
where 0 represents genuine sites and 1 represents phish-
ing/fraudulent sites. 34.57% of the total data are phish
website instances.

• Credit card fraud dataset. The highly unbalanced
dataset provided by the Université Libre de Bruxelles
(ULB) ML group [22] contains 0.17% fraudulent transac-
tions out of the 284, 807 transactions. This is a 30-feature
dataset that contains credit card transactions that occurred
in two days made by European cardholders.

B. Preprocessing

The quality of data is vital in every ML algorithm; therefore,
it is essential to remove redundant features and increase
efficiency. The features Time and Amount of the credit card
dataset are normalized by z-scoring. Decision trees and tree
ensembles are robust to scale and distribution of values in a
dataset and generally do not require normalization; however,
the normalization helps to minimize the computation time of
each model. Features of the phishing site dataset are directly
used without normalization because the data distribution is
relatively small.

C. Proposed resampling techniques

In this paper, we compile three synthetically balanced
datasets from the two imbalanced datasets. To implement
this, we have utilized an imbalanced-learn [26] library that
includes resampling techniques such as RUS, SMOTE, and
SMOTEENN. RUS aims to balance class distribution by
randomly eliminating samples from the majority class [25].
Some data instances of the majority class in the training set are
randomly undersampled to balance the dataset. This approach
is simple and computationally efficient; but it can cause loss of
valuable information needed for better predictive performance
of the model. The number of genuine observations in our
datasets are resampled so that the total number of genuine
cases is equal to the total number of fraud/phishing cases.
SMOTE is an oversampling technique that generates synthetic
data instances of the minority class by interpolation [11].
It creates a probability distribution to describe the smaller
class and enlarges the decision boundary to encompass nearby
minority class examples, reducing the risk of misclassifying
the minority class. SMOTE can become computationally ex-
pensive with larger datasets. SMOTEENN is a resampling
technique that combines over and undersampling approaches
[6]. Here, SMOTE is first applied to the training set to

oversample the minority class. All data examples of each class
that diverge from their neighborhood is eliminated by edited
nearest neighbour (ENN); therefore, this technique is able to
clean up more noise after oversampling may not produce equal
instances for each class as in RUS and SMOTE.

D. Evaluation Pipeline

Stratified sampling by class helps to maintain the same level
of imbalance in the train and test sets. The dataset is distributed
in the ratio of 80% for training and 20% for testing. Our
evaluation pipeline consists of three parts:

1) RandomizedSearchCV is used to obtain optimal pa-
rameters for each classifier with stratified k-fold cross-
validation. The two different datasets are partitioned by
stratified split into 10 equal-size validation pairs and
the class proportion across each pair is maintained. To
reduce the effect of randomness for the 10-fold split, we
set the number of iterations to 5. Table II contains the
list of the tuned parameter values used to optimize the
performance of each classifier for both datasets.

2) Now that we have obtained the optimal sets of hyperpa-
rameters for training, we create three new synthetically
balanced datasets with RUS, SMOTE, and SMOTEENN.

3) We then train the four classifier models using the original
unbalanced dataset and the three synthetically balanced
datasets respectively.

IV. RESULTS

An efficient fraud detection system aims at optimizing recall
and precision. Our study is based on 16 classifiers: four state-
of-the-art classifiers where each of them is implemented one
time as it is and three more times with resampling techniques,
RUS, SMOTE, SMOTEENN. We compare the fraud detection
performance of these 16 classifiers applied to two datasets,
phishing website URLs and credit card fraud, with respect to
two performance metrics, AUC ROC and AUC PR, and discuss
the impact of these models. Table V lists the performance
metrics, FP, FN, recall, precision, AUC ROC, and AUC PRC
of all 16 models. Figs. 3–10 show the performance, with
respect to AUC ROC and AUC PR, of all models on the two
original imbalanced datasets. Figs. 3–6 provide evidence that
four XGB models over perform other techniques when applied
to the phishing dataset as XGB models gain 0.996 and 0.994
for AUC ROC and AUC PR, respectively. By identifying more
instances of fraud and lowering false negatives, resampling
techniques marginally enhance the performance of each clas-
sifier although increased false positives are observed. For the
phishing dataset, the experiment that we train XGB on the
original imbalance dataset outperformed all other approaches.

