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Abstract—In this paper, we present a new scalable and adaptive
architecture for FL aggregation. First, we demonstrate how
traditional tree overlay based aggregation techniques (from P2P,
publish-subscribe and stream processing research) can help FL
aggregation scale, but are ineffective from a resource utilization
and cost standpoint. Next, we present the design and imple-
mentation of AdaFed, which uses serverless/cloud functions to
adaptively scale aggregation in a resource efficient and fault
tolerant manner. We describe how AdaFed enables FL aggrega-
tion to be dynamically deployed only when necessary, elastically
scaled to handle participant joins/leaves and is fault tolerant with
minimal effort required on the (aggregation) programmer side.
We also demonstrate that our prototype based on Ray [1] scales
to thousands of participants, and is able to achieve a > 90%
reduction in resource requirements and cost, with minimal impact
on aggregation latency.

Index Terms—federated learning, serverless, adaptive, aggre-
gation

I. INTRODUCTION

Federated Learning (FL) [2], [3] is a mechanism in which
multiple parties collaborate to build and train a joint machine
learning model typically under the coordination/supervision of
a central server or service provider (definition by Kairouz et.
al. [2], [3]). This central server is also called an aggregator.
FL is private by design, because parties retain their data
within their private devices/servers; never sharing said data
with either the aggregator or other parties. An FL job involves
parties performing local training on their data, sharing the
weights/gradients of their model (also called a model update)
with the aggregator, which aggregates the model updates of
all parties using a fusion algorithm. The use of centralized
aggregation is common in FL because of the ease in which
various machine learning models (neural networks, decision
trees, etc.) and optimization algorithms can be supported.

FL is typically deployed in two scenarios: cross-device and
cross-silo. In the cross-silo scenario, the number of parties is
small, but each party has extensive compute capabilities (with
stable access to electric power and/or equipped with hardware
accelerators) and large amounts of data. The parties have
reliable participation throughout the entire federated learning
training life-cycle, but are more susceptible to sensitive data
leakage. Examples include multiple hospitals collaborating to
train a tumor/COVID detection model on radiographs [5],
multiple banks collaborating to train a credit card fraud de-
tection model, etc. The cross-device scenario involves a large
number of parties (> 100), but each party has a small number
of data items, constrained compute capability, and limited
energy reserve (e.g., mobile phones or IoT devices). They
are highly unreliable/asynchronous and are expected to drop

and join frequently. Examples include a large organization
learning from data stored on employees’ devices and a device
manufacturer training a model from private data located on
millions of its devices (e.g., Google Gboard [4]).

Increasing adoption of FL has, in turn, increased the need
for FL-as-a-service offerings by public cloud providers, which
serve as a nexus for parties in an FL job and aggregate/fuse
model updates. Such FL aggregation services have to effec-
tively support multiple concurrent FL jobs, with each job
having tens to thousands of heterogeneous participants (mobile
phones, tablets, sensors, servers) from different organizations
and administrative domains. Our experience, in building and
operating the IBM Federated Learning (IBM FL) [6], [7] ser-
vice on our public and private clouds has led us to believe that
existing FL aggregation methods have performance, scalability
and resource efficiency challenges, primarily due to the use of
centralized aggregation.
Performance: Aggregators should not become a bottleneck
or a single point of failure in FL jobs. They should be able
to store incoming model updates without loss, and have low
latency – the time between the arrival of the last expected
model update and the completion of aggregation. In the case
of a cloud hosted FL aggregation service, said guarantees must
hold across all running FL jobs. Most existing FL platforms
(IBM FL [7], Webank FATE [8], NVIDIA NVFLARE [9])
are based on a client-server model with a single aggregator
per FL job deployed (as a virtual machine or container) in
datacenters waiting for model updates. Such platforms are able
to easily support multiple concurrent FL jobs, but performance
drops as the number of parties increases, especially in cross-
device settings. This is because aggregation throughput is
limited by the computational capacity of the largest VM
or container (memory and compute, and to a lesser extent,
network bandwidth).
Scalability: is considered in terms of the number of parties,
size of model updates, frequency of updates and (for an FL
service) number of concurrent FL jobs. FL platforms using a
single aggregator per job only support vertical scalability; non-
trivial design using data parallelism and connecting multiple
aggrgeators is necessary for horizontal scalability, especially
in cross-device settings. FL jobs involve several rounds, and
take an extended period of time, especially with intermittently
available parties. Party joins and dropouts are common; so
aggregation infrastructure must scale horizontally to support
this.
Resource Efficiency/Cost: While operating IBM FL and
from publicly available FL benchmarks like LEAF [10] and
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Tensorflow Federated [11], we have observed that training
at the party takes much longer compared to model update
fusion/aggregation, resulting in under-utilization and wastage
of computing resources dedicated to aggregation. This is a
significant problem even in cross-silo settings – active par-
ticipation is not guaranteed even in cross-silo settings due to
competition from other higher priority workloads and varia-
tions in data availability. It is further compounded in “cross-
device” deployments, where parties are highly intermittent and
do not have dedicated resources for training. In these scenarios,
the aggregator expects to hear from the parties eventually
(typically over a several hours or maybe once a day). Large-
scale FL jobs almost always involve intermittent parties – as
the number of parties increases, it is extremely hard to expect
that all of them participate at the same pace. This results in
aggregators having to wait for long periods of time for parties
to finish local training and send model updates.
Contributions: The core technical contribution of this paper
is the design, implementation and evaluation of a flexible
parameter aggregation mechanism for FL – AdaFed, which
has the following novel features:
• AdaFed reduces state in aggregators and treats aggrega-

