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Abstract—Photo-identification (photo-id) is one of the main
non-invasive capture-recapture methods utilised by marine re-
searchers for monitoring cetacean (dolphin, whale, and porpoise)
populations. This method has historically been performed manu-
ally resulting in high workload and cost due to the vast number of
images collected. Recently automated aids have been developed to
help speed-up photo-id, although they are often disjoint in their
processing and do not utilise all available identifying information.
Work presented in this paper aims to create a fully automatic
photo-id aid capable of providing most likely matches based
on all available information without the need for data pre-
processing such as cropping. This is achieved through a pipeline
of computer vision models and post-processing techniques aimed
at detecting cetaceans in unedited field imagery before passing
them downstream for individual level catalogue matching. The
system is capable of handling previously uncatalogued individuals
and flagging these for investigation thanks to catalogue similarity
comparison. We evaluate the system against multiple real-life
photo-id catalogues, achieving mAP@IOU[0.5] = 0.91, 0.96 for
the task of dorsal fin detection on catalogues from Tanzania and
the UK respectively and 83.1, 97.5% top-10 accuracy for the task
of individual classification on catalogues from the UK and USA.

Index Terms—Few-Shot, Fine-Grain Classification, Detection

I. INTRODUCTION

In recent years there has been a concerted effort to apply
computer vision techniques to challenging big data problems
which can have a positive societal impact. A highly important
area where computer vision can help is ecology [1]. One of
the main goals of ecological research is to monitor animal
populations in their distribution area, undertaking abundance
estimates to inform policy change. This is most commonly
performed using capture-recapture surveys where researchers
identify the presence of individuals and estimate abundance

of animals in an area to produce population estimates [2–4].
These surveys can be classified as invasive where animals are
physically trapped, tagged, and released, or non-invasive where
monitoring is performed passively such as via the collection
of images – referred to as photo-id.

Photo-id is one of the main non-invasive capture-recapture
methods utilised by cetacean researchers [5]. Surveys are
usually undertaken at sea, although monitoring from coastlines
or aircraft may also be utilised [6, 7]. The methodology is
employed for the monitoring of multiple cetacean species, with
a range of studies demonstrating its efficacy [8, 9].

All non-invasive capture-recapture methodologies rely on
the target species having some form of individually identifiable
markings. Depending on the species, different parts of the
body are the primary identifying feature; for dolphins this
is usually the dorsal fin as this body part is most likely
to be visible above the waterline. During photo-id surveys,
researchers often focus on long lasting stable markers such as
dorsal fin shape, notches, scarring, and pigmentation. These
markings can be difficult to capture in detail due to the free
roaming nature of the animals causing high variances in angles
of approach, direction of travel, distance from camera, and
surfacing elevation, as seen in Figure 1. This is exacerbated
when dealing with cetacean species which travel in pods,
making it difficult to distinguish the individuals present.

Marine photo-id can be extremely labour and cost intensive
compared to on-land surveys, which rely on the use of camera
traps placed in stationary locations to capture images when
they detect movement. This setup is not possible at sea due
to a lack of stationary objects to attach devices to and rapid
movement in the observed scene due to waves causing the978-1-6654-8045-1/22/$31.00 ©2022 IEEE
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Figure 1. Two images of the same individual taken from different angles
of approach, directions of travel, surfacing elevation, and distances from the
camera. This changes the make-up of the dorsal fin but retains identifying
information. Images from [10].

camera to trigger – producing a high false positive rate.
Upon survey completion, photo-id data must be analysed

and individuals identified to produce a catalogue. Images col-
lected during surveys are large in size and contain significant
amounts of background noise. Historically curation of this data
has been a manual process that often takes longer than the
entire data collection period [11], further increasing labour and
costs. As such, any techniques to speed up the curation process
would be welcomed by both researchers and their funding
bodies. As photo-id surveys are not guaranteed to capture
all individuals in a given geographic area, naive approaches
such as training a simple image classifier on existing catalogue
examples would not suffice as they are incapable of flagging
previously uncatalogued individuals.

