
ar
X

iv
:2

21
2.

02
27

1v
1

 [
cs

.C
L

]
 5

 D
ec

 2
02

2

Entity Set Co-Expansion in StackOverflow

Yu Zhang1∗, Yunyi Zhang1∗, Yucheng Jiang1, Martin Michalski1,

Yu Deng2, Lucian Popa3, ChengXiang Zhai1, Jiawei Han1

1Department of Computer Science, University of Illinois at Urbana-Champaign, Urbana, IL, USA
2IBM Thomas J. Watson Research Center, Yorktown Heights, NY, USA

3IBM Almaden Research Center, San Jose, CA, USA

{yuz9, yzhan238, yj17, martinm6, czhai, hanj}@illinois.edu, {dengy, lpopa}@us.ibm.com

Abstract—Given a few seed entities of a certain type (e.g.,
SOFTWARE or PROGRAMMING LANGUAGE), entity set expansion
aims to discover an extensive set of entities that share the
same type as the seeds. Entity set expansion in software-related
domains such as StackOverflow can benefit many downstream
tasks (e.g., software knowledge graph construction) and facilitate
better IT operations and service management. Meanwhile, exist-
ing approaches are less concerned with two problems: (1) How to
deal with multiple types of seed entities simultaneously? (2) How
to leverage the power of pre-trained language models (PLMs)?
Being aware of these two problems, in this paper, we study the
entity set co-expansion task in StackOverflow, which extracts
LIBRARY, OS, APPLICATION, and LANGUAGE entities from
StackOverflow question-answer threads. During the co-expansion
process, we use PLMs to derive embeddings of candidate entities
for calculating similarities between entities. Experimental results
show that our proposed SECOEXPAN framework outperforms
previous approaches significantly.

Index Terms—set expansion, entity extraction, StackOverflow

I. INTRODUCTION

The task of entity set expansion [4], [7] aims to enrich a

small set of seed entities (e.g., “Java”, “C++”, and “PHP”)

by extracting other entities belonging to the same type (e.g.,

“Python”, “SQL”, and “JavaScript” that are also programming

languages) from a large corpus. Previous studies have shown

the benefit of entity set expansion to a wide range of down-

stream applications, such as named entity recognition [10],

taxonomy construction [8], and text classification [15].

While existing approaches demonstrate their effectiveness

in Wikipedia articles, news, and scientific papers, entity set

expansion in software-related texts, such as StackOverflow

question-answer threads and GitHub issue reports, has been

largely unexplored. Yet, there is an increasing interest in

extracting software-related entities, which is a fundamental

step towards software knowledge graph construction and can

benefit IT operations and service management. For example,

in the StackOverflowNER dataset [9], 20 types of entities,

including LIBRARY, OS, APPLICATION, and LANGUAGE, are

annotated for entity-centric studies.

From the technical perspective, we identify two problems

that are less concerned by existing studies: (1) How to deal

with multiple types of seed entities simultaneously? To con-

struct a heterogeneous knowledge graph, one needs to extract

multiple types of entities. If more than one type of seeds

are provided for set expansion, then for a given entity type,

seeds from other types can serve as negative examples and

∗Equal Contribution.

help determine the expansion boundary. For example, given

two sets of seeds {“Java”, “C++”, “PHP”} and {“Windows”,

“iOS”, “Ubuntu”}, we know that the three OS seeds do not

belong to the LANGUAGE type, and all the entities extracted

for OS during expansion should be far from LANGUAGE

as well. Without such guidance, the expansion process may

suffer from semantic drifting and entity intrusion [2]. (2)

How to leverage the power of pre-trained language models?

Pre-trained language models (PLMs) such as BERT [1] have

achieved significant performance improvement in a wide spec-

trum of text mining tasks by learning contextualized word

embeddings. The generic knowledge learned by PLMs from

web-scale corpora may complement the signals we can obtain

from the input corpus. For example, for some less popular

programming languages such as “Kotlin” and “Groovy”, their

occurrences may not be very frequent in the input corpus, in

which case their semantics cannot be accurately learned solely

from local contexts. In comparison, PLMs may have learned

some knowledge of them from their Wikipedia pages during

pre-training.