tors as serverless functions. In many existing FL jobs,
every aggregator instance typically acts on a sequence of
inputs and produces a single output. State, if present, is
not local to the aggregator instance and may be shared by
all aggregators. Such state is best left in an external store,
and consequently aggregators can be completely stateless
and hence, serverless. AdaFed is therefore scalable both
with respect to participants – effective for cross-silo and
cross-device deployments, and with respect to geography
– single/hybrid cloud or multicloud.

• AdaFed leverages serverless technologies to deploy and
tear down aggregator instances dynamically in response
to participant model updates, thereby supporting both
intermittent and active participants effectively. There is
no reason to keep aggregators deployed all the time and
simply “awaiting input”.

• AdaFed is efficient, both in terms of resource utilization
with support for automatic elastic scaling, and in terms
of aggregation latency.

• AdaFed is reasonably expressive for programmers to eas-
ily implement scalable aggregation algorithms. AdaFed
is implemented using the popular Ray [1] distributed
computing platform, and can run arbitrary Python code
in aggregation functions, and use GPU accelerators if
necessary.

• Increased FL job reliability and fault tolerance by reduc-
ing state in aggregators, eliminating persistent network
connections between aggregators, and through dynamic
load balancing of participants.

• AdaFed supports widely used FL privacy preserving and
security mechanisms

II. BACKGROUND : FL AGGREGATION

Aggregator Side

Initial model m1

for r ∈ {1, 2, . . . , R} do
Sample a subset S(r) of participants
SEND m(r) to each i ∈ S(r)

RECV model update 4(r)
i from each i ∈ S(r)

Aggregate 4(r) ← 1
N

∑
i∈S(r) ni4(r)

i

m(r+1) ← OPTIMIZER(mr,−4(r), η(r))
end

Participant Side
RECV (m(r)) from aggregator
Local model x(r,1) ← m(r)

for k ∈ {1, 2, . . . , τ} do
Compute local stochastic gradient gi(x(r,k))
x(r,k+1) ← OPTIMIZER(xr,k,−gi(x(r,k)), η(r))

end
Compute local model update 4(r,l) ← x(r,τ) − x(r,1)
SEND 4(r,l) to aggregator

Algorithm 1: Generalized FedAVG [3]

