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Abstract—Recommender systems are a long-standing research
problem in data mining and machine learning. They are in-
cremental in nature, as new user-item interaction logs arrive.
In real-world applications, we need to periodically train a
collaborative filtering algorithm to extract user/item embedding
vectors and therefore, a time-series of embedding vectors can
be naturally defined. We present a time-series forecasting-based
upgrade kit (TimeKit), which works in the following way: it i)
first decides a base collaborative filtering algorithm, ii) extracts
user/item embedding vectors with the base algorithm from
user-item interaction logs incrementally, e.g., every month, iii)
trains our time-series forecasting model with the extracted time-
series of embedding vectors, and then iv) forecasts the future
embedding vectors and recommend with their dot-product scores
owing to a recent breakthrough in processing complicated time-
series data, i.e., neural controlled differential equations (NCDEs).
Our experiments with four real-world benchmark datasets show
that the proposed time-series forecasting-based upgrade kit
can significantly enhance existing popular collaborative filtering
algorithms.

Index Terms—recommender systems, collaborative filtering,
time-series forecasting, incremental recommendation

I. INTRODUCTION

Recommender systems, personalized information filtering
(IF) technologies, can be applied to many services, ranging
from E-commerce, advertising, and social media to many other
online and offline service platforms [1]–[3]. One of the most
popular recommender systems, collaborative filtering (CF),
provides personalized preferred items by learning user and
item embeddings from user-item interactions [4]–[10].

However, most of collaborative filtering methods do not
consider the practical point that real-world applications require
re-training them periodically — existing collaborative filtering
methods consider one-time training only as in Fig. 1 (a). Let A
be a base collaborative filtering algorithm which produces the
embedding vectors, denoted {eLastu }|U |u=1, {eLastv }|V |v=1 where
U (resp. V ) is a set of users (resp. items), at its last layer. In
general, A calculates the dot-product values of the embedding
vectors for recommendation. In real-world environments, we
need to train A periodically as new user-item interactions are
incremental. As a result, one may naturally construct the time-
series of user/item embedding vectors. Owing to the recent
advancements in time-series forecasting, We propose forecast-
ing future user/item embedding vectors which describe latent
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(a) Existing concept where A embeds users/items onto a
vector space
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(b) Forecasting the future embedding vectors via time-
series forecasting technology, where the training period
can span multiple years

Fig. 1. The comparison between our proposed and existing methods: (a)
Existing recommendation technologies train embedding vectors with collected
data. (b) We design an advanced time-series forecasting model to forecast the
future embedding vectors of users/items.

behavioral patterns. (cf. Fig. 1 (b)). The key in forecasting
the future embedding vectors is understanding the underlying
dynamics which causes the behavioral drift — in other words,
user behavioral patterns change over time. To address this,
we resort to recent time-series forecasting technologies. We
will show that our proposed method can drastically enhance
existing popular collaborative filtering algorithms, both older
MF and newer GCN-based models. Therefore, we call it as
a time-series forecasting-based upgrade kit of collaborative
filtering (TimeKit).

Let Ei = {eLastu }|U |u=1∪{eLastv }|V |v=1 be a set of all embedding
vectors by the base algorithm A trained with the data collected
up to a time-point ti. In our problem setting, our forecasting
model, given a time-series of embedding vectors {(Ei, ti)}Mi=1,
forecasts the future embedding vectors EM+1 that hopefully
work well for the future time period (tM , tM+1].978-1-6654-8045-1/22/$31.00 ©2022 IEEE
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Fig. 2. We compare three cases in Goodreads: i) the dot-product between
original user and item embedding vectors, denoted eu · ev , calculated by
LightGCN, one of the state-of-the-art collaborative filtering algorithms, ii)
the dot-product between original user and perturbed item embedding vectors,
denoted eu · (ev + N (0, σ2)), and iii) the dot-product between perturbed
user and original item embedding vectors, denoted (eu +N (0, σ2)) ·ev . As
noted, item embedding vectors are more sensitive to σ.

Our proposed approach will predict the future interactions
better than existing methods when the future embedding
vectors are correctly predicted. However, this forecasting
task is challenging. We found that time-series of user em-
bedding vectors can be better processed by gated recurrent
units (GRUs) and those of item embedding vectors can be
better processed by neural controlled differential equations
(NCDEs [11]) — after analyses, we found that in general,
item embedding vectors are more sensitive to small errors than
user embedding vectors and are more challenging to forecast
(cf. Fig. 2). NCDEs can be used to forecast item embedding
vectors, which requires more accuracy. Therefore, a specific
combination of GRU and NCDE shows the best performance
in our experiments in many cases. NCDEs are considered as
a continuous analogue to RNNs and written as follows:

z(T ) = z(0) +

∫ T

0

f(z(t);θf )dX(t) (1)

= z(0) +

∫ T

0

f(z(t);θf )
dX(t)

dt
dt, (2)

where z(t) is a vector at time t, and X is a continuous path
taking values in a Banach space. The theory of the controlled
differential equation (CDE) had been developed to extend the
stochastic differential equation and the Itô calculus far beyond
the semimartingale setting of X [12], [13]. For instance,
a prevalent example of the path X is a Wiener process,
in which case Eq. (1) reduces to a stochastic differential
equation. In CDEs, however, the path X does not need to
be such semimartingale or martingale processes. These CDEs
are actively utilized in financial markets to predict future
financial environments influenced by uncertainties. NCDEs
are technologies to parameterize such CDEs and learn from
data. In addition, Eq. (2) continuously reads the values dX(t)

dt
and integrates them over time. In this regard, NCDEs are
equivalent to continuous RNNs and show the state-of-the-
art performance in many time-series tasks and datasets. The
reasons of our adopting NCDEs are as follows:

1) There are several existing results showing that differential
equation-based models extrapolate (forecast) better than
RNNs for the data in the field of social science, physical
science, finance, and so forth [14]–[18]. Recall that the

concept of CDEs were initially created to describe the
uncertainties in financial markets. We conjecture that this
is likely to be the case in our work as well (because our
work also deals with human behavioral patterns).