Contributions. In this paper, we aim to tackle the afore-

mentioned two problems of entity set expansion and apply

our framework to the StackOverflow domain. To be specific,

first, we study the task of entity set co-expansion, which takes

multiple types of seed entities as input and expands them si-

multaneously. We propose a framework, called SECOEXPAN,

that iteratively expands each entity set while keeping mutual

exclusivity of all types. Second, to utilize PLMs, we feed

sentences containing the candidate entities into BERTOverflow

[9] to derive entity representations based on both the entity

themselves and their contexts. The obtained representations

then play a key role in calculating similarities between entities

during our co-expansion process. We conduct experiments

on four entity types – LIBRARY, OS, APPLICATION, and

LANGUAGE – from the StackOverflowNER dataset [9], and

show that our proposed SECOEXPAN framework outperforms

strong baselines including SetExpan [7] and CGExpan [14].

II. RELATED WORK

There have been many studies on entity set expansion. For

a more detailed review of related work, please refer to [6].

Early studies such as EgoSet [4] and SetExpan [7] iteratively

bootstrap the entity set by selecting skip-gram features and

ranking new entities. Later, SetExpander [3] and CaSE [11]

propose to capture distributional similarity between words

http://arxiv.org/abs/2212.02271v1

during expansion based on context-free word embeddings.

More recently, CGExpan [14] enhances entity set expansion

with language model probing. In contrast, our SECOEXPAN

framework utilizes PLMs in a different way by obtaining

contextualized embeddings of candidate entities.

III. PROBLEM DEFINITION

Our task is formally defined as follows.

DEFINITION 1. (ENTITY SET CO-EXPANSION) Given a cor-

pus D and multiple entity sets E1, E2, ..., EM describing M

different entity types, where each entity set contains several

(e.g., 5-10) seed entities belonging to one entity type (i.e.,

Ei = {ei,1, ..., ei,N}), our task is to extract a set of new entities

Ẽi = {ei,N+1, ..., ei,N+K} from D for each entity type.

To perform entity set co-expansion, one needs to first extract

a candidate pool P of noun phrases from D, which can be done

by applying common phrase mining tools [5].

IV. THE SECOEXPAN FRAMEWORK

In this section, we first discuss how we utilize a large pre-

trained language model to get entity embeddings. Then, we

will introduce our new entity set co-expansion method.

A. Entity Embeddings with Masked Language Model

We first use a PLM to get entity embeddings based on

the context information provided in the corpus. The masked

language modeling (MLM) task is first proposed in BERT [1]

as a training objective for large PLMs. Basically, it is a cloze-

filling task such that the model is trained to recover some

tokens that are randomly selected and replaced by the special

[MASK] token in the input sentences. Such a model after

pre-training shows superior language representation power by

capturing contextualized information.

However, PLMs can only embed single tokens in its fixed

vocabulary, while entities are often multi-token phrases (e.g.,

“Windows XP”). Therefore, we introduce two strategies to

get entity embeddings with PLMs [12], [13]. (1) Given an

entity e and a sentence s containing it, we can get its content

embedding h
content
e|s by feeding the original sentence into a

PLM. Since the entity may be tokenized into multiple tokens

by the model (e.g., “Windows” and “XP”), we take the average

of all its corresponding token’s output embeddings as its

context embedding for this sentence. (2) Then, for the same

entity and sentence, we can also get its context embedding

h
context
e|s by replacing the entire entity with the [MASK] token.

Then, the output embedding of the [MASK] token is used

as its context embedding, because PLMs can only see its

surrounding context to infer its semantic.

Since the above strategies can only get entity embeddings

based on one sentence, we further leverage the corpus to get

corpus-level entity embeddings. For each candidate entity e,

we find the complete set Se of sentences containing it from

the corpus. Then, we get its content and context embeddings

for each sentence and then take the average over all sentences

to get the corpus-level embeddings.

h
content
e =

1

|Se|

∑

s∈Se

h
content
e|s ,

h
context
e =

1

|Se|

∑

s∈Se

h
context
e|s .

We can also get a third type of embeddings by concatenating

h
content
e and h

context
e to capture both signals.

h
both
e = [hcontent

e ;hcontext
e].

We will study the effects of using each type of embeddings

for the set expansion task in the experiments.

B. Iterative Entity Set Co-Expansion

After getting the PLM-based embeddings for each entity,

h
X
e (X ∈ {content, context, both}), we propose an entity set

co-expansion method based on the embeddings.

We first define a similarity score between an entity set E
and a candidate entity e as the average of cosine similarity

between e and each entity currently in E . That is

sim(e, E) =
1

|E|

∑

e′∈E

cos(hX
e ,hX

e′).

