
HAL Id: hal-03841516
https://hal.science/hal-03841516

Submitted on 7 Nov 2022

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Multi-Cloud Query Optimisation with Accurate and
Efficient Quoting

Damien T Wojtowicz, Shaoyi Yin, Jorge Martinez-Gil, Franck Morvan,
Abdelkader Hameurlain

To cite this version:
Damien T Wojtowicz, Shaoyi Yin, Jorge Martinez-Gil, Franck Morvan, Abdelkader Hameurlain.
Multi-Cloud Query Optimisation with Accurate and Efficient Quoting. IEEE International
Conference on BigData (BigData 2022), Dec 2022, Osaka, Japan. pp.228-233, �10.1109/Big-
Data55660.2022.10020835�. �hal-03841516�

https://hal.science/hal-03841516
https://hal.archives-ouvertes.fr

Multi-Cloud Query Optimisation with Accurate and
Efficient Quoting

Damien T. Wojtowicz∗, Shaoyi Yin∗, Jorge Martinez-Gil†, Franck Morvan∗ and Abdelkader Hameurlain∗
∗ IRIT Laboratory, Paul Sabatier University, Toulouse, France, {firstname.lastname}@irit.fr

† Software Competence Center Hagenberg GmbH, Hagenberg, Austria, jorge.martinez-gil@scch.at

Abstract—A recent trend among major organisations is to
release their datasets in the cloud over various Database-as-a-
Service (DBaaS) providers’ premises, creating a use case for
multi-cloud querying. As identified in the literature, middlewares
with such capabilities should quote the monetary cost and the
response time of the queries in order to gain the trust of their
users, and also optimise the queries so as to avoid cost overruns
and meet the quotations. Considering those requirements, this
paper introduces an accurate cost model and an efficient execu-
tion plan search strategy for dealing with large-scale multi-cloud
queries. The former is an ensemble learning stack leveraging
online machine learning models, and the latter is a randomised
method inspired by iterative improvement. We evaluated our
middleware over simulated providers by using the Join Order
Benchmark. Experiments showed that the cost model manages
to correct the estimations from the providers. The randomised
strategy can produce more efficiently execution plans that yield
better performances and a lower monetary cost compared to an
exhaustive approach from previous work.

Index Terms—Multi-Cloud, Cost Model, Online Machine
Learning, Query Optimisation, Database-as-a-Service.

I. INTRODUCTION

The increasing use of the cloud is leading public data
producers to release their datasets in the cloud. Such datasets
are of utmost importance in several fields, and becomes readily
available for analysis over the various services hosted by
the cloud providers. They may also be published as rela-
tional databases available on Database-as-a-Service (DBaaS)
infrastructures, where data storage as well as querying is
available on a pay-per-use basis. Cross-analysing data from
such databases by leveraging the computing capabilities of
their host providers is therefore possible, but requires systems
providing multi-cloud querying capabilities.

The topic of multi-cloud data management raised interests
in the industry as well as in the DB research community (as
highlighted by the Seattle Report [1]). Specialised middle-
wares for multi-cloud database integration have consequently
been introduced [2], [3] to let users write multi-cloud queries
independently from provider-arranged multi-cloud federations.
In previous work [3], we identified two main design require-
ments for such a middleware. First, it should be able to quote
the monetary cost of the multi-cloud queries, so as to let its
users control their expenses. Quotations must be as accurate
as possible because the reputation of the middleware is at
stake. Second, it should be able to optimise the multi-cloud
queries in a multi-objective way, by considering response time
and monetary costs in accordance with the quotation. A sub-

optimal multi-cloud execution plan leads to extra monetary
costs to users; the middleware should therefore correct poor
optimisation choices whenever possible.

With the middleware presented in [3], we succeeded to meet
these requirements for a small number of providers. Experi-
mental results encouraged us to try with many more simulated
providers, and therefore to overcome some limitations of the
original proposal. First, taking into account the independence
of DBaaS providers, we computed the quotations based on the
raw output cardinality estimation from the DBaaS providers’
DBMS. When there are many providers, their initial estimation
errors may propagate exponentially [4] and lead to a discrep-
ancy of several orders of magnitude between the quotation and
the real expense. Second, we also sought optimal execution
plans and competitive quotations by fully enumerating all the
possible linear plans, a strategy only suitable for small-scale
queries, because this operation is known to be NP-hard [5]. In
this paper, we aim to produce accurate quotations efficiently
for large-scale multi-cloud queries.