2) How to define the CDE function f in Eq. (1) is critical in
terms of forecasting accuracy and easiness of training —
note that f is a neural network parameterized by θf . We
use only Lipschitz operators for designing f to make the
problem of finding the optimal parameter θ∗f well-posed
(see the discussion in Section III-D).

We do experiments with 4 real-world datasets. Since solving
a novel task, we define some baselines and compare our
method with them. Our upgrade kit enhances the base algo-
rithm by up to 68.46% for Recall@20 and up to 68.75% for
NDCG@20. Our contributions are summarized as follows:

1) We reduce the collaborative filtering (CF) problem to a
time-series forecasting of embedding vectors and design
an upgrade kit of CF algorithms, called TimeKit.

2) Our experimental results show that the reduction cannot
be fulfilled in the best form with standard time-series
forecasting methods only (e.g., GRU) since the forecast-
ing task is challenging, but our specific model design
based on NCDEs enables the reduction.

3) As exemplified in Fig. 4, the base algorithms make a
variety of latent dynamics, but our proposed method,
TimeKit, still learns all kinds of the dynamics well.

4) Our experimental results show that our proposed TimeKit
can be used for existing popular collaborative filtering
algorithms and significantly improves them in all cases.

5) Traditional matrix factorization (MF)-based models may
outperform advanced CF models (e.g. LightGCN) just
by applying TimeKit, retaining their advantages — lower
time and space complexity.

II. RELATED WORK AND PRELIMINARIES

In this section, we review recommender systems, dy-
namic embedding, and neural controlled differential equations
(NCDEs).

A. Recommender Systems

a) Collaborative Filtering: Traditional collaborative fil-
tering recommender systems have focused on matrix factoriza-
tion (MF) techniques [19]. Typical MF-based methods include
BPR [9] and WRMF [7], and these MF-based methods simply
learn relationships between users and items via dot-products.
Therefore, they have limitations in considering potentially
complex relationships between users and items inherent in
user-item interactions [6]. To overcome these limitations, deep
learning-based recommender systems, e.g., autoencoders [20],
[21] and GCNs [22]–[28], have been proposed to effec-
tively learn more complicated relationships between users and
items [2], [29], [30].

Recently, recommender systems using GCNs [2], [29],
[30] are gathering much attention. GCN-based methods can
effectively learn the behavioral patterns between users and
items by directly capturing the collaborative signals inherent



TABLE I
THE CHARACTERISTICS OF COLLABORATIVE FILTERING RECOMMENDER

SYSTEMS

BPRMF NGCF LightGCN LT-OCF

Non-Linear Propagation X O X X
Linear Propagation X X O O
Residual Prediction X O O O

in the user-item interactions [29]. Typical GCN-based methods
include GC-MC [30], PinSage [2], and NGCF [29]. In general,
GCN-based methods model a set of user-item interactions as
a user-item graph and perform the following three steps:

(Step 1) Initialization Step: They randomly set the initial
embedding e0 of all user u and item v, denoted as follows:

e0
u, e

0
v ∈ RD, (3)

where D denotes the embedding size, u ∈ U is a user, and
v ∈ V is an item.

(Step 2) Propagation Step: First of all, this propagation
step is iterated K times, i.e., K layers of embedding propaga-
tion. The embedding of a user node u (resp. an item node v)
in i-th layer is updated based on the embeddings of u’s (resp.
v’s) neighbors Nu (resp. Nv) in (i− 1)-th layer as follows:

eiu = σ(Σv∈Nue
i−1
v Wi), eiv = σ(Σu∈Nve

i−1
u Wi), (4)

where σ denotes a non-linear activation function, e.g., ReLU,
and Wi ∈ RD×D is a trainable transformation matrix.
There also exist some other variations: i) including the self-
embeddings, i.e., Nu = Nu ∪ {u} and Nv = Nv ∪ {v}, ii)
removing the transformation matrix, and/or iii) removing the
non-linear activation, which is in particular called as linear
propagation [31], [32].

(Step 3) Prediction Step: The preference of user u to item
v is predicted using the dot-product between the user u’s and
item v’s embeddings in the last layer K, i.e., eKu and eKv , as
follows:

r̂u,v = eKu � eKv . (5)

However, GCN-based methods have two limitations: i)
training difficulty of using non-linear activation and ii) over-
smoothing problem as the number of layers increases, i.e., too
similar embeddings of nodes in the last layer [25], [31]–[34].

(Step 3′) Alternative Prediction Step: Recently, LR-
GCCF [31], LightGCN [32], and LT-OCF [35], which are
GCN-based recommender systems to alleviate the problems,
have been proposed. First, to alleviate the former problem,
they remove non-linear activation functions. To mitigate the
latter problem, they utilize the embeddings from all layers for
prediction. After that, they perform residual prediction [31],
[32], which predict each user’s preference to each item with
the multiple embeddings from the multiple layers, as follows:

r̂u,v = eLastu � eLastv , (6)

TABLE II
THE COMPARISON BETWEEN THE EXISTING SEQUENTIAL

RECOMMENDATION AND OUR PROPOSED RECOMMENDATION CONCEPTS

SR TimeKit

What does the model predict? Next items Embeddings

What is the input of model? Sequence of
items

Sequence of
embeddings

What type of prediction? Point-wise Region-wise

where eLastu =
∑K
i=1 wie

i
u, eLastv =

∑K
i=1 wie

i
v , and wi is a

coefficient.
In summary, we experiment with various models with

different characteristics, and these can be characterized by,
as shown in Table I, the propagation and prediction types.

b) Sequential Recommender Systems: We note that
our TimeKit aims at a different task from the sequential
recommendation as presented in Table II. The sequential
recommendation is, given a sequence of items visited by a
user, to predict one next item [36]–[38]. While our main goal
is to reduce the classical collaborative filtering to a time-
series forecasting, the sequential recommendation typically
makes a time point-wise future item recommendation given
a sequence of purchased items of a user. We forecast the
future user/item embeddings, which allow us to predict items
that a target user will buy during a certain future period, i.e.,
time region-wise recommendation. Furthermore, the input is a
sequence of embeddings (rather than a raw sequence of user-
item interactions unlike the sequential recommendation).