For the credit card dataset, random forest along with
SMOTE performed better, in terms of AUC ROC, than other
approaches. However, in terms of AUC PR, random forest with
SMOTE performs marginally better than XGB with original
imbalance credit card dataset. XGB with the original credit
card dataset had both the best precision score of 0.98 and the
fewest false positives of 2. It is evidenced that the decision



TABLE IV
OPTIMAL HYPERPARAMETER SETS FOR THE DATASETS PHISHING WEBSITE URLS AND CREDIT CARD TRANSACTIONS.

Dataset LR DT RF XGB

Phishing websites URLs solver = liblinear criterion = entropy n estimators = 100 n estimators = 200
penalty = l2 max depth = 20 max depth = 15
max iter = 500 oob score = True colsample bytree = 0.9
C = 5 warm start = True scale pos weight = ratio

learning rate = 0.1
gamma = 0.3

Credit card fraud solver = lbfgs criterion = entropy n estimators = 50 n estimators = 100
penalty = l2 max depth = 12 max depth = 11
max iter = 100 oob score = True colsample bytree = 0.9
C = 3 warm start = True scale pos weight = ratio

learning rate = 0.1
gamma = 0.3

TABLE V
PERFORMANCE COMPARISON OF 16 EXPERIMENTS: FOUR ORIGINAL CLASSIFIERS, NAMELY, LOGISTIC REGRESSION (LR), DECISION TREE (DT),

RANDOM FOREST (RF), AND, XGB (XGB); AND EACH CLASSIFIER WITH THREE SAMPLING TECHNIQUES, NAMELY, RANDOMUNDERSAMPLER (RUS),
SYNTHETIC MINORITY OVERSAMPLING TECHNIQUE (SMOTE), AND SMOTE-EDITED NEAREST NEIGHBOR (SMOTEENN). THE BEST VALUE FOR

EACH METRIC AMONG ALL THE 16 EXPERIMENTS IS COLORED IN RED

Model
Phishing website URLs dataset Credit card fraud dataset

FP FN Recall Precision AUC
ROC

AUC
PR

FP FN Recall Precision AUC-
ROC

AUC-
PR

LR+orig 760 570 0.91 0.88 0.976 0.950 43 8 0.87 0.56 0.989 0.762
LR+RUS 1100 360 0.94 0.84 0.976 0.950 1800 6 0.94 0.05 0.990 0.665
LR+SMOTE 1000 360 0.94 0.85 0.976 0.950 7 1300 0.93 0.07 0.992 0.707
LR+SMOTEENN 1200 420 0.93 0.83 0.976 0.950 1300 8 0.92 0.06 0.985 0.712
DT+orig 370 420 0.93 0.94 0.950 0.900 19 22 0.78 0.80 0.877 0.589
DT+RUS 560 310 0.95 0.91 0.950 0.900 5400 5 0.95 0.02 0.919 0.015
DT+SMOTE 400 380 0.94 0.94 0.950 0.900 99 21 0.79 0.44 0.892 0.303
DT+SMOTEENN 480 370 0.94 0.92 0.950 0.900 152 19 0.81 0.35 0.902 0.309
RF+orig 270 240 0.96 0.96 0.995 0.992 4 22 0.78 0.95 0.983 0.818
RF+RUS 480 160 0.97 0.92 0.995 0.992 200 7 0.93 0.04 0.979 0.724
RF+SMOTE 340 200 0.97 0.95 0.995 0.992 35 16 0.84 0.70 0.995 0.814
RF+SMOTEENN 410 200 0.97 0.94 0.995 0.992 33 14 0.86 0.72 0.992 0.684
XGB+orig 230 200 0.97 0.96 0.996 0.994 2 19 0.81 0.98 0.992 0.849
XGB+RUS 360 140 0.98 0.94 0.996 0.994 2100 6 0.94 0.04 0.992 0.737
XGB+SMOTE 270 180 0.97 0.96 0.996 0.994 24 15 0.85 0.78 0.990 0.851
XGB+SMOTEENN 370 210 0.97 0.94 0.996 0.994 29 15 0.85 0.74 0.991 0.817

Fig. 3. AUC ROC and AUC PR of the four classifiers applied to the original phishing website URLs dataset.



Fig. 4. AUC ROC and AUC PR of the four classifiers applied to the undersampled (RUS) phishing website URLs dataset.