This work details a framework for fully automatic catalogue
matching based on unprocessed photo-id imagery. This is
achieved by a pipeline of trained computer vision models
and robust post-processing techniques capable of automatic
fin detection and most likely catalogue matching based on
latent space similarity. Images are passed through a Mask R-
CNN [12] dorsal fin detector, removing the need for manual
data pre-processing. Detections are post-processed ready for
fine-grain, few-shot catalogue matching via a Siamese Neural
Network (SNN) trained using triplet loss [13] and online semi-
hard triplet mining to create a latent space based on the
provided catalogue. Matches are obtained using the Euclidean
distances between an input and generated class prototypes, al-
lowing for the flagging of potentially uncatalogued individuals.
This reduction in data processing affords cetacean researchers
more time to work on application of their data, for example
to inform mitigation and policy change, rather than curation.

II. RELATED WORK

Due to the time and labour requirements of manual photo-
id, multiple aids have been developed. Descriptions of these
related works is provided, with an overview in Table I.
Catalogue Management Systems are widely used to aid
manual photo-id, especially in geographic locations with large
resident populations. FinScan [14] allows users to upload
pre-processed fin images which they then trace around. This
trace is checked against a database to determine most likely
matches. Likewise, DARWIN [16] also provides automated
photo-id based on traces.

FinBase [15] instead manages catalogues based on user
defined attributes which can then be used for matching. Fins

Figure 2. An example showing the result of SURF [26] feature extraction on
the dorsal fin of an Indo-Pacific bottlenose dolphin.

are matched based on querying a database for entries with
matching attributes. Additionally, CatRlog [17] provides likely
matches based on manually entered marking information.
Non-Deep Learning Approaches to aid cetacean photo-id
are available. Karnowski et al. [19] used PCA to subtract
background from underwater images of common bottlenose
dolphins (Tursiops truncatus). Further, Weideman et al. [18]
proposed CurvRank, an algorithm which automatically iden-
tifies a fin’s trailing edge for likely matching.
Deep Learning Approaches have also been explored in re-
cent years, inching work towards a fully automatic photo-id
system. Data pre-processing such as cropping is one of the
main labour costs in catalogue creation. Photo-ID Ninja1 aims
to speed up this processing by automatically cropping images
to the dorsal fin.

Quiñonez et al. [20] proposed a detection system capable
of distinguishing between four distinct classes: dolphin,
dolphin_pod, open_sea, and seabirds. Morteo et al.
[21] performed semi-automatic matching by projecting lines
from the base of the fin’s leading edge.

Bouma et al. [22] provided a system focusing on metric
learning to photo-id individual New Zealand common dolphins
(Delphinus spp), utilising Photo-ID Ninja to crop fins prior to
matching. Lee et al. [23] proposed an architecture for cetacean
identification via normalised segmentation and significant fea-
ture extraction.

DolFin [25] uses a SURF-based [26] approach to identify
Risso’s dolphins (Grampus griseus), a species prone to long
term scarring which makes them ideal for matching via feature
extractors. This approach fails with species where identifying
markings are more subtle, such as in Figure 2 where SURF
has failed to extract the top left notch from the dorsal fin of
an Indo-Pacific bottlenose dolphin (T. aduncus).

FinFindR [24] allows for the identification of common
bottlenose dolphins based on the trailing edge of the animal’s
dorsal fin, utilising this to cluster individuals.

A. Comparison Against Related Work

Table I provides a summary of related works. The vast
majority are standalone algorithms, requiring researchers to set
up their own data pipelines. Only DolFin and finFindR propose
fully automated, self-contained photo-id aids which require
no pre-processing and are capable of handling previously
uncatalogued individuals.