B. Dynamic Embedding

One similar problem is dynamic embedding where data
arrives incrementally and we want to calculate their embedding
vectors [39]–[41]. However, this sort of problem is different
from our research since many of them have large model
sizes for solving general downstream deep learning tasks.
For instance, dynamic graph embedding methods consider
the situation that graphs arrive incrementally and we want
to embed those graphs over time into vectors to solve graph
pattern classification problems. Another example is dynamic
word embedding where we consider texts changing over time.
On the contrary, our goal is to design a lightweight upgrade
kit that can be readily integrated into existing collaborative
filtering algorithms.

C. Neural Controlled Differential Equations

Neural controlled differential equations (NCDEs) are greatly
inspired by neural ordinary differential equations (NODEs)
and therefore, we first describe NODEs. NODEs solve the
following integral problem to calculate z(T ) from z(0) [42]:

z(T ) = z(0) +

∫ T

0

f(z(t), t;θf )dt, (7)

where f(z(t), t;θf ), which we call ODE function, is a neural
network to approximate ż def

= dz(t)
dt . To solve the integral

problem, NODEs rely on ODE solvers, e.g., the explicit



Euler method, the Dormand–Prince (DOPRI) method, and so
forth [43]. We note that the integral problem in Eq. (7) uses
the concept of Riemann integral.

Instead of the backpropagation method, the adjoint sen-
sitivity method is used to train NODEs for its efficiency
and theoretical correctness [42]. After letting az(t) = dL

dz(t)
for a task-specific loss L, it calculates the gradient of loss
w.r.t model parameters with another reverse-mode integral as
follows:

∇θfL =
dL

dθf
= −

∫ 0

T

az(t)T
∂f(z(t), t;θf )

∂θf
dt. (8)

As shown in Eq. (2), on the other hand, NCDEs are written
as z(T ) = z(0) +

∫ T
0
f(z(t);θf )dX(t)

dt dt, where X(t) is a
continuous path created by an interpolation algorithm from a
raw discrete time-series sample {(xi, ti)}Ni=0, where ti means
the time-point of the observation xi, t0 = 0, tN = T and
ti < ti+1. Note that NCDEs keep reading the derivative of
X(t) over time, denoted Ẋ(t)

def
= dX(t)

dt . Therefore, NCDEs
are considered as a continuous analogue to RNNs and are
suitable for processing time-series data.

NCDEs use the Riemann–Stieltjes integral, as shown in
Eq. (2). To solve it, existing ODE solvers can also be used
since ż(t)

def
= dz(t)

dt = f(z(t);θf )dX(t)
dt in NCDEs. Regardless

of the integral problem type, existing ODE solvers can be
used once ż(t) can be properly modeled and calculated. ODE
solvers discretize time variable t and convert an integral into
many steps of additions [44], i.e., update z(t+ s) from z(t).
For instance, the fourth-order Runge–Kutta (RK4) method
uses the following method:

z(t+ s) = z(t) +
s

6

(
f1 + 2f2 + 2f3 + f4

)
, (9)

where s, which is usually smaller than 1, is a pre-determined
step size, f1 = f(z(t), t;θf ), f2 = f(z(t) + s

2f1, t+ s
2 ;θf ),

f3 = f(z(t)+ s
2f2, t+

s
2 ;θf ), and f4 = f(z(t)+sf3, t+s;θf ).

The Dormand-Prince(DOPRI) method is one of the most
advanced solvers, which decides the step-size s every step on
its own. In other words, it is an adaptive step-size solver.
NODEs and NCDEs use RK4 or DOPRI in many cases.

III. PROPOSED METHOD

We describe our method in detail in this section. We first
explain the overall workflow in our method, followed by
detailed model and training method designs.

A. Overall Workflow

The detailed workflow in our method to forecast future
embedding vectors is as follows — Fig. 3 shows how to create
a time-series of embedding vectors and how we forecast:

1) Let U (resp. V ) be a set of users (resp. items). Given a
long history of user-item interactions and its time span
[0, T ], we define a set of data, denoted {(Di, ti)}M+1

i=1 ,
where Di is a set of interactions during the period of
(ti−1, ti] and tM (resp. tM+1) is the last time-point of
our training/validating (resp. testing) data. We note that

......

embeddings contain

behavioral patterns learns the hidden dynamics of behavioral patternsTimeKit

......

CF Model CF Model CF Model

read cumulative user-item interactions

Fig. 3. The overall workflow of creating the time-series of embedding vectors
and forecasting. We do not train a recommendation model, e.g., LightGCN,
from scratch every period, but incrementally after reusing the most recently
trained parameters, e.g., initial embeddings in the case of LightGCN. We use
all past data on or before each ti to avoid overfitting on new items.

ti−1 < ti, t0 = 0, and tM+1 = T . At t0, there are no
interactions yet.

2) Starting from (D1, t1), we incrementally train a recom-
mendation algorithm A which produces user and item
embedding vectors. In most algorithms, user and item
embedding vectors are the only trainable parameters, e.g.,
the initial embeddings {e0

u}
|U |
u=1, {e0

v}
|V |
v=1 of LightGCN,

where no other parameters are trained. When training for
(Di, ti), we initialize user and item embedding vectors
with those trained for (Di−1, ti−1), and further train with
∪ij=1Dj — in other words, we consider all the previous
interactions on or before ti and incrementally train the
parameters while maintaining a single vector space across
[0, T ]. Since we do not randomly initialize user and
item embedding vectors every time but initialize with
the previously trained one, one embedding vector space
can be maintained. Moreover, it can bring benefits, e.g.,
training efficiency, because the initialized parameters are
already somehow good.