Therefore, we introduce a multi-cloud cost model that repro-
cesses the estimates from the DBaaS providers’ DBMS, based
on an ensemble learning stack. Our learning stack does not
only estimate the output cardinality, but also the response time
of the sub-queries. Inspired by recent encouraging results [6],
we decided to use online machine learning models [7]. Our
choice is reasoned by (i) their lightweightnesss, (ii) their
cold-start ability and (iii) their robustness w.r.t. statistical
shifts, may they be data distribution changes or design changes
in the database engine. This cost model serves as an input to
both a quotation calculator and a query optimiser.

We see those as the two faces of the same software com-
ponent, that should aim at solving efficiently both problems.
Indeed, we suggest that the optimiser should not only be used
to orchestrate the outsourced execution of the multi-cloud
queries, but should also generate quotations using estimates
from the cost model. In order to provide querying capabili-
ties over queries involving a large number of providers, we
designed an optimiser that uses a single-phase approach and
an iterative-improvement-inspired search space exploration
strategy so as to avoid never-ending quotation calculation time
and prohibitive optimisation costs. This type of strategy is
beneficial when the middleware needs to re-optimise queries
during their execution in order to better meet quotations, as is
in our case.

This paper is organised as follows. In Section II, we review

related work on multi-cloud query processing, cost-models
and search space exploration. We present our multi-cloud cost
model in Section III and the search space exploration strategy
in Section IV. Finally, we evaluate and discuss our proposals
in Section V and conclude in Section VI.

II. RELATED WORK

The idea of using the readily available computing capabili-
ties of cloud providers hosting public data for distributed an-
alytics originally arose for MapReduce. Although not directly
applicable to relational databases available through DBaaS, it
has nevertheless been shown that using multi-cloud resources
for processing is cost-effective - in the sense that it can be
less expensive than single-cloud or local processing [2].

We reached the same conclusions while working on a mid-
dleware that processes SQL queries written on a multi-cloud
relational schema aggregating databases from different DBaaS
providers [3]. We identified two key design requirements for
such a middleware. It should indeed (i) compute quotations to
let the users be in control of their expenses, and to (ii) optimise
those queries in order to meet the quotation so as to safeguard
the reputation of the middleware. In accordance with the
literature [4], we observed that accurate estimations of the
sub-queries’ output cardinality is vital in order to produce
quotations including both the monetary cost and the response
time of the queries as well as to properly optimise the multi-
cloud queries.

DB2’s LEO optimiser introduced history-based output car-
dinality estimation [8]; this paradigm is now embodied by
machine learning. Several deep learning models [9] have
been proposed so far, achieving high accuracy. However, their
applicability to a multi-cloud data integration middleware is
questionable because of the important monetary cost entailed
by the construction of a training dataset large enough for them.
Recent findings showed that output cardinality estimation
correction can be achieved with a high level of accuracy using
online machine learning models [10].

This approach to output cardinality estimation exploits
the DBMS’s knowledge of its database while improving the
accuracy of its estimates. Besides, this approach has a lesser
need for a training dataset while having, in the long run, both
the possibility of obtaining precise estimates and adaptability
to statistical shifts thanks to its constant ingestion of new
data points. In addition to the cardinality estimation, we also
studied some methods which predict query response times. In
the literature, the most accurate results so far were obtained
using a k-neighbours regression [11]. It was adapted in an
online learning fashion in our middleware to post-process the
response time component of the quotations [3], along with an
online linear regression to post-process the monetary compo-
nent. Nevertheless, both models can make errors, occasionally
by an order of magnitude. This is a well-known phenomenon
in DBMSs, whose remedy involves correcting the estimates as
soon as possible, which we suggest to achieve with a multi-
cloud cost model based on an ensemble learning stack.