As noted previously, DolFin may struggle to handle species
other than Risso’s dolphin as SURF fails to extract subtle
features such as notches. Further, finFindR fails to make use of

1Photo-ID Ninja: photoid.ninja

http://photoid.ninja


Table I
A COMPARISON OF AVAILABLE PHOTO-ID AIDS.

System Requires
Data Pre-processing

Dorsal Fin
Detection

Full
Background Removal

Individual
Photo-ID

Can Flag Individuals
Not Currently In Catalogue

Uses All Information
Found on Dorsal

FinScan [14] 3 7 7 3 3 ––
FinBase [15] 3 7 7 3 3 ––

DARWIN [16] 3 7 7 3 3 ––
catRlog [17] 3 7 7 3 3 ––

CurvRank [18] 3∗ 7∗ 7 3 ? 7
Karnowski et al. [19] 7 3 3 7 –– ––

Photo-ID Ninja1 7 3 7 7 –– ––
Quiñonez et al. [20] 7 3 7 7 –– ––
Morteo et al. [21] 3 7 7 3 7 7

Bouma et al. [22] 3 3† 7 3 3 3
Lee et al [23] 7 3 3 3 ? ––
finFindR [24] 7 3 7 3 3 7

DolFin [25] 7 3 3 3§ 3 3
Ours 7 3 3 3 3 3

* CurvRank is included in Flukebook (flukebook.org), a website for cross-catalogue matching. In this scenario, Flukebook performs automatic data
pre-processing and fin detection before passing to CurvRank, but the algorithm itself does not facilitate this.
? It is unclear whether the system is capable of flagging previously uncatalogued individuals to the researcher based on the literature available.
† Utilises Photo-ID Ninja for detection.
§ Utilises SURF for photo-id, thus unsuitable for cetacean species without well-defined markings.

all information on the dorsal, utilising only the trailing edge
for matching, and does not fully remove background noise
which may influence the matching process.

Work proposed in this paper aims to overcome these lim-
itations. The outlined methodology performs full background
removal, negating the effect of noise on matching, and is
capable of operating on a range of species rather than just
those prone to specific markings by extracting all available
information. Images can also be operated over without the
need for manual data pre-processing.

III. METHODOLOGY

The proposed framework allows for the detection and in-
dividual identification of various cetacean species. This is
achieved through a pipeline of models (see Figure 3) to
sequentially process input images.
Dorsal Fin Detection is achieved using a Mask R-CNN
model to locate regions of interest (RoIs) in images, de-
fined as areas where the animal’s dorsal fin is visible above
the waterline. This model is trained on large scale images
(3456x5184px) from DSLR cameras, typical of those utilised
during photo-id surveys. By detecting RoIs in input im-
ages automatically, the requirement for data pre-processing
is removed. Model outputs are in the form of masks which
precisely differentiate between a coarse-grain dorsal fin or
background. If an image contains a pod (> 1 dorsal fin), each
detected RoI is processed sequentially downstream.
Morphological Transformations are performed based on a
priori knowledge of cetaceans. It can be reasoned that holes
in a mask are likely unintentional and a product of surrounding
noise. In this instance, the model may have failed to capture
all available information. Any holes present in masks are
filled using dilation and erosion morphological transformations
to ensure no identifiable information is lost. Note that any
holes present in the dorsal fin from natural or anthropogenic
activity such as from sting ray barbs are not transformed
to retain identifying information. A bitwise-and operation is

then applied between the clean mask and the input image,
segmenting the RoI to reduce the amount of noise passed
downstream.
Colour Thresholding is executed over masks with multiple
disjoint components. This may occur if, for example, an area
of splash has been erroneously included as part of a detection.
As a single cetacean cannot be made up of multiple disjoint
components, it is known that some of these are erroneous and
should be removed.