Because we have multiple entity sets to expand simultane-

ously, for one target set, the remaining ones from different

semantic classes can serve as its negative examples (i.e.,

irrelevant entities) to guide the expansion process. To be

specific, after calculating the similarity score between each

pair of candidate entity and entity set, we compare the scores

for each candidate entity and select the set with the maximum

score, which we name the matched set of an entity. For

example, if a candidate entity has a similarity score of 0.7

with expanded LIBRARY entities and a score of 0.3 with all

other entity sets, we will view the LIBRARY entity set as its

matched set and OS, APPLICATION, and LANGUAGE entities

as irrelevant ones. Formally, given a candidate entity e and all

entity sets to expand E1, E2, ..., EM , the matched set of e is

E∗
e = argmax

Ei,i∈{1,...,M}

sim(e, Ei).

By doing so, each entity will only be expanded to the set

with the highest score. Note that for ambiguous entities that

are relevant to more than one type, its highest and second

highest scores may be close, in which case directly picking the

highest one can be risky. To tackle this problem, we propose

an iterative framework. In each iteration, only very top-ranked

candidate entities will be expanded. Since it is difficult to

simultaneously achieve very high similarities with more than

one type, ambiguous entities are unlikely to be expanded under

this strategy.

The complete set co-expansion method is as follows: given

all the current entity sets and the candidate entities, we first

calculate the similarity score for each pair of candidate entity

and entity set and find the matched set of each entity as defined

TABLE I
SELECTED SEEDS FOR EACH TYPE.

Type Seeds

LIBRARY “jquery”, “api”, “angular”,
“django”, “spring”

OS “windows”, “android”, “linux”,
“ios”, “ubuntu”

APPLICATION “browser”, “mysql”, “git”,
“chrome”, “excel”, “visual studio”

LANGUAGE “javascript”, “java”, “php”, “html”,
“c++”, “sql”, “python”

above. Then, we will select top-k (e.g., k = 10) entities T k ⊆
P with the highest scores to their matched sets.

T k = argmax
T ⊆P,|T |=k

∑

e∈T

sim(e, E∗
e).

Each entity of T k will then be used to expand its matched

set. After expanding these k entities, we can re-calculate the

entity-entity set scores with the updated sets and repeat the

entity selection process, which becomes an iterative expansion

framework. Finally, the expansion process will stop after all

sets reach a given target size t.

V. EXPERIMENTS

A. Dataset

Our corpus D consists of two parts: one is the StackOver-

flowNER dataset [9] (but we do not use the annotations inside

as supervision), and the other is a sampled subcorpus of the

Stack Exchange data dump1 which has ∼1.26M questions and

answers.

We consider four entity types – LIBRARY, OS, APPLICA-

TION, and LANGUAGE. For each type, we select 5-7 seed

entities which are the most frequently annotated ones in

StackOverflowNER. The selected seeds are listed in Table I.

To get the candidate entity pool from the corpus, we apply

a phrase mining tool, AutoPhrase [5], to first get all quality

phrases. Then, we use spaCy2 to only keep those noun phrases.

Finally, we get 48,178 entities in the candidate pool.

B. Compared Methods

We compare the following entity set expansion methods.

• SetExpan [7]: This method iteratively expands the entity

sets by selecting skip-gram context features and scoring

entities with a rank ensemble method.

• CGExpan [14]: This method uses a pre-trained language

model to predict the type name of each entity set and use

the name to guide the expansion process.

• SECOEXPAN-content: This is a variant of our proposed

method using content embeddings only.

• SECOEXPAN-context: This is a variant of our proposed

method using context embeddings only.

• SECOEXPAN-both: This is a variant of our proposed

method using concatenations of both embeddings.

1https://archive.org/download/stackexchange/stackoverflow.com-Posts.7z
2https://spacy.io

TABLE II
P@k SCORES OF ALL COMPARED METHODS.

Methods P@10 P@20 P@30

SetExpan [7] 0.325 0.350 0.358
CGExpan [14] 0.775 0.725 0.708

SECOEXPAN

-content 0.825 0.763 0.692
-context 0.825 0.850 0.842
-both 0.925 0.837 0.742

C. Evaluation Metric

We use Precision@K (P@K) as our evaluation metric. To

be specific, for each entity type, we check how many of

the top-K extracted new entities Ẽi = {ei,N+1, ..., ei,N+K}
belong to the same entity type as Ei. Then, we compute the

average proportions across all entity types. Formally, if we use

e ∼ Ei to denote that the entity e has the same type as the

seeds in Ei, then P@K can be defined as

P@K =
1

M

M∑

i=1

1

K

K∑

j=1

1(ei,N+j ∼ Ei),

where 1(·) is the indicator function.

D. Hyperparameters and Implementation

We use BERTOverflow [9] as the PLM to get entity

embeddings, which is a BERT-base model fine-tuned on the

StackOverflowNER corpus. The target expansion size t is

set to 30. In each iteration of SECOEXPAN, top-10 (i.e.,

k = 10) entities are selected to expand the entity sets before

re-calculating the similarity scores in the next iteration.