Another important aspect of these works is the exploration
of the search space for the construction of a training dataset
and the evaluation of the estimations, seeking a more efficient
learning [9]. Some methods require an exhaustive exploration
of the search space [12]. This exhaustiveness leads to the
execution of many supplementary queries, which is not de-
sirable in our context. We therefore choose to adapt iterative
improvement [13], a textbook randomised strategy method that
is well known to find good execution plans and avoids a costly,
NP-hard exhaustive search space exploration.

III. ACCURATE COSTS ESTIMATION

For a given query, the providers’ DBMS can estimate the
output cardinality of its results from which it is possible to de-
rive the size, and thus their storage and transfer monetary costs.
These estimates are produced by a cost model, and relying on
them blindly would be a mistake as these components are
known to be error-prone [4]. In order to improve the accuracy
of the quotations as well as the quality of the optimisation
process of multi-cloud queries, and thus to protect the users
of our middleware from unexpected expenses and delays, we
propose a method to refine these output cardinality estimates.
The approach we follow is that of ensemble learning [14]:
several regression models are stacked, and a classifier is
responsible for determining, given the features of the query,
which of the estimations should be the more accurate.

The statistical distribution of these characteristics is ex-
pected to shift, possibly due to the evolution of the providers’
cost model or to changes in the content of the databases.
Inspired by previous work [10], we propose to design a cost
model using online machine learning techniques. Thanks to
the forgetting capabilities of those techniques, we expect that
our cost model will not suffer from these shifts. Moreover,
they enable the models to be updated in constant time with
each new observation available, we therefore expect that the
optimisation costs will not be increased but marginally.

A. Sub-queries Featurisation

In some work in the literature, query feature representation
tries to capture its semantics [12] and the database struc-
ture [15]. However, in a multi-cloud environment, the schema
cannot be assumed to be static: users may add new data
sources and source DBs may evolve. Such changes would
involve an engineering overhead, since an history should
be maintained and the models unpredictably retrained. This
approach would practically need to use way larger feature
vectors in the cost model, thus requiring more examples to be
trained on in order to achieve good accuracy. Notwithstanding
the additional costs incurred by the imprecision of the model
over a long period, it would ultimately be rendered useless
but for workloads with a large amount of queries. As a
consequence, we suggest to featurise the queries by encoding
the metadata of their execution plans.

Multi-cloud queries are decomposed into a set of clauses C
that are ultimately combined to produce sub-queries. For each
sub-query q, a tender can be asked to the provider, from which

Feature Description

x0 Estimated output cardinality
x1 Estimated response time
x2 Join count
x3 Output tuple size
x4 Execution plan depth
x5 Sum of the size of the input relations

TABLE I: Features of the input vector Xq extracted from
provider-generated tenders and execution plans

Xq

X(1)

f
(1)
0

f
(1)
1

X(2)

f
(2)
0

f
(2)
1

xi X(3)

f (3)

xi, y(2)
0 , y(2)

1 X(4)

m → f(Xf)

ŷq

Fig. 1: Ensemble learning stack M.

a feature vector Xq = [x0, . . . , x5] detailed in Table I can be
derived. Those features directly encode the amount of data
handled by the query (x0, x3, x5) as well as its computational
complexity (x2). Optimisation choices from the provider are
also indirectly encoded (x1, x4).

B. Ensemble Learning Stack

Our model M : R6 7→ R∗ is depicted in Figure 1,
and further explained hereafter. Architecture choices were
made empirically. It takes as an input a feature vector Xq .
It is noted M(SE) and returns, for a given query q, ŷ

(SE)
q

when instantiated for output cardinality estimation and M(RT)

returning ŷ
(RT)
q for response time estimation. In the following,

xi should be read as x0 for M(SE) and as x1 for M(RT).
M is a multilayer stacking ensemble regression model. Its

first layer consists of a linear regression f
(1)
0 : R3 7→ R∗

returning y
(1)
0 and a k-neighbours regressor f

(1)
1 : R3 7→ R∗

returning y
(1)
1 , both taking as an input X(1) = [x0, x1, x2].

