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Abstract—Soft error, namely silent corruption of signal or
datum in a computer system, cannot be caverlierly ignored as
compute and communication density grow exponentially. Soft
error detection has been studied in the context of enterprise
computing, high-performance computing and more recently in
convolutional neural networks related to autonomous driving.

Deep learning recommendation systems (DLRMs) have by
now become ubiquitous and serve billions of users per day.
Nevertheless, DLRM-specific soft error detection methods are
hitherto missing. To fill the gap, this paper presents the first
set of soft-error detection methods for low-precision quantized-
arithmetic operators in DLRM including general matrix multi-
plication (GEMM) and EmbeddingBag. A practical method must
detect error and do so with low overhead lest reduced inference
speed degrades user experience. Exploiting the characteristics
of both quantized arithmetic and the operators, we achieved
more than 95% detection accuracy for GEMM with an overhead
below 20%. For EmbeddingBag, we achieved 99% effectiveness in
significant-bit-flips detection with less than 10% of false positives,
while keeping overhead below 26%.

I. INTRODUCTION

Hardware faults can be separated into two categories: fail-
stop and fail-continue. Fail-stop faults crash the executing
process, thus detectable by the operating system, and can be
handled by well-studied checkpoint-and-restart techniques [1].
In contrast, fail-continue faults silently corrupt the results of an
execution process without interrupting it. The induced errors
are usually called soft errors [2] or silent data corruptions and
are the focus of this paper.

Soft error is much more prevalent than one may realize:
even experienced practitioners grossly underestimate their
frequency of occurrences [3]. The supercomputer Jaguar, for
example, suffers a double-bit memory error once every 24
hours [4]. For another example, a recent research study taking
more than 18 months [5] has confirmed the large-scale infras-
tructure at Facebook is experiencing silent data corruptions due
to device characteristics inside hundreds of Central Processing
Units (CPUs). The situation is only worsening: not only
cosmic radiation triggers soft error but simple down-to-earth
factors such as temperature and power consumption can also
be the culprit [6]. Further exacerbating the situation is the
rapid emergence of deep-learning ASIC accelerators which
are prone to have higher error rates than general-purpose
computing hardware do [7].

Enterprise computing is the first to employ soft error detec-
tion, followed by the HPC community [8]–[12], and most re-
cently, error detection methods are explored for convolutional
neural networks (CNNs) deployed in autonomous driving [13].
While deep learning recommendation systems (DLRMs) may
not be critical to personal safety, their computational integrity
is crucial to maintain good experience of billions of users per
day. A deployable soft-error detection method for DLRMs
must only incur low performance overhead lest the goal of
maintaining user experience be self defeated, making algo-
rithmic based fault tolerant method (ABFT) [14] the prime
candidate. However, to the best of our knowledge, there is no
previous ABFT work targeting DLRMs which typically com-
pute in low-precision quantized arithmetic (details in III-A).

The two workhorse operators of DLRM are general matrix-
matrix multiplication (GEMM) and EmbeddingBag (EB)
which together account for over 70% of a DLRM’s compute
latency. Although ABFT for GEMM has been well studied in
the literature, their straightforward adaption to DRLM results
in high overhead due to DLRM’s peculiar matrix sizes and
shapes and its use of quantized arithmetic. In addition, EB is
an operator not present in HPC or even in convolutional neural
network. This paper considers error detection by ABFT for
these two operators. We do not focus on error resilience as
that is relatively simple for recommendation systems: once an
error is detected a recommendation score can be recomputed
easily assuming error striking twice is very rare.

The paper makes the following contributions on efficient
soft-error detection for the key building blocks of DLRM in
the quantized arithmetic domain:

• We propose the first ABFT implementation for quantized
GEMM. By carefully customizing ABFT for GEMM, we
optimize the performance and analyze its error detection
ability;

• We propose the first ABFT implementation for EB, which
is especially important for recommendation models.