E. Performance Comparison

Table II shows the P@K scores of all compared methods,

where K = 10, 20, and 30. From Table II, we can observe that:

(1) SECOEXPAN-context and SECOEXPAN-both consistently

and significantly outperform the baselines, indicating the effec-

tiveness of our proposed framework. Using skip-gram features

only, SetExpan performs not so well. Enhanced by the power

of PLMs, CGExpan achieves much better performance than

SetExpan, but still underperforms SECOEXPAN in most cases.

This is mainly because CGExpan does not have a specific

design to expand multiple types of entities simultaneously. (2)

Among the three variants of SECOEXPAN, SECOEXPAN-both

has the highest P@10 score, while SECOEXPAN-context has

the highest P@20 and P@30 scores. This observation implies

that content information can only benefit the precision of top-

ranked entities, while context information is more useful for

extracting accurate lower-ranked entities. We will explain the

reason for this through a case study.

F. Case Study

Table III shows the expanded entity sets of SetExpan,

SECOEXPAN-both, SECOEXPAN-content, and SECOEXPAN-

context for two types, where we list both top-ranked entities

(i.e., 1st to 5th) and lower-ranked ones (i.e., 26th to 30th). We

can see that: (1) SetExpan picks many general terms (e.g., “a”,

“local”, “modern”) that do not belong to any specific entity

https://archive.org/download/stackexchange/stackoverflow.com-Posts.7z
https://spacy.io

TABLE III
EXPANDED ENTITY SETS FOR OS AND LANGUAGE TYPES, WITH ERRONEOUS ENTITIES COLORED RED .

Entity Type Seed Entity Set SetExpan SECOEXPAN-both SECOEXPAN-content SECOEXPAN-context

1 “window” 1 “ms windows” 1 “microsoft window” 1 “macos”
2 “iphone” 2 “microsoft window” 2 “gnu linux” 2 “osx”
3 “a” 3 “gnu linux” 3 “window server” 3 “macosx”
4 “mac” 4 “window ce” 4 “windows server” 4 “mac”
5 “local” 5 “arch linux” 5 “ms windows” 5 “mac osx”

...
26 “modern” 26 “window server 2008” 26 “window 2008 server” 26 “debian jessie”
27 “office” 27 “window powershell” 27 “windows api” 27 “windows vista”
28 “regular” 28 “window phone” 28 “window explorer” 28 “nix”
29 “4 gb” 29 “windows 8” 29 “window mobile” 29 “windows 7”

OS

{“windows”,
“android”,

“linux”,
“ios”,

“ubuntu”}

30 “remote” 30 “windows powershell” 30 “windows 8” 30 “window vista”

1 “c” 1 “c” 1 “objective c” 1 “c”
2 “js” 2 “objective c” 2 “obj c” 2 “vb”
3 “css” 3 “vb net” 3 “c” 3 “go”
4 “ruby” 4 “obj c” 4 “c sharp” 4 “golang”
5 “korean” 5 “c sharp” 5 “turbo c” 5 “elixir”

...
26 “a” 26 “asp net webapi” 26 “java net urlconnection” 26 “sml”
27 “haskell” 27 “dot net” 27 “js main js” 27 “racket”
28 “clojure” 28 “asp net core webapi” 28 “discord js” 28 “vhdl”
29 “powershell” 29 “dot net core” 29 “tcp ip” 29 “nim”

LANGUAGE

{“javascript”,
“java”,
“php”,
“html”,
“c++”,
“sql”,

“python”}

30 “vb net” 30 “asp net boilerplate” 30 “crypto js” 30 “scala”

type. (2) For SECOEXPAN-both and SECOEXPAN-content,

because we use entity content (i.e., tokens in each entity) to

derive embeddings, the extracted terms are more likely to have

lexical overlap with the seed entities. For top-ranked entities

(e.g., “ms windows”, “gnu linux”, “c”), this strategy yields high

precision. However, when it comes to lower-ranked entities

(e.g., “windows powershell”, “windows api”), lexical overlap

does not necessarily indicate that two entities belong to the

same type. This explains our observation from Table II that

content information is not as robust as context information for

extracting lower-ranked entities.

VI. CONCLUSIONS AND FUTURE WORK

In this paper, we study the problem of entity set co-

expansion in StackOverflow to extract LIBRARY, OS, AP-

PLICATION, and LANGUAGE entities with just a few seeds.