The second layer is a blending layer, whose models takes as
an input X(2) = [xi, y

(1)
0 , y

(1)
1]. It consists of a function f

(2)
0 :

(R∗)3 7→ R∗ returning the average estimate y
(2)
0 from the

first layer and the provider’s, and of a k-neighbours regressor
f
(2)
1 : (R∗)3 7→ R∗ returning y

(2)
1 . The third layer consists

of a function f (3) : (R∗)5 7→ R∗ taking as an input X(3) =

[xi, y
(1)
0 , y

(1)
1 , y

(2)
0 , y

(2)
1] and returning y(3) the average value

of all the previous estimates.
Finally, M has a meta model that consists of a Ho-

effding tree classifier (i.e. a decision tree that needs rel-
atively small samples to split its nodes) m : R11 7→
{f (0), f

(1)
0 , f

(1)
1 , f

(2)
0 , f

(2)
1 , f (3)} (f (0) being the provider’s

cost model returning xi), that takes as an input X(4) = Xq ∥
[y

(1)
0 , y

(1)
1 , y

(2)
0 , y

(2)
1 , y(3)] and determines the model f that

should produce the best estimation. The estimation of f is
then returned by M(SE) as ŷ

(SE)
q or M(RT) as ŷ

(RT)
q .

Since early-life estimations of the cost model have poor
generalisation capabilities due to the small amount of data it

had been trained on, we suggest to ignore its results while the
number of ground-truth data points is under a threshold. In
this case, the providers’ estimate xi is returned instead.

The recursive nature of execution plans is leveraged to
gather more query execution data by learning not only from
the whole sub-query but also from its intermediate results.

C. Final Sub-Query Costs Estimation

The monetary costs of querying q on a provider Pi can be
calculated as follows. Let ϵ(Q)

Pi
, ϵ(E)

Pi
and ϵ

(S)
Pi

respectively be
the querying, export and storage billing factors in euro per
gigabyte of provider Pi. The querying cost of q is defined as
M

(Q)
Pi

(q) = ϵ
(Q)
Pi

× x
(q)
5 ; the storage cost of its intermediate

results as M (S)
Pi

(q) = ϵ
(S)
Pi

× ŷ
(SE)
q and the export cost of those

results to a provider Pj as M (E)(q, Pi, Pj) = ŷ
(SE)
q × (ϵ

(E)
Pi

+

ϵ
(S)
Pj

) (if Pi ̸= Pj , elsewhere trivially M (E)(q, Pi, Pj) = 0).
The cost model is also able to estimate network transfer

times. Let N be a matrix where each element is a linear
regression gij : R+ 7→ R+ defined as gij(x) = aijx + bij
that predicts the transfer time of a given amount of data from
provider i to provider j. All those functions are first initialised
with a constant value for a (in GB/seconds) extracted from
Pi’s and Pj’s documentation, with b = 0, and are updated
whenever an inter-provider data transfer occurs.

IV. EFFICIENT SEARCH SPACE EXPLORATION

The query optimiser uses the estimates produced by the
aforementioned cost model to quote the multi-cloud queries
and to orchestrate their outsourcing to the DBaaS providers.
It computes two quotations for each multi-cloud query, one
minimising the response time and the other the monetary cost.
If the user agrees with a quotation, the execution of the multi-
cloud query proceed. The optimisation process relies on the
randomised search strategy described hereafter.

A. Multi-Cloud Queries Representation

In the following, queries are assumed to be of Select-
Project-Join (SPJ) type of acyclic class (i.e. tree queries or
chained queries). Since rewriting cyclic queries into equivalent
acyclic ones is a NP-hard problem by its own which received
attention in the context of distributed query processing [16],
this topic is out of scope of this paper.

Figure 2 exemplifies the multi-cloud query execution plan
generation process. Let C be the set of clauses of a multi-cloud
query Q. A clause c ∈ C is defined as either a conjunction of
selection predicates sharing the same input relation set Rc or
a scan of an input relation. Each relation R ∈ Rc is hosted on
a provider PR. Dependency relationship between the clauses
is modelled with a graph DQ = <V,E>, where each vertex
v ∈ V has a counterpart in C, and where edge e ∈ E (with
e = <s, t>) represents a dependency between the clauses.