An aggregator typically coordinates the entire FL job. The
parties, aided by the aggregator, agree on the model archi-
tecture (ResNet, EfficientNet, etc), optimizer to use (SGD,
Adam, AdaGrad, etc.) and hyperparameters to be used for the
FL job (batch size, learning rate, aggregation frequency etc.).
The aggregator is responsible for durably storing the global
model and keeping track of the FL job. We illustrate FL using
the most common algorithm used for neural networks and
gradient descent based machine learning models – FedAvg [3].
For FedAvg (Algorithm 1), the aggregator selects a random
subset S(r) ⊂ S of parties for every round r. The aggregator
initializes the global model m1 using the same process as if
the job is centralized (i.e, either randomly or from existing
pre-trained models). At each round, the aggregator transmits
the global model m(r) to S(r). Once a party receives m(r),
it uses m(r) to make τ training passes on its local dataset.
τ is the aggregation frequency. It then computes the local
gradient update after τ passes, 4(r,l), and transmits the same
to the aggregator. The aggregator in FedAvg then computes the
weighted average of all gradient updates – 1

N

∑
i∈S(r) ni4(r)

i

to compute the global gradient update 4(r) and update the
global model (for the next round) m(r+1). This process
proceeds for a set number R of rounds or until the aggregator
has determined that the model has converged. The term ni
in the weighted average is the number of training samples at
party i and N is the total number of training samples involved
in the round, i.e., N =

∑
i∈S(r) ni.

Associativity of Aggregation: Since the number of partic-
ipants typically varies between FL jobs, and within a job
(over time) as participants join and leave, horizontal scalability
of FL aggregation software is vital. Horizontally scalable
aggregation is only feasible if the aggregation operation is
associative – assuming ⊕ denotes the aggregation of model
updates (e.g., gradients) Ui, ⊕ is associative if U1 ⊕ U2 ⊕
U3 ⊕ U4 ≡ (U1 ⊕ U2) ⊕ (U3 ⊕ U4). Associativity is the



property that enables us to exploit data parallelism to partition
participants among aggregator instances, with each instance
responsible for handling updates from a subset of participants.
The outputs of these instances must be further aggregated. In
the case of FedAvg,

∑
i∈S(r) ni4(r)

i is associative because
addition is associative, and the most computationally intensive
because each4(r)

i involves millions of floating point numbers.
A common design pattern in parallel computing [15] is to use
tree-based or hierarchical aggregation in such scenarios, with a
tree topology connecting the aggregator instances. The output
of each aggregator goes to its parent for further aggregation.

III. ADAFED : DESIGN AND IMPLEMENTATION

LA1

IA1

LA2 LA3 LA4

IA2

RA

Participants

LEAF-Aggregators

Intermediate Aggregators

Master Aggregator

Model updates

Partially aggregated updates

Fig. 1. Hierarchical/Tree-based Aggregation

AdaFed, as its name suggests, adapts to the mechanics
of a specific FL job. When a job’s aggregation function is
associative, as it is in most FL jobs, AdaFed leverages data
parallelism to spawn several aggregation “entities/instances”
per FL job and arranges them in a tree based (hierarchi-
cal) overlay. Tree-based overlays are a common distributed
computing pattern in publish-subscribe [16] and stream pro-
cessing [17]. This enables aggregation to scale to support
thousands of parties. However, using “statically deployed”
(always on) overlays, while advantageous in high throughput
stream processing, is not suitable for FL.

Consequently, AdaFed has a programming model whose
goal is to reduce state in aggregators and to decouple ag-
gregator instances. This enables said instances to execute as
serverless functions, which are spawned only when model
updates arrive, and are torn down when parties are busy
training (no updates available to aggregate). An aggregation
function instance can be triggered once a specific number
of model updates are available; or multiple instances can be
triggered once the expected number of model updates for the
current FL round are available. Once a model aggregation
round is complete and the fused model is sent back to the
parties, all aggregator functions exit until the next round,
thereby releasing resources.

A. Associativity → Tree-based Aggregation

Associativity enables us to partition parties among aggre-
gator instances, with each instance responsible for handling
updates from a subset of parties. The outputs of these instances

must be further aggregated. A tree topology connects the
aggregator instances. The output of each aggregator goes
to its parent for further aggregation. We have determined
that it is possible to split any associative FL aggregation
operation into leaf and intermediate aggregators as illustrated
by Figure 1. A leaf aggregator implements logic to fuse
raw model weight updates Ui from a group of k parties
to generate a partially aggregated model update Uk. For
example, in the case of FedAvg [18], [19] this function
would take ki gradient update vectors and return the weighted
sum Si =

∑
1,...,ki

ni4(r)
i of these vectors, along with

the number of data items processed so far
∑

1,...,ki
ni. An

intermediate aggregator implements logic to further aggregate
partially aggregated model updates (Uk), in stages, to pro-
duce the final aggregated model update (UF ). In the case
of FedAvg, this function would aggregate (add up) multiple
(Si). If all expected model updates have arrived from S(r)
parties, the intermediate aggregator would have thus calculated∑

1,...,|S(r)| ni4
(r)
i and N =

∑
1,...,|S(r)| ni, from which the

aggregated gradient update 4(r) is calculated per Algorithm 1
at the root/master aggregator (Figure 1).