In the following, we first briefly review related works in
Section II, followed by Section III which explains the low-
precision arithmetic used in many industrial machine learning
models including DLRMs, and its two main operators that
we focus on. Sections IV and V present our two ABFT
algorithms and implementation considerations. Section VI
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presents our experiments to support our statements on the
proposed algorithms’ performance and efficacy. Section VII
makes some concluding remarks.

II. RELATED WORK

Soft error resiliency in deep learning models have been at-
tracting more and more attention in recent years. Redundancy
based protections are the most general and reliable solutions,
where redundancy can be done at the hardware or software
level. Hardware level redundancy is usually used in safety-
critical task such as self-driving [15]. Software level redun-
dancy can be done in the same hardware but with duplicated or
tripled program or instruction executions [16]. Error detection
by redundancy incurs at least 100% in overhead.

ABFT is a low-overhead error detection method. Though
less general than using redundancy, it is shown to be effective
on convolutional neural networks (CNN) [13], [17], [18].
These ABFT works either target convolution specifically or
rely on extra-precision intermediate computation. While one
can adapt to some extent these work to GEMM, we aim
to eliminate the use of extra precision to further reduce
overhead and devise ABFT for GEMM that is DLRM-specific.
Furthermore, the EB operator is peculiar to DLRMs and
hitherto unexplored.

III. ARITHMETIC AND OPERATORS

A. Quantized Arithmetic

Deep learning intrinsically relies on computing with real
numbers. If the representation and computation of these real
numbers can use, say, 8-bit integers instead of 32-bit floating-
point numbers, significant memory saving and performance
boost can be obtained. Arithmetic in integer to approxi-
mate floating-point computation is commonly called quan-
tized arithmetic [19]. One first transforms linearly an interval
[xmin, xmax] of interest to the domain of the integer arithmetic
in question. For example, [0, 255] for 8-bit unsigned integer:
Determine floating-point numbers α, β so that (x − β)/α ∈
[0, 255] for all x ∈ [xmin, xmax]. The resulting value is then
rounded to an integer, yielding xI , hence x ≈ αxI + β.
In quantized arithmetic, instead of multiplying two floating-
point matrices A × B of dimension m × k and k × n, the
matrices are represented by (AI , αA, βA) and (BI , αB , βB)
and the corresponding matrix product is realized as integer
matrix product:

AB ≈ (αAAI + βA~em~e
T
k )(αBBI + βB~ek~e

T
n )

= αAαBAIBI+

αAβB(AI~ek)~e
T
n + αBβA~em(~eTkBI) + kβAβB~em~e

T
n

(1)

where ~e` is the dimension-` vector of all ones. Note all the
terms following AIBI are rank-1 matrices.

B. Low-precision GEMM in DLRM

Industrial implementations of DLRMs exploiting quantized
arithmetic typically use specialized high-performance libraries
such as FBGEMM [20]. As shown in Equation 1, the dominant
operation is the integer matrix product Ctemp = AIBI ,
consisting of 2mnk operations. This Ctemp, a 32-bit integer
matrix, together with the other rank-1 matrices and miscel-
laneous scale factors are than combined in a requantization
process producing the C ≈ AB where C is represented by
the tuple (CI , αC , βC). We show the workflow in Figure 1.
In the rest of the paper, when we refer to the matrices using
A, B, C, they are corresponded to integer matrices AI , BI ,
Ctemp for notation simplicity.

×
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Fig. 1. Low-precision GEMM in deep learning context

C. EmbeddingBag and its low-precision variant

Embedding is a technique that maps discrete categorical
data into a d-dimensional Euclidean spaces of real numbers.
It is widely used in many recommendation systems [21]–
[23]. An embedding table contains a number of d-length row
vectors each corresponding to a categorical data and algebraic
operations corresponds to combination of these categories.
EmbeddingBag (EB)1 is one of the most frequently called
operators in these embedding based recommendation systems.
An EB with batch size of one simply picks out the set of
rows given by an index set I from an embedding table and
sum them up, illustrated in Figure 2. It is also called one
embedding lookup. Mathematically, given I and an embedding
table T , EB returns ~R =

∑
i∈I

~ebi, where ~ebi is the i-th row of
the embedding table T . Note that for notational convenience
we use ~r here to denote a row vector instead of the usual
convention of a column vector.