Within DQ, all connected sub-graphs whose clauses’
provider set are the same are merged into D′

Q. Each vertex
v ∈ V has therefore a clause set Cv that can be seen as the
selections of a maximal sub-query from Q.

SQL query Q SELECT name, place
FROM Emp, Dept, Project
WHERE dpt = d_id -- c1
AND pjt = p_id -- c2
AND place IN
(’Toulouse’, ’Linz’) -- c3
AND topic LIKE
’%multi-cloud%’; -- c4

DQ

c1 c2

c3 c4Emp

D′
Q

c2

c1, c3,
Emp

c4

T0

c2

c1, c3,
Emp

c4

P1

P1 P2

SQL sub-queries

(1) On P1


SELECT d_id, name, place, pjt
INTO Tmp_1 FROM Dept, Emp
WHERE place IN (’Toulouse’, ’Linz’)
AND dpt = d_id;

(2) On P2

{
SELECT p_id INTO Tmp_2 FROM Project
WHERE topic LIKE ’%multi-cloud%’;

(3) On P1

{
SELECT name, place FROM Tmp_1, Tmp_2
WHERE pjt = p_id;

Fig. 2: Generating an execution plan T0 from a multi-cloud
SQL query, assuming relations Emp(eId, name, #dpt,
#pjt) and Dept(d_id, place) hosted on a provider P1

and Project(p_id, topic) on P2.

A directed spanning tree T0 is randomly extracted from D′
Q,

representing a multi-cloud execution plan. In order to produce
a complete execution plan, projection clauses are added to
all the vertices so that their subsequent sub-queries can be
properly executed later and the projection clause of the multi-
cloud query can be satisfied. Then, sub-queries are randomly
affected to one of the providers storing the input relations of
its clauses. SQL code can be generated from each sub-query.

B. Neighbour Plans Generation

The randomly generated execution plan T0 is not likely to
be optimal, may it be w.r.t. monetary cost or response time.
Its purpose is to serve as a starting point for the optimisation
process. Therefore, we propose to explore alternatives by
deriving several other plans using the transformation rules.

The first rule ϱ1 enables the exploration of different place-
ment schemes over the providers. Namely, for each vertex
v ∈ V , placed on a provider Pv , whose involved provider set
is noted as Pv =

⋃
c∈Cv

⋃
R∈Rc

PR, a new plan is generated
with a different Pv for each provider in Pv −{Pv}. This rule
may discover execution plans with smaller inter-provider data
transfers as compared to the deriving plan while preserving
the distributed processing of the multi-cloud query.

The second rule ϱ2 is akin to considering a different
join order. Namely, for each of the pairwise successions of
vertices containing inter-provider clauses, an execution plan
is generated where v1 and v2 are swapped. This rule may
discover execution plans handling a smaller total amount of
data as compared to the derived plan.

The third rule ϱ3 considers a compromise between dis-
tributed parallelism and locality by merging sub-queries hosted

c2

c1, c3,
Emp

c4

P1

P1 P2

T0

c2

c1, c3,
Emp

c4

P2

P1 P2

T1

c1, c2,
c3, Emp

c4

P1

P2

T2

c2, c4

c1, c3,
Emp

P2

P1

T3

ϱ1ϱ3 ϱ3

Fig. 3: Search space graph generated from execution plan T0

for the example depicted in Figure 2. Changes applied by
neighbour generation rules ϱi are darkened.

on the same provider. Namely, for each couple of successive
vertices placed on the same provider, a new execution plan is
generated where v1 and v2 are merged into a vertex v′ having a
clause set Cv′ = Cv1 ∪ Cv2 . This rule may discover execution
plans which are less storage-intensive and which read the same
tuples fewer times.

C. Exploration Strategy

Our search space exploration strategy is inspired by iterative
improvement techniques [13]. The idea is to take a random
execution plan as an input and navigate towards a locally-
optimal plan by progressively changing it. So as to increase
the chances of finding the global minimum without having to
perform the NP-hard task of exploring the entire search space,
the exploration can be further pursued after the discovery on
a local minimum. In order to bound the algorithm to prevent
unwanted wandering, a maximal number of improvements
towards a minimum n is defined as well as a number of
steps beyond the local minimum p. Figure 3 illustrates the
procedure, assuming n = 2 and p = 0: T0 is the initial
execution plan. At step 1, T1 is generated using ϱ1 and T2

using ϱ3. Assuming T1 was a local optimum, T3 is generated
at step 2 using ϱ3. Assuming T1 is more optimal than T3, the
search for a local optimum stops since n was reached and no
step further the local minimum was defined, and T1 is returned.