Establishing a tree-based aggregation topology as in Fig-
ure 1 starts by identifying the number of parties that can
be comfortably handled by an aggregator instance. This is
dependent on (i) size/hardware capability (CPU/RAM/GPU)
of the instance (server or VM or container) and its network
bandwidth, and (ii) the size of the model, which directly deter-
mines the size of the model update and the memory/compute
capabilities needed for aggregation. Assuming that each in-
stance can handle k participants, a complete and balanced k-
ary tree can be used. dnk e leaf aggregators are needed to handle
n participants; the tree will have O(dnk e) nodes.

While a tree-based FL aggregation overlay is conceptually
simple, it does involve significant implementation and deploy-
ment effort for fault tolerant aggregation. Typically, aggre-
gator nodes are instantiated using virtual machines (VMs)
or containers (e.g., Docker) and managed using a cluster
management system like Kubernetes. These instances are then
arranged in the form of a tree, i.e., each instance is provided
with the IP address/URL of its parent, expected number of
child aggregators, credentials to authenticate itself to said
parent and send aggregated model updates. Failure detection
and recovery is typically done using heartbeats and timeouts,
between each instance, its parents and children. Once faults
happen, the aggregation service provider should typically take
responsibility for recovering the instance, and communicating
information about the recovered instance to its children for
further communications. Things become complicated when
an instance fails at the same time as one of its parent or
child instances. Another issue, common in distributed software
systems, that arises in this scenario is network partitions. In
summary, to implement hierarchical aggregation the traditional
way [15], any aggregation service has to maintain dedicated
microservices to deploy, monitor and heal these aggregation
overlays.



B. “Idle Waiting” in Static Tree Aggregation

Even if some technologies like Kubernetes pods and service
abstractions are able to simplify a few of these steps, a more
serious problem with tree-based aggregation overlays is that
aggregator instances are “always on” waiting for updates, and
this is extremely wasteful in terms of resource utilization
and monetary cost. To handle FL jobs across thousands of
parties, aggregation services including AdaFed must support
intermittent parties effectively. Given that, for every round,
parties may send model updates over an extended time period
(hours), aggregators spend the bulk of their time waitin. Idle
waiting wastes resources and increases aggregation cost. A
tree-based aggregation overlay compounds resource wastage
and cost.

Re-configuring tree-based aggregation overlays is also dif-
ficult. This is needed, for example, when midway through a
job, a hundred (or a thousand) participants decide to join.
Supporting them would require reconfiguration at multiple
levels of the aggregation overlay. Reconfigurations are also
necessary to scale down the overlay when participants leave.
Thus, elasticity of aggregation is hard to achieve in the static
tree setting.

Message Queue (Kafka)

Cluster Manager (Kubernetes)

LA LA
IA

Serverless Platform (Ray)

LA

Metadata store 
(MongoDB)

Fig. 2. AdaFed System Architecture. Aggregators are executed as serverless
functions.

Kafka Queue

Participants

P4 Update

P5 Update

P6 Update

P7 Update

P8 Update

P9 Update

P1 Update

P2 Update

P3 Update

LA1

LA1 Output,3

LA2

LA2 Output,3

IA1

IA1 Output,6

Kafka Queue

Fig. 3. AdaFed – Illustration of stepwise serverless aggregation

C. Using Serverless Functions

AdaFed takes associativity one step further. AdaFed mit-
igates issues with aggregation overlays by avoiding the con-
struction of actual/physical tree topology. Instead, AdaFed