3) Let {(Ei, ti)}Mi=1 be a time-series of embedding vectors
produced in the above way, e.g., Ei = {eLastu }|U |u=1 ∪
{eLastv }|V |v=1 in the case of LightGCN (trained up to ti)
as in Eq. (6), or Ei = {eKu }

|U |
u=1 ∪ {eKv }

|V |
v=1 if residual

prediction is not used as in Eq. (5). Using our time-
series forecasting method, we forecast future embeddings,
ÊM+1 — we use the symbol of “̂ ” to denote predictions.

4) Using ÊM+1, we recommend items to users after calcu-
lating their dot-products.

B. Rationale behind Our Method

In real-world applications, we need to train a collaborative
filtering algorithm A incrementally since new user-item inter-
actions are accumulated everyday. One typical method is to
retrain A and replace the previous model with the retrained
model — one can also use only recent data when retraining
A in order to reflect recent patterns. However, this typical use
scenario does not fully exploit the time-series characteristic of
the user and item embedding vectors over time.

In this work, we are not interested in designing such
retraining-replacement methods but in forecasting future em-
bedding vectors after capturing the hidden dynamics describ-
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Fig. 4. Visualization of 64-dimensional user/item embedding vector changes
over 12 months. We note that the embeddings of December (in the rightmost
position) are the ones forecast by TimeKit on top of NGCF in Netflix.
Note that the embedding vectors change gradually over time, but in different
patterns depending on base algorithms. Month is on the X-axis, while the
index of the embedding vector is on the Y-axis.

ing the evolutionary process of the embedding vectors. Psycho-
logically, people’s preferences on items are affected by various
factors and fluctuate a lot over time. Therefore, understanding
the user behavioral pattern drift1 can be a key in real-world
collaborative filtering applications. We conjecture that such
hidden dynamics that defines the drift exists and our method
is able to learn. As shown in Fig. 4, we found that those
embedding vectors do not change randomly over time but are
likely to change following a hidden dynamics. Therefore, we
conjecture that by revealing the hidden dynamics, we may be
able to better perform the collaborative filtering task.

However, we found that forecasting future embedding vec-
tors is a challenging extrapolation task. In particular, vanilla
RNNs are insufficient for learning the complicated temporal
patterns of the item embedding vectors. We also found that
recent differential equation-based breakthroughs in processing
complicated time-series data can enable our proposed recom-
mendation concept.

A differential equation (or a governing equation) means
an equation describing ż

def
= dz(t)

dt at any time t, e.g, the
Navier–Stokes equation describing fluid dynamics [45], the
Kermack-McKendrick equation describing infectious disease
dynamics [46], and so on. Once a correct equation exists
and can be learned, the time-evolving process of z(t) can
be reproduced regardless of how far it does extrapolate. We
attempt to approximate such a human behavioral dynamics for
recommendation with NCDEs.

C. Embedding Forecaster

Our forecasting task is basically a many-to-one forecasting
task, i.e., reading multiple recent embeddings for forecasting
the very next embedding. Our task can be formally described
as forecasting Êi+1 after reading {(Ei−r, ti−r)}R−1

r=0 at a certain
time-point ti, i.e., reading recent R periods to forecast for the
very next period.

1The user behavioral pattern drift means that a user u’s preference on
an item v given a user-item interaction data Di collected by time ti is
different from that given another data Dj collected by tj , i.e., Pr(v|u,Di) 6=
Pr(v|u,Dj) if i 6= j.

Let {(xi, ti)}Mi=1 be a time-series of embedding vectors for a
user (or an item). For simplicity but without loss of generality,
we describe how to forecast x̂i+1 from {(xi−r, ti−r)}R−1

r=0

since we apply the same forecasting method to each user and
item — we note that we then can create M − R training
samples for each user (or each item). To this end, we design
GRU and NCDE-based time-series forecasting models.

a) GRU-based model: From {(xi−r, ti−r)}R−1
r=0 , we can

use GRUs to predict x̂i+1, which is a typical many-to-one
forecasting task. In comparison with LSTMs, GRUs provide
as high model capacity as that of LSTM but have a lower
complexity [47]. The forecasting with GRUs can be written
as follows:

hi−R = 0,

hj = GRU(hj−1,xj), i−R+ 1 ≤ j ≤ i
x̂i+1 = ΦGRU (hi;θΦGRU

),

(10)

where ΦGRU is an output fully-connected layer parameterized
by θΦGRU

, and h is a hidden vector.
b) NCDE-based model: We also use the following

NCDE-based method to forecast the future embedding vectors:

z(ti−R+1) = ξCDE(xi−R+1;θξCDE
),

z(ti) = z(ti−R+1) +

∫ ti

ti−R+1

f(z(t);θf )
dX(t)

dt
dt,

x̂i+1 = ΦCDE(z(ti);θΦCDE
),

(11)

where X is a continuous path in [ti−R+1, ti] created from
{(xi−r, ti−r)}R−1

r=0 by the natural cubic spline interpolation
algorithm, ξCDE is an initial value generation layer, ΦCDE
is an output layer. We use fully connected-layers to define
ξCDE and ΦCDE . The path created by the natural cubic
spline is smooth and twice differentiable, which are required
to calculate the gradients w.r.t. θf . Therefore, it shows the
best fit to NCDEs among available interpolation algorithms.
The key point is the following definition of the CDE function
f :

σ(FC2(σ(FC1(z(t))))) (12)

where FCi means the i-th fully connected layer and σ
is a non-linear activation, such as hyperbolic tangent. We
intentionally choose these operators to define f since they
are all Lipschitz-continuous, which guarantees the follow-
ing well-posedness of training θf , whereas one can choose
other advanced definitions for f [48]. The well-posedness2

of NCDEs was already proved in [49, Theorem 1.3] under
the mild condition of the Lipschitz continuity. Almost all
activations, such as ReLU, ELU, Leaky ReLU, SoftPlus, Tanh,
Sigmoid, ArcTan, and Softsign, have a Lipschitz constant of
1. Other common neural network layers, such as dropout,
batch normalization and other pooling methods, have explicit
Lipschitz constant values. Therefore, the Lipschitz continuity

2A well-posed problem means i) its solution uniquely exists, and ii) its
solution continuously changes as input data changes.