The strategy progressively explores the search space by
generating, using aforementioned rules ϱ1, ϱ2 and ϱ3, neigh-
bourhood plans set V ′ of the current plan T and picking the
best plan among V ′+T w.r.t. ω, until it finds a local minimum.
Once a local minimum is found, the process may restart using
an execution plan from V \ H as a new starting point. In
order to compute the quotations, we define several objective
functions : (i) the response time ω(RT)(T), i.e. its maximal
sum of the response time among all the leaf-to-root paths,
(ii) the monetary cost ω(M)(T), i.e. the sum of the export,
querying and storage costs, and (iii) the monetary cost over
response time ratio ω(RT/M)(T).

V. EXPERIMENTS AND DISCUSSION

In this section, we describe the experiments we carried on in
order to validate our cost model and our execution plan search
strategy. We compare our results with the literature and discuss
the perspectives they draw.

Name Model Hyperparameter

f
(1)
0 LinearRegressor optimizer: AdaDelta

loss: Cauchy ; l2: 2.95

f
(1)
1 KNNRegressor n_neighbors: 6 ; p: 1

aggregation_method:
weighted_mean

f
(2)
1 KNNRegressor n_neighbors: 3 ; p: 1

aggregation_method:
weighted_mean

m HoeffdingTreeClas- grace_period: 20
sifier split_confidence: 0.55

split_criterion: gini

TABLE II: Non-default hyperparameters of M

A. Experimental Setting

In order to evaluate our proposal, we used the Join Order
Benchmark (JOB) [4]. Experiments were carried out using
the testbed provided by the French national grid computing
platform Grid’5000. Comparisons for response time estima-
tion, output cardinality estimation and multi-cloud querying
middlewares are provided.

Our middleware is implemented as a Python flask API.
SQL queries formulated over the multi-cloud schema are
compiled with the sly library. The multi-cloud cost model
described in Section III is implemented using the River Python
library [17]. Table II lists the non-default hyper-parameters
used for our models, that we determined empirically. Model
m’s split confidence is intentionally set up on a fairly high
value so as to force the decision tree to split quickly whenever
a new class is present in the ground-truth; the aim is to
counter its early poor accuracy stemming from the cold-start.
All graph-related aspects are handled using networkx [18].
Clause dependency graphs, execution plans and the space
search graph are all implemented as DiGraphs. Distributed
remote execution of sub-queries over the providers is handled
by Python’s threads.

During our experiments, cloud providers were simulated.
They are implemented as a Python flask API, and use
PostgreSQL as a back-end DBMS. Each had its own copy
of the IMDb database, which were considered independent in
order to reproduce the involvement of a variable number of
providers for each query in the JOB. As many as 16 simulated
providers were deployed, each on a node on a share-nothing
cluster, spread on the 8 sites of the Grid’5000 testbed. For a
given query, they estimate the response time as the sum of the
cost of all its operators divided by 2251. They compute the
monetary costs as described in Section III-C, with a cost ratio
ϵ
(Q)
Pi

= 1.75 ct/GB for querying, ϵ(E)
Pi

= 8.5 ct/GB for data
export and ϵ

(S)
Pi

= 3.5 ct/GB for storage.
In order to assess estimation accuracy, we used the q-

error [19] defined in (1), with y an estimation, y′ the actual

1This number had been determined empirically

10 100 1,000
0.2

0.4

0.6

0.8

Sub-queries processed
per provider

q
−
1

-e
rr

or

Average q−1-error for
output cardinality estimation

10 100 1,000
0.2

0.4

0.6

0.8

Sub-queries processed
per provider

q
−
1

-e
rr

or

Average q−1-error for
response time prediction

Legend: – Cost model M – Provider’s cost model – Litterature

Fig. 4: Evolution of the average q−1-error during the exper-
iments of our cost model M compared with the providers’
DBMS and the models from the litterature.

value and γ = 10−4 (used to not divide by zero).

q(y, y′) = max
(y + γ

y′ + γ
,
y′ + γ

y + γ

)
(1)

We compare our cost model with an online implementation of
a k-NN regression [11]. Following its introductory paper, we
considered parameters k=5 and as a sole feature the DBMS
cost returned by the simulated providers.