As the outer layer of cetaceans’ skin is often a consistent
grey colouring, minus any prominent identifiable markings,
this can be used to filter mask components. By comparing the
colour composition of each component against a calculated
threshold, it is possible to discard those which have been
erroneously detected. As these components are often areas of
water, they will likely be much lighter in composition than
the cetacean component. An example of noise removal via
colour thresholding is shown in Figure 4. If multiple mask
components pass noise removal and colour thresholding, each
component is treated as a distinct mask downstream. Masks
with only a single component are not colour thresholded
to ensure no detections are ignored due to post-processing,
preventing the discarding of an RoI which contains no disjoint
components but is above the threshold, such as in the event
of extreme over-exposure.
Cropping is then undertaken, reducing the input image down
to the processed RoI. This vastly reduces the image file size
and computational expense of downstream operations, as well
as centres the RoI in the output image.
Most Likely Catalogue Matching is applied on a per-
catalogue basis using a trained SNN with a triplet loss function
[13]. SNNs have demonstrated usefulness for few-shot, fine-
grain problems in research domains such as species identifi-
cation [27, 28]. Our work compliments this through extension
to individual-level identification.

At train time, the photo-id catalogue is processed as per the

http://flukebook.org


Figure 3. A high level overview of data flow through the proposed system.

Figure 4. Workflow detailing colour thresholding to remove disjoint splash.
The mask is split into individual components. The background subtracted
images are colour thresholded, and erroneous splash is discarded.

methodology above. Each post-processed RoI for an individual
is used as a class example for SNN training. A noise class
is also included, containing examples of retained erroneous
detections, to afford the model the ability to rule these out
during inference without human intervention.

The trained SNN is capable of generating low-dimensional
embeddings from fin images in such a way that those of the
same individual generate embeddings which are close together
in the latent space, creating individual class clusters which
allow for most likely catalogue matching. During inference,
most likely matching is performed via Euclidean distance
measurement between the input and prototypes representing
the median example of each class.

By clustering individuals together in the latent space based
on similarity and comparing new images to the class proto-
types, the system can flag potentially previously uncatalogued
individuals. A new individual who enters the catalogue’s
survey area (e.g. through migration or birth) is placed in
a distinct latent space location, resulting in large distances
between it and the class prototypes. If a new individual is
flagged it can then be verified by a human and, if correct,
added to the catalogue. When a new entry is appended, a
class prototype for the newly introduced individual can be
generated, allowing the system to perform catalogue matching
without the need for model re-training.

IV. EXPERIMENTATION

To evaluate the proposed methodology, experimentation
was performed using multiple real-life photo-id catalogues

collected by various institutions from a range of geographic
locations, times, and encompassing multiple cetacean species.

A. Dorsal Fin Detection

Precision The dorsal fin detector’s ability to precisely detect
RoIs was evaluated using mean average precision at differing
intersection over union thresholds (mAP@IOU). This was
performed using 1021 photo-id survey images provided by
Newcastle University’s Marine MEGAfauna Lab of Indo-
Pacific bottlenose dolphins resident in the coastal waters of
Zanzibar, Tanzania in 2015 [2]. RoIs were labelled with a
coarse-grain dolphin class, resulting in 616 total examples
split into an 80-20 train-test split.

A ResNet50 architecture [29] was utilised as a model
backbone, with a minimum confidence threshold of 0.9. Hy-
perparameter optimisation was performed using a grid search,
with the following possibilities examined: (1) Weight Decay:
0.01, 0.001, 0.0001, or 0.0001. (2) RPN Anchor Scale: (8, 16,
32, 64, 128), (16, 32, 64, 128, 256), or (32, 64, 128, 256,
512). (3) Optimiser: Adam [30], or SGD with Warm Restarts
[31]. (4) Pre-trained on MSCOCO [32]: yes or no. (5) Data
Augmentation Strategy: aug1, aug2, or None.