TABLE III
STATISTICS OF DATASETS

User # Item # Interaction # Density

Gowalla 2,970 69,853 609,582 0.00293
Amazon-Book 18,654 49,972 872,135 0.00094

Goodreads 18,576 109,727 1,142,707 0.00056
Netflix 22,060 17,059 3,783,546 0.01005

of f can be fulfilled in our case. This makes our training
problem for NCDEs well-posed. As a result, our training
algorithm solves a well-posed problem so its training process
is stable in practice.

D. Training Algorithm

We first note that we maintain two forecasting models: one
for user embedding vectors and the other for item embedding
vectors. Overall, our training method follows the standard
multivariate time-series forecasting model training process -
minimizing the mean squared error (MSE) loss. Given a set
of users (resp. items), we create a mini-batch of B users (resp.
items) and train our model for them every iteration. We use
the Adam optimizer with a learning rate λ. We use a validation
set to update the best model.

IV. EXPERIMENTS

A. Experiments Environments

1) Datasets: For evaluation, we used the following four
real-world datasets that are all publicly available to download:
• Gowalla’s data is from January to October of 2010.
• Amazon-Book is a book rating data from 2015 to 2016

of Amazon-book dataset.
• Goodreads contains book reviews from the Goodreads.

The data for the two years 2015 and 2016 is used.
• Netflix contains user-movie monthly interactions of 2005.
• Table III shows the detailed statistics of four datasets.
2) Base Recommendation Algorithms: Our proposed

method does not assume any specific choice on the underlying
recommendation algorithm. However, we choose to test with
i) the conventional matrix factorization with the Bayesian
personalized ranking loss (BPRMF), ii) NGCF, iii) LightGCN,
and iv) LT-OCF3. BPRMF is one of the most classical collab-
orative filtering methods and is still widely used for many
services, NGCF is a representative non-linear propagation-
based method, and LightGCN and LT-OCF well represent
recent research trends in graph-based collaborative filtering.
We have chosen this specific set of base algorithms considering
their diverse characteristics.

3) Time-series Forecasting Methods: We consider the fol-
lowing time-series forecasting models:
• GRUs in Eq. (10) are one of the most widely used

RNN types. It provides more efficient computation with
comparable capabilities in comparison with LSTMs.

3BPRMF and LightGCN are from https://github.com/gusye1234/LightGCN-
PyTorch. NGCF is from https://github.com/huangtinglin/NGCF-PyTorch, and
LT-OCF is from https://github.com/jeongwhanchoi/LT-OCF.

• NCDEs in Eq. (11) are a breakthrough in processing com-
plicated dynamics. Among many differential equation-
based time-series forecasting technologies, it shows the
state-of-the-art performance in many real-world applica-
tions [50], [51].

Our method is marked with the naming convention of “[User
embedding forecasting method]-[Item embedding forecasting
method],” e.g., GRU-NCDE means that we use GRU in
Eq. (10) for forecasting user embeddings, and the NCDE
design in Eq. (11) for forecasting item embeddings.

4) Evaluation Methods: For all datasets, we split them
into training/validating/testing sets. Setting a suitable period
is crucial for the training of embedding vectors because a
sufficient number of interactions must be guaranteed to find
behavior dynamics. We set the period to a month for Gowalla
and Netflix, which items are consumed frequently. Because
books are not commonly consumed, for Amazon-book and
Goodreads, we merge three months into one period to ensure
that a sufficient number of interactions is guaranteed. In real-
word settings, there will be a model update cycle depending
on the domain, and a period can be from one model update
to next. The details of constructing data are as follows:
• For Gowalla, 10 time periods are produced from ten

months of data, as we use a month as one period.
• For Amazon-book and Goodreads, we use two years of

data into 8 periods by combining three months.
• For Netflix, each period data consists of interactions in

each month. One year of data is split into 12 periods.
We first train and validate the base collaborative filtering

algorithms with the user-item interaction logs in {(Di, ti)}Mi=1

and recommend for (tM , tM+1], denoted as “Original.” Then,
we upgrade them with time-series forecasting methods, de-
noted with each forecasting method, i.e., GRU-GRU, NCDE-
NCDE, and GRU-NCDE. We train and validate the up-
graded method in the seq-to-seq forecasting fashion. During
the testing process, therefore, those upgraded methods read
{(Ei, ti)}Mi=M−R+1 and forecast EM+1 with which we perform
the collaborative filtering task.

5) Environmental Setting: Our software and hardware en-
vironments are as follows: UBUNTU 18.04 LTS, PYTHON
3.7.10, TORCH 1.9.0, CUDA 10.0, and NVIDIA Driver
450.102.04, i9 CPU, and NVIDIA RTX TITAN. The recom-
mended ranges and the best configurations are as follows:

a) Preprocessing to prepare embedding vectors: The
learning rate is set to 1.0 × e−3 and train 500 epochs with a
mini-batch size of 1024 or 2048 for all but one case — we use
learning rate of 1.0× e−4 when training Netflix using NGCF.
In the case of NGCF, the weight decay is set to 1.0× e−4 for
Gowalla, Amazon-book, and Goodreads, and 1.0 × e−5 for
Netflix. In other models, for Gowalla and Netflix, the optimal
weight decay is 1.0×e−3, whereas for other datasets, 1.0×e−4.
We set the number of layers to 3 for training NGCF, LightGCN
and LT-OCF, i.e., K = 3 in Eq. (6).

b) Forecasting: The best hyperparameters of our fore-
casting models are shown in Table IV. We train GRU and



TABLE IV
THE BEST HYPERPARAMETERS OF OUR FORECASTING MODELS

Dataset Base Alg. A
GRU-GRU NCDE-NCDE GRU-NCDE

User Embedding Item Embedding User Embedding Item Embedding User Embedding Item Embedding

hidden λ hidden λ hidden λ hidden λ hidden λ hidden λ

Gowalla
BPRMF 256 5.0× e−6 64 1.0× e−5 256 1.0× e−3 128 1.0× e−3 256 5.0× e−6 256 5.0× e−4