We compared the response time and monetary cost of the
execution plans as well as the optimisation costs of our current
proposal with the previous middleware [3]. They were both
deployed and tested in similar conditions over the testbed, and
underwent the JOB in the same order. We defined a timeout
of 10 min for quotation computation and of 20 min for query
execution.

B. Results and Discussion

Experimental results are presented and analysed hereafter.
We first show that our cost model does manage to improve
the accuracy of the estimations the optimiser works on. Then,
we show that the randomised search strategy does manage to
quote complex queries in a timely manner. Finally, we show
that the neighbour generation rules lead to the discovery of
more efficient execution plans.

Figure 4 compares the accuracy of our cost model M with
the providers’ DBMS’s (later referred to as the baseline) and
the k-NN regressor from the literature by depicting their aver-
age q−1-error (instead of the q-error for readability reasons) as
the experiments progress. Once the metamodel m is allowed
to make its own choices starting at the 25th query it learned
on, it can be noticed that for both metrics the cost model
manages to be more accurate than the providers’ DBMS’,
to match and then outreach the accuracy of the cost model
from the literature. The difference between our model and the
literature stem from their imbrication and show the efficiency
of the metamodel: the model in the literature has actually the
same nature as f1

1 and f2
1 in our stack, hence their accuracy

is partially leveraged by m when it chooses the estimation of
a model from the stack.

As depicted by Figure 5 and as expected by the theory,
the randomised search space exploration strategy does allow

2 3 4 5 6 7 8 9 10 11 12
0

1

2

3

4

5

Number of providers involved by the query

Q
uo

tin
g

tim
e

(m
in

)
Quotation computation time w.r.t. the complexity of the query

Exhaustive

Randomised n=230
p=13

Randomised n=530
p=3

Fig. 5: Comparison of the time spent to compute the quotations
for a multi-cloud query w.r.t. its complexity by both an
exhaustive strategy and the randomised strategy.

0 1 2 3 4
0

1

2

3

4

Exhaustive

R
an

do
m

is
ed

Monetary cost (€)

0 5 10 15 20
0

5

10

15

20

Exhaustive

R
an

do
m

is
ed

Response time (min)

Providers involved: 2 3 4 5

Fig. 6: Comparison of the monetary cost and the response time
of the queries yielded using the exhaustive search method and
the randomised one.

to compute quotations for complex queries involving many
providers. In contrast, the exhaustive method timed-out when
there are more than 5 providers. With regard to the randomised
strategy, several bounding parameters were tested, showing
that the performances of the strategy are proportional to
the number of exploration steps looking beyond the local
minimum and the number of providers involved by the query,
regardless of the actual amount of execution plans estimated.

Finally, the comparison between execution results yielded
by the exhaustive space search exploration method with the
randomised one, as depicted in Figure 6, shows the latter is
way more efficient than the former, managing to increasingly
reduce the monetary costs w.r.t. the complexity of the query
and generally finding execution plans with a better response
time. This can be explained because the randomised method
does not limit its exploration to linear execution plans, hence
avoiding costly and slow inter-cloud data transfers and there-
fore reducing the idle time between the sub-queries.

VI. CONCLUSION

In this paper, we introduced a multi-cloud learned cost-
model in order to improve the reliability of both the multi-
cloud queries quotation and their optimisation process. It
uses online machine learning models. We also introduced a
randomised space exploration strategy to quickly optimise the

queries. Experimental results showed that the cost model man-
ages to correct the providers’ DBMS’ estimates, and that the
randomised search strategy is able to produce execution plans
that are less expensive to execute for better performances.

As experiments using simulated providers showed our ap-
proach is promising, there is now a case to transform what
is currently a proof-of-concept into an actual middleware
supporting a real-world setting, with real providers, real users
and actual use cases.