We propose to leverage a PLM to derive entity embeddings

based on entity content and/or context. Then, an iterative co-

expansion framework is proposed to simultaneously enrich

multiple sets of entities based on the calculated entity embed-

dings. Experimental results show that our proposed SECO-

EXPAN framework significantly outperforms strong baselines

such as SetExpan and CGExpan. Through quantitative and

qualitative analyses, we also conclude that context signals

are more robust than content signals for extracting lower-

ranked entities. For future work, first, it is of our interest to

generalize our framework to more types of entities such as

VERSION and DEVICE. Second, we would like to explore the

possibility of applying our entity set co-expansion results to

distantly supervised or few-shot named entity recognition in

StackOverflow and GitHub issue reports.

ACKNOWLEDGMENTS

We thank anonymous reviewers for their valuable and

insightful feedback. This work was supported by the IBM-

Illinois Discovery Accelerator Institute and National Science

Foundation IIS-19-56151, IIS-17-41317, and IIS 17-04532.

REFERENCES

[1] J. Devlin, M.-W. Chang, K. Lee, and K. Toutanova. Bert: Pre-training of
deep bidirectional transformers for language understanding. In NAACL-
HLT’19, pages 4171–4186, 2019.

[2] J. Huang, Y. Xie, Y. Meng, J. Shen, Y. Zhang, and J. Han. Guid-
ing corpus-based set expansion by auxiliary sets generation and co-
expansion. In WWW’20, pages 2188–2198, 2020.

[3] J. Mamou, O. Pereg, M. Wasserblat, A. Eirew, Y. Green, S. Guskin,
P. Izsak, and D. Korat. Term set expansion based nlp architect by intel
ai lab. In EMNLP’18: system demonstrations, pages 19–24, 2018.

[4] X. Rong, Z. Chen, Q. Mei, and E. Adar. Egoset: Exploiting word ego-
networks and user-generated ontology for multifaceted set expansion. In
WSDM’16, pages 645–654, 2016.

[5] J. Shang, J. Liu, M. Jiang, X. Ren, C. R. Voss, and J. Han. Automated
phrase mining from massive text corpora. IEEE TKDE, 30(10):1825–
1837, 2018.

[6] J. Shen and J. Han. Automated Taxonomy Discovery and Exploration.
Springer Nature, 2022.

[7] J. Shen, Z. Wu, D. Lei, J. Shang, X. Ren, and J. Han. Setexpan: Corpus-
based set expansion via context feature selection and rank ensemble. In
ECML-PKDD’17, pages 288–304, 2017.

[8] J. Shen, Z. Wu, D. Lei, C. Zhang, X. Ren, M. T. Vanni, B. M. Sadler,
and J. Han. Hiexpan: Task-guided taxonomy construction by hierarchical
tree expansion. In KDD’18, pages 2180–2189, 2018.

[9] J. Tabassum, M. Maddela, W. Xu, and A. Ritter. Code and named entity
recognition in stackoverflow. In ACL’20, pages 4913–4926, 2020.

[10] X. Wang, Y. Zhang, Q. Li, X. Ren, J. Shang, and J. Han. Distantly su-
pervised biomedical named entity recognition with dictionary expansion.
In BIBM’19, pages 496–503, 2019.

[11] P. Yu, Z. Huang, R. Rahimi, and J. Allan. Corpus-based set expansion
with lexical features and distributed representations. In SIGIR’19, pages
1153–1156, 2019.

[12] Y. Zhang, F. Guo, J. Shen, and J. Han. Unsupervised key event detection
from massive text corpora. In KDD’22, pages 2535–2544, 2022.

[13] Y. Zhang, Y. Meng, X. Wang, S. Wang, and J. Han. Seed-guided topic
discovery with out-of-vocabulary seeds. In NAACL’22, pages 279–290,
2022.

[14] Y. Zhang, J. Shen, J. Shang, and J. Han. Empower entity set expansion
via language model probing. In ACL’20, pages 8151–8160, 2020.

[15] Y. Zhang, F. F. Xu, S. Li, Y. Meng, X. Wang, Q. Li, and J. Han. Higit-
class: Keyword-driven hierarchical classification of github repositories.
In ICDM’19, pages 876–885, 2019.

	I Introduction
	II Related Work
	III Problem Definition
	IV The SECoExpan Framework
	IV-A Entity Embeddings with Masked Language Model
	IV-B Iterative Entity Set Co-Expansion

	V Experiments
	V-A Dataset
	V-B Compared Methods
	V-C Evaluation Metric
	V-D Hyperparameters and Implementation
	V-E Performance Comparison
	V-F Case Study

	VI Conclusions and Future Work
	References