Industrial scale DLRMs often have many embedding tables
totaling hundred billions of parameters. Hence instead of
using floating-point to represent these real numbers, quantized
arithmetic is often used to reduce the DLRMs’ memory
footprints [24]. Specifically, each d-length embedding row
at index i is represented by d-length vector of short (8
bits for example) integers ~ebi and one pair of floating-point
quantization parameter αi, βi. The corresponding EB operator
must then compute ~R =

∑
i∈I αi

~ebi + βi~ed where ~ed is a
d-length row vector of all ones.

As EB with batch size of one returns one row vector, EB
with batch size n returns n vectors, each corresponding to

1https://pytorch.org/docs/stable/generated/torch.nn.EmbeddingBag.html
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Fig. 2. Illustration of one embedding lookup in the EmbeddingBag operator
with batch size of one

sums of relevantly selected embedding rows from a particular
embedding table:

R =


~R1

~R2

...
~Rn

 (2)

IV. OPTIMIZED ABFT FOR GEMM IN DLRMS

The bulk of the computation in a quantized matrix product
(Equation 1) is the usual matrix product of two integer
matrices of the form C = AB (dropping the subscripts of
I) where A and B are matrices of dimensions m-by-k and k-
by-n, respectively. Our aim is to detect soft error that happen
during this computation after both A and B have been loaded
into memory.

We start with this common ABFT method: One encodes A
into an augmented matrix A′ by appending a row vector SA

where SA[j] =
∑m−1

i=0 A[i][j]. Similarly, B is encoded into an
augmented matrix B′ with an extra column vector SB where
SB [i] =

∑n−1
j=0 B[i][j]. Figure 3 illustrates the augmented

matrices A′ and B′ and their product C ′. Mathematically, the

C A B

SA SBSAB

ASB

SASB

= ×
m

n

m

nk

k

Fig. 3. Illustration of ABFT for GEMM

upper-left m-by-n block of C ′ is C = AB, first n columns
of C ′[m, :] is SAB, first m rows of C ′[:, n] is SAB, and
C ′[m,n] = SASB . Simple algebraic derivations show that a
correctly computed C ′ satisfies the relationships

∀column j ∈ [0, n− 1], C ′[m][j] =

m−1∑
i=0

C ′[i][j] (3a)

∀row i ∈ [0,m− 1], C ′[i][n] =

n−1∑
j=0

C ′[i][j] (3b)

Equality checks of these equations on the computed C ′ form
the basis of ABFT: If equality fails to hold at exactly one
row i for Equation 3b together with exactly one column j
for Equation 3a, then the value at the computed C ′[i][j] is
faulty. Furthermore, a corrupted C ′[i][j] – revealed as a single
violation at row i and at column j – can be corrected using
the equation

correct C ′[i][j] = C ′[m][j]−
∑
p 6=i

C ′[p][j],

or
correct C ′[i][j] = C ′[i][n]−

∑
p 6=j

C ′[i][p].

Straightforward as this common ABFT method for GEMM is,
adopting them with low enough overhead that does not impede
DLRM user experience requires a number of techniques that
we now discuss.

A. Performance optimizations

1) Encoding only matrix B: Existing work of ABFT for
GEMM considers soft error detection and single error cor-
rection. We stated previously (Section I) that we aim solely
at error detection. Thus, we just need to encode A or B,
but not both. The question is which matrix to encode. To
better understand this question, we first derive the theoretical
error detection overheads with encoding A or encoding B.
Remember that the error detection includes basically 3 stages:
encode matrix A (or B); do GEMM with encoded A (or B);
verify result matrix by checking Equation 3. The overheads
are:

overhead if encoding A:
mk + 2nk +mn

2mnk
=

1

2n
+

1

m
+

1

2k

overhead if encoding B:
kn+ 2mk +mn

2mnk
=

1

2m
+

1

n
+

1

2k

We follow the convention in PyTorch where A corresponds
to activations and B the weight parameters of the neural
network. Common in DLRMs, m is relatively much smaller
than n or k. According to the theoretical overhead equation,
encoding matrix B will have smaller overheads than encoding
A.