ACKNOWLEDGEMENTS

This work has been funded by (i) the LabEx CIMI through the MCD
project and (ii) the French Ministries of Europe and Foreign Affairs and
of Higher Education, Research and Inovation through the EFES project (No
44086TD), Amadeus program 2020 (French-Austrian PHC). We also thank
the International Cooperation & Mobility (ICM) of the Austrian Agency for
Education and Internationalisation (OeAD-GmbH). The Grid’5000 testbed is
supported by Inria, CNRS, RENATER and several Universities as well as
other organisations.

REFERENCES

[1] D. Abadi, A. Ailamaki et al., “The Seattle Report on Database Re-
search,” SIGMOD Record, vol. 48, no. 4, pp. 44–53, Feb. 2020.

[2] S. Imai, S. Patterson, and C. A. Varela, “Cost-Efficient High-
Performance Internet-Scale Data Analytics over Multi-cloud Environ-
ments,” in CCGrid. IEEE & ACM, May 2015, pp. 793–796.

[3] D. T. Wojtowicz, S. Yin et al., “Cost-Effective Dynamic Optimisation
for Multi-Cloud Queries,” in CLOUD. Chicago (Online), USA: IEEE,
Sep. 2021, pp. 387–397.

[4] V. Leis, A. Gubichev et al., “How good are query optimizers, really?”
Proc. VLDB Endow., vol. 9, no. 3, pp. 204–215, Nov. 2015.

[5] T. Ibaraki and T. Kameda, “On the optimal nesting order for computing
N-relational joins,” TODS, vol. 9, no. 3, pp. 482–502, Sep. 1984.

[6] M. Halford, P. Saint-Pierre, and F. Morvan, “Selectivity estimation with
attribute value dependencies using linked bayesian networks,” TLDKS,
no. XLVI, pp. 154–188, 2020.

[7] L. Bottou and Y. Le Cun, “Large Scale Online Learning,” in NIPS,
vol. 16. Vancouver, BC, Canada: MIT Press, 2003, pp. 217 – 224.

[8] M. Stillger, G. Lohman et al., “LEO – DB2’s LEarning Optimizer,”
Proc. VLDB Endow., vol. 1, pp. 19–28, Sep. 2001.

[9] C. Wu, A. Jindal et al., “Towards a learning optimizer for shared clouds,”
Proc. VLDB Endow., vol. 12, no. 3, pp. 210–222, Nov. 2018.

[10] M. Halford, P. Saint-Pierre, and F. Morvan, “Selectivity correction with
online machine learning,” in BDA, Paris (Online), France, Sep. 2020.

[11] A. Kleerekoper, J. Navaridas, and M. Lujan, “Can the Optimizer Cost
be Used to Predict Query Execution Times?” arXiv:1905.00774 [cs],
May 2019.

[12] R. Marcus, P. Negi et al., “Neo: A Learned Query Optimizer,” Proc.
VLDB Endow., vol. 12, no. 11, pp. 1705–1718, Jul. 2019.

[13] A. Swami, “Optimization of large join queries: combining heuristics and
combinatorial techniques,” in SIGMOD. New York, NY, USA: ACM,
1989, pp. 367–376.

[14] D. H. Wolpert, “Stacked generalization,” Neural Networks, vol. 5, no. 2,
pp. 241–259, Jan. 1992.

[15] J. Ortiz, M. Balazinska et al., “Learning State Representations for Query
Optimization with Deep Reinforcement Learning,” in DEEM. Houston,
TX, USA: ACM, Jun. 2018, p. 4.

[16] Y. Kambayashi, M. Yoshikawa, and S. Yajima, “Query processing for
distributed databases using generalized semi-joins,” in SIGMOD. New
York, NY, USA: ACM, 1982, pp. 151–160.

[17] J. Montiel, M. Halford et al., “River: machine learning for streaming
data in Python,” JMLR, vol. 22, no. 110, pp. 1–8, 2021.

[18] A. Hagberg, P. Swart, and D. S Chult, “Exploring network structure,
dynamics, and function using networkx,” LANL, Los Alamos, USA,
Tech. Rep. LA-UR-08-05495, 2008.

[19] G. Moerkotte, T. Neumann, and G. Steidl, “Preventing bad plans by
bounding the impact of cardinality estimation errors,” Proc. VLDB
Endow., vol. 2, no. 1, pp. 982–993, Aug. 2009.