The first strategy, aug1, selected up to three of the fol-
lowing: (1) Horizontal Flip: (p = 0.5). (2) Vertical Flip: (p
= 0.5). (3) Rotation: 90, 180, or 270 degrees (p = 0.33).
(4) Scaling: 80% to 120% on both axes independently. (5)
Brightness: multiply all pixels in the image with a random
value between 0.8 and 1.5. (6) Gaussian Blur: using a kernel
with radius randomly assigned between 0 and 5.

The second strategy, aug2, was more complex, performing
the following perturbations in a sequentially random order
on 67% of the images: (1) Horizontal Flip: (p = 0.5). (2)
Cropping: each side of the image randomly between 0%
and 10% of the total side length. (3) Gaussian Blur: using
a kernel with radius randomly assigned between 0 and 2.5
(p = 0.5). (4) Contrast: increase or decrease by a random
factor between 0.75 and 1.5. (5) Additive Gaussian Noise:
sample the noise per channel, adding noise to the colour of
the pixels. (6) Brightness: multiply all pixels with a random
value between 0.8 and 1.2. (7) Scaling: 80% to 120% on both
axes independently. (8) Rotation: randomly between -180 and
180 degrees. The use of these augmentation strategies allowed



Figure 5. Example of dorsal fin detections. Left: An image showing cetaceans
travelling in a pod. Each detection is post-processed and identified in isolation.
Right: An image showing the effect of eco-tourism on the false positive rate
of the detector.

Table II
INSTANCE SEGMENTATION RESULTS OF THE MASK R-CNN DETECTOR,

TRAINED USING THE ZANZIBAR TRAINING DATA.

Dataset mAP@IOU[x]
0.50 0.55 0.60 0.65 0.70 0.75 0.80 0.85 0.90 0.95

Zanzibar 0.91 0.91 0.89 0.86 0.85 0.79 0.69 0.50 0.15 0.00
NDD 0.96 0.95 0.93 0.91 0.88 0.83 0.71 0.51 0.16 0.00

for evaluation of whether a simple or more complex strategy
would be more appropriate for this use case.

The search determined that training a model optimised using
SGD with Warm Restarts, alongside an initial learning rate of
0.001 with 0.01 weight decay, RPN anchor scales of (16, 32,
64, 128, 256), pretrained on MSCOCO and using the aug1
strategy produced the highest mAP@IOU scores.

Experimental results for the trained model on the Zanzibar
data can be seen in Table II (Top). These images contain a wide
variety of background noise. Furthermore, some dorsal fins in
the images look similar in shape and structure to background
objects – especially in choppy waters captured from a distance.
The animal’s bodies are also similarly coloured to their sur-
roundings. These adaptations allow the animals to be better
camouflaged in their environment, but can cause issues for
detection systems. The model is capable of precisely detecting
multiple fins when the animals are captured travelling in a pod,
as seen in Figure 5 (Left) where the pod has been separated
into its constituent parts ready for identification downstream.
Generalisability The detector is also required to produce
detections with high mAP scores when operating on data from
different geographic regions, time intervals, and species, as this
would negate the need for detector re-training when working
in a new survey area. To evaluate this, the model was used
to generate mask predictions for the above water image set
found in the Northumberland Dolphin Dataset (NDD) [10].
This open-source dataset contains images of both common bot-
tlenose dolphins and white-beaked dolphins (Lagenorhynchus
albirostris) collected during a 2019 photo-id survey off the
coast of Northumberland, UK.

To test this generalisability, the model trained using the
Zanzibar data was evaluated on the whole above water set of
NDD without re-training or fine-tuning. Results for this can be
seen in Table II (Bottom). Interestingly, the model achieves a
higher mAP at the given thresholds on NDD than the Zanzibar
dataset on which it was trained. This is hypothesised to be
due to the lack of other objects in NDD in comparison to the
Zanzibar dataset. For example, some images in the Zanzibar

Figure 6. The global range of pixel intensities for each RGB colour channel
of images in the Zanzibar dataset, split by pixel classification.

dataset contain vessels as well as humans as a result of high
levels of eco-tourism operating in the survey area [33]. This is
not the case for the data collection area of NDD, which may
lead to a reduction in the false positive rate of the model when
evaluated on this dataset. Figure 5 (Right) shows the effect
of eco-tourism on the false positive rate, where the model
believes a section of the boat’s hull and the leg of a human
to be a dolphin RoI. Regardless, this evaluation presents
evidence that the model is robust enough to deal with data
from a different geographic area, time, and cetacean species
without the need for re-training or fine-tuning.