Another fact also makes encoding B preferable in the
aspects of both performance and memory error detection
ability: B, being the trained weight matrix, stays still in the
memory for a much longer time. From the perspective of
performance overheads, the fact implies we can encode matrix
B once for multiple GEMM operations thus amortizes the
encoding overheads. From the perspective of memory error
detection ability, the fact implies matrix B have much higher
chances to experience memory errors than matrix A. (Recall
that encoding matrix A will not detect memory errors in B

3



while encoding matrix B will do. In order to cover the errors
in B, we choose to encode B.) In conclusion, we encode B
instead of A so as to minimize ABFT performance overheads
while maximizing detection ability.

2) Keeping encoded column in low precision: The encoded
row sum vector for matrix B seems to require 32-bit integer
as value container to ensure correctness. This implies a high
overhead because ABFT work has to be done in 32-bit
integers while the original GEMM work is done in 8-bit
integers. Computation with 32-bit integers can be 2 to 4 times
slower than that with 8-bit. To reduce the overheads, we use
modulo operations to map the 32-bit row sums into 8-bit. The
Equations 3 are proved to still hold under the same modulus
[14]. Using modulo operations in the ABFT context is not
novel. But we exploit them for better performance rather than
to bypass limitation of computer word length [14].

3) Keeping BLAS level-3 updating: A straightforward im-
plementation of ABFT for GEMM (encoding only B) will be:
1 calculate row sums of B and store the result (SB) in a

separate vector; 2 compute C = A∗B; 3 compute A∗SB ;
4 check if row sums of C equal A∗SB . This implementation

does not need to modify the normal data structure of B to
accommodate an extra column, but results in high performance
overhead. This is because Step 3 is a matrix-vector product, a
BLAS (Basic Linear Algebra Subprograms) level 2 operation.
An alternative implementation that relies BLAS level 3 opera-
tions can be: 1 allocate new memory for encoded matrix B′

and new memory for C ′; 2 do GEMM between A and B′

and store result in C ′; 3 check Equation 3; 4 copy former
m rows and n columns of C ′ back into C. The drawback of
this implementation is its high memory overhead.

We found a way to implement ABFT for low-precision
GEMMs in BLAS level 3 operations and with small memory
overhead. This is possible because of two facts: 1. matrix B is
packed into blocks before being sent to the efficient GEMM
kernel; 2. the C matrix in 32-bit integers are intermediate result
(as shown in Figure 1 by Ctemp). The first fact means that we
can pack the original B and the separate vector storing row
sums together into blocks so that the blocks look like they are
from encoded B′ in contiguous memory space. The second
fact means that we can directly allocate one more column
for the intermediate result matrix than before. Notice we are
not increasing the number of columns of 8-bit result matrix.
We just need to modify the requantization procedure to let it
exclude the last column of the intermediate 32-bit matrix.

B. ABFT detection before requantization

One may ask if we can delay the checksum equality check
from examining Ctemp (Equation 3) to examining CI so as to
detect silent errors in requantization process. Unfortunately,
the answer is no. The main reason is that requantization
is not a linear operation, i.e., Q(a) + Q(b) 6= Q(a + b)
generally where Q is the requantization operator. Thus, our
linear encoding scheme cannot make equality hold in CI . Lack
of error detection for requantization process is not serious
considering that this process is less error prone as it only takes

around 2% of execution time for larger matrices and around
5% for smaller matrices.