NGCF 128 1.0× e−5 512 5.0× e−6 64 1.0× e−3 128 5.0× e−4 512 1.0× e−4 64 1.0× e−3

LightGCN 512 1.0× e−5 128 1.0× e−5 128 5.0× e−3 64 5.0× e−4 128 5.0× e−5 64 5.0× e−4

LT-OCF 128 1.0× e−5 64 1.0× e−4 256 1.0× e−3 256 1.0× e−5 512 1.0× e−5 256 1.0× e−5

Amazon-book
BPRMF 512 5.0× e−5 64 5.0× e−6 128 1.0× e−3 256 5.0× e−4 128 5.0× e−5 256 5.0× e−4

NGCF 128 5.0× e−6 64 5.0× e−5 128 1.0× e−3 256 5.0× e−4 256 1.0× e−5 256 5.0× e−4

LightGCN 64 5.0× e−5 64 1.0× e−5 128 1.0× e−3 256 5.0× e−4 512 5.0× e−5 256 5.0× e−4

LT-OCF 128 1.0× e−6 256 1.0× e−4 128 1.0× e−3 256 5.0× e−4 512 1.0× e−4 256 5.0× e−4

Goodreads
BPRMF 256 1.0× e−6 256 1.0× e−6 256 1.0× e−3 128 5.0× e−4 256 1.0× e−6 128 5.0× e−4

NGCF 64 1.0× e−6 64 1.0× e−6 64 1.0× e−3 64 5.0× e−6 64 1.0× e−6 64 5.0× e−6

LightGCN 256 5.0× e−5 64 5.0× e−6 128 5.0× e−4 256 5.0× e−4 512 5.0× e−6 256 5.0× e−4

LT-OCF 128 1.0× e−5 64 1.0× e−5 128 1.0× e−3 256 5.0× e−4 512 5.0× e−6 256 5.0× e−4

Netflix
BPRMF 64 1.0× e−6 128 5.0× e−5 128 5.0× e−4 256 1.0× e−3 64 1.0× e−6 256 1.0× e−3

NGCF 512 5.0× e−5 256 5.0× e−6 256 1.0× e−3 256 1.0× e−4 256 5.0× e−6 256 1.0× e−4

LightGCN 64 1.0× e−3 256 5.0× e−5 256 5.0× e−5 64 5.0× e−4 128 1.0× e−6 64 5.0× e−4

LT-OCF 64 5.0× e−6 64 5.0× e−5 128 5.0× e−4 64 5.0× e−4 128 5.0× e−5 64 1.0× e−3

TABLE V
MAIN EXPERIMENTAL RESULTS WITH FOUR BASE COLLABORATIVE FILTERING ALGORITHMS, WHERE THE BEST RESULTS AMONG THE BASE

ALGORITHMS ARE IN GRAY, THE BEST RESULTS AMONG ALL METHODS ARE IN BOLDFACE AND THE BEST IMPROVEMENT RATIOS ARE UNDERLINED.

Dataset Base Alg. A
Original GRU-GRU NCDE-NCDE GRU-NCDE Improvement (%)

Recall@20 NDCG@20 Recall@20 NDCG@20 Recall@20 NDCG@20 Recall@20 NDCG@20 Recall@20 NDCG@20

Gowalla

BPRMF 0.0292 0.0210 0.0323 0.0222 0.0296 0.0215 0.0320 0.0227 10.69 8.34
NGCF 0.0285 0.0198 0.0289 0.0202 0.0285 0.0205 0.0280 0.0204 1.60 3.50

LightGCN 0.0302 0.0236 0.0322 0.0237 0.0317 0.0236 0.0312 0.0238 6.66 0.66
LT-OCF 0.0345 0.0263 0.0454 0.0363 0.0329 0.0238 0.0324 0.0248 31.57 37.86

Amazon-Book

BPRMF 0.0496 0.0253 0.0546 0.0281 0.0571 0.0300 0.0575 0.0303 15.88 19.50
NGCF 0.0359 0.0181 0.0386 0.0193 0.0470 0.0245 0.0471 0.0252 31.12 39.58

LightGCN 0.0565 0.0294 0.0597 0.0313 0.0654 0.0355 0.0667 0.0365 17.93 24.17
LT-OCF 0.0573 0.0299 0.0674 0.0361 0.0681 0.0370 0.0711 0.0393 24.11 31.40

Goodreads

BPRMF 0.0298 0.0171 0.0330 0.0189 0.0320 0.0184 0.0337 0.0192 13.04 12.21
NGCF 0.0235 0.0129 0.0242 0.0136 0.0270 0.0174 0.0292 0.0191 23.97 47.69

LightGCN 0.0359 0.0205 0.0365 0.0210 0.0364 0.0208 0.0377 0.0214 4.85 4.36
LT-OCF 0.0358 0.0205 0.0362 0.0207 0.0385 0.0220 0.0389 0.0221 8.64 8.04

Netflix

BPRMF 0.0701 0.0405 0.0713 0.0416 0.0774 0.0462 0.0776 0.0466 10.74 15.07
NGCF 0.0608 0.0380 0.0777 0.0515 0.1023 0.0641 0.1024 0.0642 68.46 68.75

LightGCN 0.0787 0.0451 0.0816 0.0471 0.0813 0.0468 0.0823 0.0480 4.52 6.33
LT-OCF 0.0779 0.0446 0.0804 0.0463 0.0859 0.0491 0.0899 0.0539 15.41 20.92

NCDEs with a hidden size of {64, 128, 256, 512} and a weight
decay of {1.0× e−4, 1.0× e−5}. The learning rate is set over
a range of intervals — {5.0 × e−3, 1.0 × e−3, 5.0 × e−4,
1.0× e−4, 5.0× e−5, 1.0× e−5, 5.0× e−6, 1.0× e−6}. For
a mini-batch size B, we use 32 for GRU, and 64 or 1024 for
NCDEs, depending on the dataset size. In the case of NCDEs,
we choose Runge-Kutta (RK4) method as an ODE solver, and
train them for 100 epochs, whereas train GRU for 300 epochs.