B. Colour Thresholding Mask Components

Experimentation was undertaken to determine the optimal
colour threshold value for mask post-processing. Histograms
of the RGB colour channel pixel intensities for each object
classification in the Zanzibar data were recorded, giving a total
of six histograms per image. The histogram groups were then
combined to give six global pixel intensity distributions, which
can be seen in Figure 6. Regardless of colour channel, there is
a near inversion in the distribution of pixel intensities between
those detected as dolphin and those not, strongly suggesting
it is possible to determine if a component is erroneous based
on its colour composition.

Globally, for all masks detected as dolphin 90% of the
RGB pixels are below intensities (148, 148, 159). As noise
components in the mask are often areas of water or splash,
these will be much lighter in composition than cetaceans,
and thus can be removed from the mask with confidence
by checking the percentage of pixels in the mask component
below the threshold.

It was found however that using a 90% threshold when
checking mask components at an individual image level was
too restrictive, sometimes rejecting valid detections which
may have been over-exposed due to lighting conditions. As
such, whilst the colour threshold was kept the same, the
percentage check was reduced to 50% – providing enough



Figure 7. Example post-processed images from NDD used to train the SNN
for the task of few-shot, fine-grain most likely photo-id catalogue matching.
The class label is displayed above each image. Note the low inter-class and
high intra-class differences between non-noise classes, such as between
examples of class 11.
leeway for over-exposed but valid detections to be kept whilst
still rejecting a large portion of erroneous ones. This was
confirmed with further threshold testing on the NDD dataset.

C. Most Likely Catalogue Matching

Top-N Accuracy The SNN model was evaluated against its
ability to clearly differentiate between classes in the latent
space. To test this, an SNN was trained on the above water
set of the NDD dataset after detection and post-processing.

Due to sparse amounts of example images for some indi-
viduals, additional photo-id data was provided from catalogues
collected in waters around Eastern Scotland maintained by the
University of Aberdeen and the University of St. Andrews Sea
Mammal Research Unit [3, 4]. Due to the large home range of
cetaceans, a 23 individual overlap between this data and the
NDD dataset was determined. As a result, 1827 additional
images of the overlapping individuals were processed and
included in the NDD dataset used to train the SNN. This
consisted of 2626 images representing 44 classes including
noise. Non-noise classes (median = 22) contain low inter-
class but high intra-class differences between them (example
images in Figure 7). This provides a difficult few-shot, fine-
grain dataset with which to evaluate the SNN’s clustering
ability. The dataset was divided using an 80-20 train-test split.

The SNN’s backbone followed the structure outlined by
Vetrova et al. [27], with triplets selected via online semi-hard
triplet mining. Hyperparameter optimisation of the SNN was
performed using Optuna [34]. During the search, the following
possibilities were examined: (1) Learning Rate ∈ R ∩ [1 ×
10−6, 1 × 10−3], log uniform. (2) Dropout ∈ R ∩ [0.1, 0.7],
log uniform. (3) Kernel Size ∈ {5, 8}. (4) Triplet Loss Margin
∈ R∩ [0.1, 1.0]. (5) Weight Decay ∈ R∩ [1×10−6, 1×10−1].
(6) Optimiser ∈ {SGD,Adam}. (7) Step Size ∈ Z ∩ [5, 10].
(8) γ ∈ R ∩ [0.1, 0.7], log uniform. (9) Embedding Size
∈ Z ∩ [16, 128].