C. Modulus selection and detection ability analysis

As we use modulo to keep the encoded column in low
precision to reduce ABFT overhead, the downside is the
weakened error detection ability. In this section, we want to
discuss how to choose the modulus wisely so that the detection
ability degradation is minimized. We assume elements in
8-bit unsigned integer matrix A and 8-bit signed integer
matrix B are both random numbers in the uniform distribution
independently. We also assume the there are no errors for the
encoded column considering its much smaller memory usage
and operations numbers compared to the original computation.
First, let us look at the situations when the modulus, mod, will
fail to detect errors. For some rows in the result matrix C, we
denote its row sum (excluding the encoded checksum column)
by rsum without any soft error. If soft errors happen and
corrupt that row, we denote its row sum by rsum′. Then there
is a fact that when the absolute value of difference between
rsum′ and rsum is divisible by mod, the soft error will not
be detected. Also, that is only the case when the errors are
not detected. More formally, soft errors corrupting that row
are not detected if and only if |rsum′ − rsum|%mod = 0.

We consider two fault models. The first commonly used
fault model is the random single-bit flip model which means
a random bit of the data in the memory or register flips from
0 to 1 or 1 to 0. The intuition to this model is that |rsum′ −
rsum| will be powers of 2. That is, any odd modulus can
detect all errors in this model. The second model is random
data fluctuation which means the correct value of the data is
changed to some arbitrary value representable in its data type.
For example, a 32-bit signed integer data can be changed to
any value in the range of [−231, 231−1] with equal likelihood.
The intuition to this model is that the larger the modulus is,
the smaller number of its multiples is (i. e., the better detection
ability is). Those two intuitions give us a good modulus which
is 127 for matrix B as it is the biggest odd number in the
range of B. In the rest of this section, we then use 127 as the
modulus to simplify the calculation of detection ability.

We quantify the detection ability in terms of probability.
Specifically, the detection ability is measured by the proba-
bility our modulus based error detection method can detect
error(s) when the result matrix C is indeed corrupted. This
metric is also known as the true positive rate.

1) Memory error in 8-bit matrix B: An error in matrix
B can propagate to corrupt a whole column of matrix C.
Specifically, suppose the corruption happens at B[i][j] and
result in a difference of d. The j-th column of result matrix
will be corrupted. Since B[i][j] will be multiplied by A[p][i]
for all p in [0,m − 1], the difference of the corresponding
row sums in the result matrix will be d ∗ A[p][i]. Recall that
ABFT cannot detect soft errors if |d ∗A[p][i]| is a multiple of
127. Notice that 127 is a prime number. By Euclid’s lemma1,

1If a prime number a divides the product, b ∗ c, a divides b or c.
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|d ∗ A[p][i]| is multiple of 127 if and only if |d| or |A[p][i]|
is a multiple of 127. In the first fault model (random bit-flip
at B[i][j]), |d| could be 2l where l ∈ [0, 7]. |d ∗ A[p][i]| is
a multiple of 127 if and only if |A[p][i]| equals 127, 254,
or 0 since matrix A is in 8-bit unsigned integers. i. e., the
p-th row will not detect the soft error in probability of 3

256
assuming A[p][i] randomly ranges in [0, 255]. Since all rows
will be checked by ABFT, the probability that the error is not
detected by all rows will be ( 3

256 )
m. Thus, the error is detected

in the probability of 1− ( 3
256 )

m ≥ 98.83%.
In the second fault model, |d| can be random in the range

of [1, 255]. |d ∗ A[p][i]| is multiple of 127 if and only if |d|
equals 127 or A[p][i] equals 127, 254, or 0. That is, the p-th
row will not detect the soft error in probability of

1 ∗ 256 + 255 ∗ 3− 3

255 ∗ 128 =
1018

32640

assuming A[p][i] is uniformly distributed in [0, 255]. Similar to
the above analysis, the probability that the error is not detected
by all rows will be ( 1018

32640 )
m. Thus, the error is detected with

probability 1− ( 1018
32640 )

m ≥ 96.89%.
2) Memory error in 32-bit intermediate result matrix C

(Ctemp): In the first fault model, a random bit-flip in C implies
the absolute value of difference of its corrupted row sum from
its expected value to be 2i for i ∈ [0, 31]. Thus, the error will
be detected with probability 100% since 127 cannot divide
any 2i for i ∈ [0, 31].