Fig. 5. AUC ROC and AUC PR of the four classifiers applied to the oversampled (SMOTE) phishing website URLs dataset.

Fig. 6. AUC ROC and AUC PR of the four classifiers applied to the resampled (SMOTEENN) phishing website URLs dataset.



Fig. 7. AUC ROC and AUC PR of the four classifiers applied to the original credit card fraud dataset.

Fig. 8. AUC ROC and AUC PR of the four classifiers applied to the undersampled (RUS) credit card fraud dataset.

Fig. 9. AUC ROC and AUC PR of the four classifiers applied to the oversampled (SMOTE) credit card fraud dataset.



Fig. 10. AUC ROC and AUC PR of the four classifiers applied to the resampled (SMOTEENN) credit card fraud dataset.

tree along with RUS can identify more instances of frauds
as we observed the best recall of 0.95. Models trained with
resampled data appear to favor the minority class by maxi-
mizing recall. Classifiers trained on RUS as shown in Figs. 4
and 8 appear to provide the fewest FNs but also yield the
most FPs, suggesting that RUS may not be a good technique
for real-world fraud detection systems since it produces too
many FPs. It is possible that SMOTEENN is ineffective for
real-world fraud detection systems since it performs poorly
in these datasets and consumes a lot of processing time.
In comparison to RUS and SMOTEENN, classifiers trained
on SMOTE exhibit a significantly higher recall and AUC
ROC. With AUC ROC, AUC PR of phishing website URLs,
and credit card data interpreted as 0.996, 0.994, and 0.992,
0.849 respectively, XGB is the most successful classification
algorithm for minimizing false positives and maximizing recall
among all methods.

V. CONCLUSION AND FUTURE WORK

Fraud detection with the aid of smart techniques is essen-
tial to assure safety as modern humans are prone to cyber
attacks with the surge of internet-based lifestyles. This study
is based on detecting frauds by combining several families
of machine learning techniques, namely, classification tools,
resampling tools for imbalance classes, hyperparameter tuning
frameworks. Especially, this research paper studied the use
of four classifiers, namely, logistics regression (LR), decision
tree (DT), random forest (RF), and extreme gradient boost-
ing (XGB), along with three imbalance learning techniques,
namely, random under sampler (RUS), synthetic minority
oversampling technique (SMOTE), and SMOTE edited nearest
neighbor (SMOTEENN), in fraud detection systems. These
techniques are implemented on two datasets, phishing website
URLs and credit card frauds, after tuning the hyperparameters
by RandomizedSearchCV.

The genuine class outweighs any fraudulent class in the
majority of cybersecurity datasets. Using the imbalance learn
library can help generate more distinct decision boundaries
for each class since these classes differ significantly in several

attributes. We found that the resampling techniques minimized
FPR and AUC PR while optimizing AUC ROC. An ideal fraud
detection system should utilize the models that minimize FPR
and maximize precision because an operational fraud detection
system typically works with much larger datasets on a regular
basis and with a small team of investigators who manually
check all false positives (genuine instances that are incorrectly
flagged) [25].

In general, the algorithms XGB and random forest out-
performed logistic regression and decision tree. In terms of
precision and AUC PR, XGB outperformed random forest
and showed more robustness to data imbalance. The AUC
ROC of the classifiers trained on resampled datasets showed
a small improvement with a moderate computational time;
however, the classifiers work along with RUS attain a sig-
nificant reduction in computation time. Additionally, metrics
like precision and AUC PR are often negatively impacted by
resampling techniques. Although an extensive hyperparameter
tuning with GridSerchCV [25], could help with model selec-
tion, the computation time necessary to acquire the ideal val-
ues poses significant barrier to effectively exploring models’
hyperparameters.

Future work will explore the potential of using neural
networks based techniques, along with resampling and hy-
perparameter tuning, for fraud detection. It would include
building a hybrid convolutional neural network and long short-
term memory (CNN-LSTM) framework. CNNs are capable
of learning feature representations without a need for feature
engineering [25], and LSTMs are known for their feedback
connections capable of learning long-term dependencies [19].
Combining these two powerful deep learning algorithms could
result in significant performance when compared with RF
and XGB. We will also investigate the performance of this
framework when applied with imbalanced learning techniques
for fraud detection.
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