B. Experimental Results
In this section, we answer several research questions (RQs).

Herein, we focus on the two standard metric scores of recom-
mendation: Recall@20 and NDCG@20. For the evaluations
of the time-series forecasting, we refer to RQ3.

1) RQ1: How accurate is the proposed method in recom-
mending for the future? For answering RQ1, we first com-
pare our method with the original scores of the base algorithms
— i.e., the base algorithms are trained with {(Di, ti)}Mi=1 and
recommend for (tM , tM+1]. Table V shows that our method

outperforms the original base algorithms by large margins.
Among various time-series forecasting methods, GRU-NCDE
shows the best results in many cases, and GRU-GRU is the
most effective in few cases.

For Gowalla dataset, LT-OCF shows the best scores and
GRU-GRU significantly improves the scores by 31.57% for
Recall@20 and 37.86% for NDCG@20. For other datasets,
LightGCN is better than LT-OCF, and our TimeKit further
improves LightGCN.

The biggest enhancements are obtained in Netflix for NGCF
with GRU-NCDE. It improves NGCF by 68.46% and 68.75%
for Recall@20 and NDCG@20 respectively, achieving the best
scores among all methods for Netflix. In general, GRU-NCDE
is the best upgrade method except for Gowalla.

For other cases, the improvement ratios are between 0.66%
to 47.69%. Just adopting our upgrade kit, base algorithms’
scores are considerably increased. Especially in the case of
BPRMF with TimeKit, it even exceeds the original scores of



TABLE VI
SENSITIVITY W.R.T. THE INPUT TIME DURATION. WE REDUCE THE INPUT INFORMATION IN COMPARISON WITH THE EXPERIMENTS IN TABLE V. SINCE

THE TESTING SAMPLE NUMBERS ALSO DECREASE, THE DIRECT COMPARISON WITH TABLE V IS NOT APPROPRIATE.

Dataset Base Alg. A
Original GRU-GRU NCDE-NCDE GRU-NCDE Improvement (%)

Recall@20 NDCG@20 Recall@20 NDCG@20 Recall@20 NDCG@20 Recall@20 NDCG@20 Recall@20 NDCG@20

Amazon-book

BPRMF 0.0542 0.0282 0.0752 0.0428 0.0769 0.0444 0.0770 0.0448 42.17 58.75
NGCF 0.0440 0.0225 0.0458 0.0239 0.0573 0.0318 0.0591 0.0327 34.44 45.04

LightGCN 0.0661 0.0351 0.0701 0.0377 0.0790 0.0451 0.0814 0.0470 23.22 33.90
LT-OCF 0.0654 0.0345 0.0671 0.0349 0.0803 0.0455 0.0837 0.0478 28.07 38.54

Goodreads

BPRMF 0.0342 0.0200 0.0405 0.0245 0.0397 0.0238 0.0406 0.0245 18.71 22.68
NGCF 0.0295 0.0171 0.0300 0.0177 0.0319 0.0199 0.0326 0.0205 10.78 19.94

LightGCN 0.0445 0.0259 0.0470 0.0276 0.0489 0.0290 0.0506 0.0300 13.65 15.79
LT-OCF 0.0444 0.0263 0.0445 0.0265 0.0513 0.0315 0.0523 0.0319 17.91 21.70

TABLE VII
MSE OF GRU-NCDE. WE ALSO INCLUDE THE ABSOLUTE VALUE OF THE

MAXIMUM (M) MINUS THE MINIMUM (M), AND THE STD. DEV. OF THE
ELEMENTS IN THE USER AND ITEM EMBEDDING VECTORS.

Dataset Model
GRU MSE loss Statistics NCDE MSE loss

Train Valid Test |M-m| Std Train Valid Test

G
ow

al
la BPRMF 0.033 0.032 0.029 4.39 0.33 0.012 0.011 0.009

NGCF 0.008 0.007 0.044 3.96 0.28 0.006 0.005 0.021
LightGCN 0.040 0.068 0.044 4.24 0.22 0.003 0.006 0.006
LT-OCF 0.003 0.536 0.006 4.33 0.19 0.003 0.012 0.012

A
m

az
on

-
B

oo
k

BPRMF 0.058 0.058 0.048 4.39 0.42 0.042 0.042 0.030
NGCF 0.047 0.055 0.092 6.98 0.40 0.035 0.046 0.066

LightGCN 0.031 0.030 0.022 4.43 0.35 0.021 0.025 0.017
LT-OCF 0.054 0.020 0.022 3.53 0.35 0.022 0.028 0.018

G
oo

d-
re

ad
s

BPRMF 0.091 0.086 0.080 3.82 0.38 0.034 0.033 0.028
NGCF 0.145 0.159 0.236 8.15 0.36 0.048 0.055 0.091

LightGCN 0.040 0.040 0.035 5.00 0.31 0.019 0.021 0.017
LT-OCF 0.052 0.052 0.043 2.70 0.31 0.021 0.023 0.018

N
et

fli
x BPRMF 0.085 0.088 0.098 4.49 0.41 0.023 0.037 0.044

NGCF 0.001 0.010 0.048 10.55 0.75 0.002 0.017 0.058
LightGCN 0.008 0.012 0.022 6.88 0.27 0.003 0.006 0.017
LT-OCF 0.002 0.005 0.013 5.38 0.26 0.002 0.005 0.013

both LightGCN and LT-OCF in Amazon-book — Recall@20
of 0.0575 and NDCG@20 of 0.0303 by BPRMF with TimeKit
vs. Recall@20 of 0.0573 and NDCG@20 of 0.0299 by LT-
OCF. It also shows comparable scores in other datasets as well.
These results indicate that TimeKit greatly improves BPRMF,
the space/time efficient model, to better capture complicated
relationships between users and items than CF models.