In the second fault model, suppose a random element c in
C is changed to another arbitrary value c′. Then the difference
in absolute value of its corrupted row sum and expected one is
also |c′−c|. Think about c is located somewhere in an interval
of [−231, 231 − 1]. We can conclude the range of |c′ − c| is
(0, 231−1−c] or (0, c+231] where 231−1−c is taken when
c′ = 231−1 and c+231 is taken when c′ = −231. Denote the
number of multiples of mod in the range of (0, a] by f(a). We
can prove the following property, f(a)+f(b) ≤ f(a+b). The
key is that if mod divides a and b, f(a) + f(b) = f(a+ b).

f(a) + f(b) = f(a− a%mod) + f(b− b%mod)
= f(a− a%mod+ b− b%mod)
= f(a+ b− (a%mod+ b%mod))

≤ f(a+ b)

Thus, number of multiples of mod in the range of (0, 231−
1− c] and (0, c+231] is less than f(231− 1− c+ c+231) =

f(231−1) = 231−1
mod . Thus the detection probability of an error

in this model will be at least 1− 1
mod = 99.21%.

3) Memory error in matrix A and computational error:
As we mentioned, matrix B takes much larger memory space
and resides in the memory much longer than matrix A. To
keep ABFT overhead low, we only encode matrix B and this
means we do not provide memory error detection for matrix
A. A computational soft error will corrupt the intermediate
result of A[i][k] ∗ B[k][j]. Thus it has the same behaviour as
memory errors do in the 32-bit result matrix, C where we
discussed in Section IV-C2.

Algorithm 1 ABFT for low-precision GEMM
Input: 8-bit integer matrix A, B; dimension sizes m, n, k
Output: 32-bit integer matrix Ctemp; number of corrupted
rows

1: mod ← 127
2: for i from 0 to k − 1 do
3: rowSum[i]←∑n−1

j=0 B[i][j]
4: rowSum[i] % = mod
5: end for
6: packedEncodedB ← pack(B, rowSum[])
7: allocate Ctemp[m][n+ 1]
8: Ctemp[][]← A ∗ packedEncodedB
9: errCount← 0

10: for i from 0 to m− 1 do
11: tSum←∑n−1

j=0 Ctemp[i][j]
12: if tSum%mod 6= Ctemp[i][n]%mod then
13: errCount++
14: end if
15: end for
16: return Ctemp; errCount

The complete look of our customized ABFT for low-
precision GEMM is presented in Algorithm 1.

V. ABFT FOR LOW-PRECISION EMBEDDINGBAG

A. ABFT for EB

Based on the EB operator we introduced in Section III-C,
we propose the ABFT technique for EB. To our best knowl-
edge, this is the first ABFT technique for EB operator. Recall
that we use d to denote the embedding row dimension. The
method is illustrated in Figure 4. ~CT is a column vector

i1
i2

im

…

R

T CT

C

Selected indices I

Fig. 4. Illustration of ABFT for EB with batch size one

storing all the row sums of the embedding table. If we sum the
elements of ~CT at the indices of I, it is easy to find the result,
C, will be equal to the sum of all elements in ~R. Specifically,
the following equality holds. ABFT will check if this equality
holds to detect soft errors.

d−1∑
j=0

~R[j] = C =
∑
i∈I

~CT [i] (4)
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If the batch size is more than one, we just apply the equality
check for all EBs in the batch.