Optimisation of the number of network blocks was also
examined. Each block consisted of a Convolutional layer and
a MaxPool layer (stride = 2), separated by a ReLU layer and
a Dropout layer. During searching, the number of blocks was
treated as a hyperparameter optimising for an int between
1 and 5 blocks. The initial Convolutional layer size was also

Table III
EFFECT OF DIFFERENT DATA AUGMENTATION STRATEGIES ON SNN

TOP-N ACCURACY.

NDD Naples
Data Augmentation

Strategy Top-10 Top-5 Top-1 Top-10 Top-5 Top-1

Colour Jitter 76.83 61.18 38.82 96.25 91.25 70.00
Perspective Shift 73.58 51.22 23.17 96.25 91.25 73.75

Both 78.46 61.18 40.04 97.50 88.75 63.75
None 83.13 68.90 40.85 92.50 85.00 72.50

tuned, searching for an optimal int value between 16 and
100. Subsequent layers were double the size of the previous.

The best performing hyperparameters were found to be an
initial learning rate of 7.25 × 10−6 with weight decay of
0.043 optimised using Adam, a kernel size of 6, triplet loss
margin of 0.8, γ of 0.012, dropout of 0.17, and an embedding
size of 106 (giving a 106-dimensional latent space for most
likely matching). The optimal number of network blocks was
determined as 2, with an initial Convolutional layer size of 59.

Various data augmentation strategies were examined. These
were: (1) Colour Jitter: randomly perturb the input images’
brightness by a factor between 0.8 and 1.2, contrast by a factor
between 0.8 and 1.2, saturation by a factor between 0.9 and
1.1, and hue by a factor between -0.1 and 0.1. (2) Perspective
Shift: randomly distort the input image’s perspective by a fac-
tor of 0.5. (3) Both: perform both Colour Jitter and Perspective
Shift. (4) None: no augmentations.

Prototypes were generated based on the median of the
embeddings generated for each class example. Test images
were then processed by the SNN and their embedding plotted
into the latent space, which was compared using Euclidean
distance against the prototypes to generate a list of most likely
matches utilised for top-N accuracy evaluation.

Results for the NDD dataset can be seen in Table III
(Left). Best model performance was achieved without any
data augmentation. These results confirm an SNN trained on
automatically processed photo-id catalogue data is capable of
accurately providing a list of most likely matches to cetacean
researchers, even when trained only using a relatively small
number of class examples.
Generalisability The generalisability of the SNN approach to
most likely catalogue matching was evaluated using a photo-id
catalogue subset provided by the Chicago Zoological Society’s
Sarasota Dolphin Research Program. The subset consisted of
250 images of 23 individual common bottlenose dolphins
captured in the waters around Naples, FL, USA [35]. Images
were passed through the detector, post-processed, and the
generated RoIs used to create a dataset capable of training
an SNN for most likely catalogue matching. For consistency,
the same architecture and hyperparameters were utilised as
with the NDD dataset.

Results for this dataset can be seen in Table III (Right).
Unlike training on the NDD data where best results were
achieved without any augmentation, here the results are more
mixed. Whilst the best top-10 results are obtained using both
Colour Jitter and Perspective Shift augmentations, the best
top-5 results were obtained using only one strategy. Using



Figure 8. Example data used to examine the effect of retained background on
most likely catalogue matching. Left: Bounding box detection containing both
a dorsal fin and background. Centre: Corresponding dorsal fin mask. Right:
Corresponding background mask.

Perspective Shift only provided the best top-1 accuracy. Whilst
this suggests that data augmentation strategy is catalogue
dependent, the results confirm that accurate individual level
most likely catalogue matching of cetaceans can be performed
using SNNs trained on automatically pre-processed data.