2) RQ2: How accurate is the proposed method when
we reduce the input information? In Table V, we used
the full period of data. For answering RQ2, we remove the
early 25% of periods from Amazon-Book and Goodreads,
using only newer interactions — other datasets have a rel-
atively short period of data and are excluded from this study.
While filtering out the early 25%, we reconstruct the train-
ing/validating/testing sets and therefore, the direct comparison
between Tables V and VI is not possible.

As shown in Table VI, our upgrade kit is still effective.
Overall, GRU-NCDE is the best upgrade kit, leading to the
biggest scores in all cases and achieving the improvement
ratio of up to 58.75%. This result also implies that Timekit
outperforms baseline algorithms that are trained with relatively
recent interactions.
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Fig. 5. Sensitivity to the hidden size on Amazon-book. (a) We show the
Recall@20 scores by changing the hidden size of the embedding forecaster
for users and fixing it for items. (b) We fix the hidden size for users and
change for items. As noted, the item embedding vectors are more sensitive to
the hyperparameter.

3) RQ3: How well does the proposed method extrapolate
(or forecast) embedding vectors? Table VII summarizes the
MSE values of our GRU-NCDE forecasting model, i.e., GRU-
based models for user embeddings and NCDE-based models
for item embeddings, which generally shows the best perfor-
mance. In many cases, our testing MSEs are similar to those
of training and validating, which means stable forecasting. In
addition, the MSE values are one or two orders of magnitude
smaller than the std. dev. of item embedding elements. From
all these facts, we can know that our forecasting is reliable.

4) Sensitivity Analysis: How accurate is the proposed
method when we change the hidden size? Fig. 5 shows
the sensitivity analysis result. For various hidden size settings
of our embedding forecasters, our method still shows better
performances than base algorithms in all but one case. Even
though the hidden size changes, TimeKit-applied BPRMF
outperforms LightGCN’s original scores in some cases, which
proves the efficacy of TimeKit.

5) Empirical Training Complexity Analysis: What is the
empirical training complexity of our upgrade kit? We an-
alyze the empirical training overhead incurred by our method
since we need to additionally train time-series forecasting
models. As shown in Table VIII, the empirical space and time
complexities of our proposed upgrade kit are not large. For



TABLE VIII
EMPIRICAL COMPLEXITY ANALYSIS

Dataset

Memory (MB) Training Time (seconds per epoch)

User embedding Item embedding User embedding Item embedding

GRU NCDE(RK4) NCDE(DOPRI) GRU NCDE(RK4) NCDE(DOPRI) GRU NCDE(RK4) NCDE(DOPRI) GRU NCDE(RK4) NCDE(DOPRI)

Gowalla 193 217 302 4,085 1,570 1,218 2.06 2.29 42.74 2.92 11.96 381.76
Amazon-book 805 376 326 2,148 837 692 2.18 3.59 129.23 3.38 7.92 281.49

Goodreads 805 375 326 4,707 1,719 1,388 1.25 3.57 159.69 3.21 15.77 661.64
Netflix 1,628 712 560 1,266 577 458 2.22 4.45 203.38 2.18 3.89 248.25
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(a) Only our method, which is trained with the latent dynamics of the
preference distribution changes over time, correctly forecasts that User A will
watch those family animations and User B will watch those romantic comedy
films at December 2005 whereas base algorithms, trained with the “Total”
distributions, fail to do so.
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(c) User B’s embedding vectors

Fig. 6. Two users’ recommendation examples and embedding vectors change
over time in Netflix using LightGCN. We note that the preference distribution
of User A in (a) abruptly changes at May and so are the embeddings in (b).

training our GRU or NCDE-based forecasting models for user
embedding vectors, it requires just hundreds of megabytes
for GPU memory and takes a few seconds for each epoch
(except the NCDE-based model with DOPRI). However, all
of our experimental results were obtained with RK4 as the
performance enhancement by DOPRI is neglectable.

6) Case Study & Visualization: We introduce some key
observations from our experiments, which intuitively explains
how our method works. In Fig. 6 (a), our method exclusively
and correctly forecasts some family animations for User A
and some romantic comedy films for User B, but two users
show different patterns. User A suddenly watched lots of
family movies in May, and this preference was reflected in the
embedding (cf. Fig. 6 (b)). User B, on the contrary, does not
show a strong preference on romantic comedy films during
his/her training period but a consistent preference to some
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Fig. 7. The dynamics of films’ relative rating scores for User A. The relative
rating score is the ratio of a single item’s rating score (user-item dot-product
value with TimeKit) to the average of all rating scores, which shows how
much each film is preferred in comparison with the average.

degree. However, the base algorithm cannot capture those
differences because what they learn is not the dynamics how
the distributions change but the “Total” distribution in Fig. 6
(a). Because of that difference, only our method correctly
forecasts the phenomena that they show strong preferences
on family and romantic comedy movies in December. Rating
scores of the correct items are also the highest in December,
as indicated in Fig 7.

V. CONCLUSIONS AND LIMITATIONS

We presented a novel upgrade kit, called TimeKit. Our
goal is to forecast the future user/item embedding vectors,
with which we will perform the collaborative filtering task.
In other words, we reduce the collaborative filtering to the
time-series forecasting task, owing to a recent technological
breakthrough in dealing with complicated time-series data. In
general, user/item embedding vectors are known to contain
the hidden collaborative information for the recommendation.
Therefore, we need to uncover the hidden dynamics to ac-
curately forecast the future embedding vectors. NCDEs are a
powerful concept in unveiling a hidden dynamics from time-
series and we resort to this technique. We conduct experiments
with four benchmark datasets and four base collaborative
filtering algorithms. All those base algorithms are significantly
improved when being upgraded with TimeKit.

One limitation is that we need to collect time-series data
during enough periods. In the real world, however, the model
is incrementally updated as new interactions are added, and
the time-series data occurs naturally. Moreover, user/item
embeddings utilize less memory, making them less of a burden
for capacity. Overall, our proposed method is lightweight and
does not necessitate much training or a large memory.
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