B. Adaption to low-precision EB

Recall the low-precision EB variant we introduced in
Section III-C. Each embedding row vector in low-precision
integers will be multiplied by a scale factor αi and added
by a bias value βi. Then equation 4 should also be updated to
accommodate the scale factor and bias as shown in Equation 5.

d−1∑
j=0

~R[j] =
∑
i∈I

αi ∗ ~CT [i] + d ∗ βi (5)

The correctness of the above equation is shown as following.
Recall that ~ed is a d-length vector of all ones.

d−1∑
j=0

~R[j] =

d−1∑
j=0

(
∑
i∈I

(αi ∗ ~ebi[j] + βi ∗ ~ed[j]))

=
∑
i∈I

(

d−1∑
j=0

(αi ∗ ~ebi[j] + βi ∗ ~ed[j]))

=
∑
i∈I

(αi ∗
d−1∑
j=0

~ebi[j] +

d−1∑
j=0

βi)

=
∑
i∈I

αi ∗ ~CT [i] + d ∗ βi

Notice that instead of storing the scaled and bias row sums
in 32-bit float type, we still store the row sums in 32-bit
integers without being scaled or biased in ~CT . This way we
can minimize the accumulation of round off errors when we
sum up the elements in ~CT . The details of ABFT for low-
precision EB is presented in Algorithm 2.

Algorithm 2 ABFT for low-precision EB
Input: embedding table T ; length of embedding vector, d;
scale factor array, α[]; bias array, β[]; set of selected indices,
I; pre-computed row sums of T , CT []
Output: EB result, R[]; err

1: R[]← EmbeddingBag(T , d, α[], β[], I)
2: RSum←∑d−1

j=0 R[j]
3: CSum←∑

i∈I (α[i] ∗ CT [i] + d ∗ β[i])
4: err ← “False”
5: if |RSum− CSum| > roundOffErrorBound then
6: err ← “True”
7: end if
8: return R[]; err

C. Overhead analysis

Denote the number of selected indices by m and the length
of the embedding vector by d. Notice that in Algorithm 2, the
row sums of embedding table is pre-computed. This can be
done because once the embedding table is trained, it will stay
unchanged like the weight matrix (matrix B) in FC layers.
Thus, we do not include the operations to calculate row sums

as the ABFT overhead. The number of operations in the
original EB without ABFT is 3md and extra operations for
ABFT is 3m + d. So the overhead in fraction is 1

d + 1
3m . In

terms of memory overhead, the 32-bit row sums will take 32
pd

more memory space where p is the number of bits (4 or 8) of
the low-precision integer in the embedding table.

D. Round off error bound

Unlike low precision GEMM where all calculations involve
only integer, EmbeddingBag operators have floating point
numbers where round off error can accumulate. We set a
bound to differentiate soft error from round off error in RSum
and CSum (as shown in line 5 of Algorithm 2). Setting
an appropriate bound is nontrivial [10] because too large a
bound will let lots of soft error escape from the detection and
too small means very high false positive rate. We choose a
relative bound 1E-5 for our EmbeddingBag operators. This is
a loose bound but its detection accuracy is good enough as
we will show later. Why we choose a loose bound is because
soft errors leading to small fluctuation of floating point results
usually does not have big impact to the final machine learning
inference [25].

VI. EVALUATION

In this section, we evaluate our proposed ABFT soft error
detection for low-precision GEMM and EmbeddingBag. The
solutions are evaluated in both error free case and erroneous
case. A good soft error detector should have two properties:
low performance overhead and low (or no) false positives in
error free case; great detection ability (or high true positives)
in erroneous case.

A. Performance overhead

1) ABFT for low-precision GEMM: Without any soft er-
rors, Figure 5 shows the the performance overhead of our
ABFT for low-precision GEMM with different input matrix
shapes. Notice that those shapes are frequently used in DLRM
and they are not square. We can see from the figure that the
ABFT overheads are under 20% for all the 28 shapes. Actually,
ABFT overheads are under 10% for many of the shapes (17
out of 28 shapes); under 5% for 7 of the shapes. Notice that
for the shape (m,n, k) of 1, 800, 3200, GEMM runs faster
than its unprotected version. We think the reason is for that
specific setting, adding one more column to matrix B makes
the cache performance better.