D. Effect of Background on Most Likely Catalogue Matching

Of the four works in Table I which perform dorsal fin
detection and downstream individual identification, only half
remove all background beforehand. To examine the effect
that background removal has on downstream identification,
an SNN was trained using the NDD dataset processed into
bounding box class examples. Due to the free roaming nature
of the individuals, those in the NDD dataset were often pho-
tographed only during a single encounter leading to data with
small intra-class but high inter-class background variation.

All variables, except the presence of background, were kept
consistent with those used when training the best performing
SNN on masked data, including model architecture, hyperpa-
rameters, and data augmentation strategy. Data was generated
using the same Mask R-CNN detector as for previous experi-
ments, modified to output bounding boxes rather than masks.

Analysis of the Euclidean distances between bounding
boxed dorsal fins and corresponding fin and background masks
show embedding generation is likely to be influenced more
by features in the background than the fin. For example, the
Euclidean distance between the bounding box data in Figure 8
(Left) and its corresponding dorsal fin mask (Centre) is 0.36,
compared to a distance of 0.30 between the bounding box and
the background mask (Right) and a mean distance of 0.97
between the bounding box and generated class prototypes.
This suggests the SNN is performing likely matching based
on features found in the background rather than on the dorsal
fins, reflected in increased model performance whereby using
bounding box data to train the SNN sees an increase of 22.94%
top-1, 15.58% top-5, and 6.53% top-10 accuracies over using
masked data.

By removing all background, the masked SNN is prevented
from utilising environmental conditions to aid matching. This
finding raises important questions regarding the performance
of photo-id aids which do not remove all background before
performing matching. If the photo-id catalogue utilised for
system evaluation has been collected over a small temporal
scale, then results obtained in this experiment suggest that
performance may be artificially inflated by the retention of
feature heavy background. Further studies will examine the
effect of background retention on most likely matching to

catalogues gathered over a large temporal scale, as well as
the use of out of distribution negative samples [36] to train
networks robust to the issue of consistent background.

V. LIMITATIONS

One limitation of the system currently is the need to re-
train the SNN for each photo-id catalogue. As a result, initial
manual curation must be performed before the methodology
can be applied. The feasibility of a more general SNN capable
of catalogue-agnostic photo-id will be examined in future
work. This limitation does not apply to the Mask R-CNN
however, which has been found not to require re-training when
applied to a new photo-id catalogue regardless of changes in
species, geography, or time.

Further, whilst the system has been shown to be robust
enough to deal with multiple cetacean species, these have all
been dolphins. It is not clear how well the pipeline would
perform with cetacean species such as whales or porpoises, or
with body parts like flukes. Further studies with catalogues of
other species will be explored.

VI. CONCLUSION

This work examines the use of a pipeline of computer vision
models to aid researchers through the curation of photo-id
data. The system is capable of operating on raw field images,
no pre-processing required, thanks to the use of a dorsal fin
detection model. Evaluation of this model shows it is capable
of achieving high mAP on photo-id catalogues containing
data from different species, collected in different geographical
locations, and at different times to the catalogue on which it
is trained. Drops in performance are observed when operating
over data containing examples of eco-tourism, and further
work will examine how best to mitigate this.

Detections are outputted as pixel wise masks, post-
processed to improve the chance of catalogue matching. Ex-
perimentation to locate the optimal colour threshold confirms
erroneous detections can be filtered out with confidence whilst
over-exposed fins are retained.

Outputs are passed to an SNN, trained for the task of
most likely catalogue matching, to generate an embedding
which is plotted into a latent space. Embeddings are com-
pared to class prototypes using Euclidean distance to generate
matches. Evaluation of SNNs trained on processed photo-id
data suggests that they are a viable approach to the problem
of most likely catalogue matching, and are capable of flagging
detections which may be of previously uncatalogued indi-
viduals. Experimental results studying the effect of retained
background suggest this can negatively impact embedding
generation, especially for catalogues collected over a small
temporal scale. The use of detection masks negates this effect,
preventing embedding generation interference.
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