2) ABFT for low-precision EmbeddingBag: We test the
performance overheads of our proposed error detection method
(Algorithm 2) using quantized 8-bit integer embedding table.
We flush the cache since the embedding table is too large to
be hold in the cache in real world scenario. We tested both
regular sum and weighted sum with prefetching optimization
turned on and off. The specific parameters we use is listed
in Table I. The table columns are also known as embedding
dimensions. The average pooling size is the average number
of pooled embedding table rows by all EBs in a batch. For
example, suppose a batch of two EBs. The first one takes
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Fig. 5. Performance overhead of ABFT for low-precision GEMMs with different shapes (m,n, k)

3 rows from the table and the second takes 5. The average
pooling size will be 4.

TABLE I
EMBEDDING TABLE SIZE AND EXPERIMENTAL PARAMETERS FOR ABFT

EMBEDDINGBAG

table rows table columns average pooling size batch size
4,000,000 32 100 10
4,000,000 64 100 10
4,000,000 128 100 10
4,000,000 256 100 10

B. Experiments with simulated error

We evaluate the detection accuracy of our proposed detec-
tion with simulated errors at source code level. The simulated
errors are done by randomly selecting an element in the input
or output and flipping a random bit in that element.

1) ABFT for low-precision GEMM: We first inject a ran-
dom bit flip in the input matrix B after the checksum of B has
been calculated and repeat the experiments for each shape 100
times totalling 2800 samples. Then we do the random bit flip
injection to the 32-bit intermediate result matrix and conduct
another 2800 samples. The results are shown in table II. We
can see that the detection accuracy when matrix B is injected
with error is 2663

2800 = 95.11%. This is 3.72% less than the
theoretical estimation in Section IV-C1 but still very high. We
achieve 100% detection accuracy when the random bit flip
happens in matrix C and it is consistent with our analysis in
Section IV-C2. It is worth noting that we also conducted 2800
runs of error free experiments to validate our false positive rate
is zero since there is no round off error in integer operations.

2) ABFT for low-precision EmbeddingBag: We tested the
detection accuracy of our proposed solution with 8-bit integer
embedding table. For each run, we randomly choose an
element and flip a random bit in it. We repeated 400 runs with
injected errors and 400 runs without injected errors. Among
those 400 runs with errors, 200 of them are injected with bit
flips in the upper 4 significant bits and the other 200 are
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Fig. 6. Performance overheads of ABFT for low-precision EmbeddingBag
with different settings

injected with bit flips in the lower 4 insignificant bits. The
results are shown in Table III. We can see the detection rate
for significant 4 bits are pretty high at 99.5%. The detection
rate for insignificant 4 bits are dropped to 47%. The false
positive rate is 9.5%. As we can see from the results, our
bound is chosen to be loose so that we can have lower false
positive rates and the bad thing is that for an insignificant bit
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TABLE II
NUMBER OF DETECTED RUNS AND NOT DETECTED RUNS WITH

SIMULATED ERROR IN GEMM

error in B error in C no error
detected runs 2663 2800 0

not detected runs 137 0 2800
total 2800 2800 2800

TABLE III
NUMBER OF DETECTED RUNS AND NOT DETECTED RUNS WITH

SIMULATED ERROR IN EMBEDDINGBAG

high bits low bits no error
detected runs 199 94 38

not detected runs 1 106 362
total 200 200 400

flip, detection rate is not high.

VII. CONCLUSION AND FUTURE WORK

In this paper, we propose efficient algorithm-based soft error
detections for two important low-precision operators, GEMM
and EmbeddingBag, in deep learning recommendation models.
This is also the first work to benefit those deep learning
operators unlike others focusing on convolutional workloads.
By careful design and optimization, our proposed soft-error
detection can achieve greater than 95% in error detection
ability and introduces small overheads less than 26%.

A couple of directions we can continue to explore in the
future include GPU platform migration and optimization, de-
ployment to deep learning supercomputers to discover failure
prone nodes and exploration of efficient software level error
detection for other operations in DLRMs.
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