uses serverless functions chained together with message
queues to realize a logical tree topology. AdaFed executes
both leaf and intermediate aggregation operations as server-
less/cloud functions. These functions are executed in contain-
ers on a cluster managed by Kubernetes, which multiplexes
multiple workloads and enables the cluster to be shared by
multiple FL jobs and/or other workloads. Also, since there is
no static topology, more (or less) aggregator functions can be
spawned depending on the number of parties (model updates),
thereby handling party joins/leaves effectively. The challenge
in executing aggregation as serverless functions, which are
ephemeral and have no stable storage, is to manage state – that
of each aggregation entity, intermediate aggregation outputs,
inter-aggregator communications and party-aggregator com-
munications. We also note that splitting aggregation into leaf
and intermediate functions makes the logic simpler. It is also
possible to have a single serverless function that can operate
on both raw updates and partially fused updates; doing that
will increase the complexity of the function.

D. Party-Aggregator Communication

This is done using a distributed message queue (Kafka).
Kafka is a topic-based message queue offering standard pub-
lish/subscribe semantics. That is, each queue has a “name”
(i.e., pertains to a “topic”), and multiple distributed entities
can write to (publish) and read from (subscribe to) it. Kafka
enables us to set a replication level per queue, which ensures
durability of messages between the aggregator instances and
parties. For each FL job (with an identifier JobID, two queues
are created at deployment time – JobID-Agg and JobID-
Parties. Only aggregator instances (serverless functions) can
publish to JobID-Agg and all parties subscribe to it. Any
party can publish to JobID-Parties but only the aggregator
instances can both publish to and read from it. This ensures
that model updates sent to JobID-Parties are private and do
not leak to other parties. When the job starts, the aggregator
publishes the initial model on JobID-Agg; parties can then
download the model and start training. At the end of each
job round, parties publish their model updates to JobID-
Parties. Inter-Aggregator Communication, is also handled
using Kafka. Partially fused model updates are published
by aggregation functions into Kafka, and can trigger further
function invocations.

E. Aggregation Trigger

For serverless functions to execute, they must be triggered
by some event. AdaFed provides several flexible and con-
figurable triggers. The simplest ones trigger an aggregation
function for every k updates published to JobID-Parties, or
every t seconds. For FL jobs that use a parameter server strat-
egy for model updates, it is possible in AdaFed to implement
the update logic as a serverless function and trigger it every
time an update is published by a party. Other custom triggers
involve the periodic execution of any valid Python code (also
as a serverless function) which triggers aggregation. Custom
triggers are vital to handling FL jobs involving intermittent



parties. As an illustration, consider an FL job where each
round is successful if 50% of parties send model updates
within 10 minutes. The aggregation trigger here could be a
serverless function, invoked every minute, to count the number
of parties that have responded and perform partial aggregation
through leaf aggregators; aggregation is complete when at
least 50% of the parties have responded. Another FL job
may require that aggregation waits for at least 10 minutes and
considers the round successful if at least 50% of parties have
responded. In this case, the job would contain a configuration
parameter that triggers aggregation after 10 minutes.

F. End-to-End Illustration

As illustrated in Figure 3, a set of parties decide to start
an FL job through existing private communication channels.
“Matchmaking” or inducing parties to join an FL job is
out of scope of this paper and AdaFed. We assume that
this set of parties is convinced of the benfits of FL and
want to collaborate. While forming a group, they also de-
cide things like model architecture, model interchange format
and hyperparameters (initial model weights, batch size and
learning rate schedule, number of rounds, target accuracy and
model update frequency). AdaFed then assigns a JobID to
this job, creates metadata pertaining to the job (including
party identities and hyperparameters), updates its internal data
structures, instantiates two Kafka queues – JobID-Agg and
JobID-Parties. A serverless function is triggered to publish
the initial model architecture and weights on JobID-Agg. The
FL job also specifies the triggering function. Then the first
round of training starts at the parties’ local infrastructure using
the model downloaded/received from JobID-Agg.

Once local training is complete, parties send model updates
to JobID-Parties. The trigger (serverless) function executes,
and if it determines that an aggregation has to be initiated,
triggers a leaf or intermediate aggregator. They pull inputs
from JobID-Parties and publish their outputs to the same.
This process continues as model updates arrive. When an
aggregator function determines that all parties have sent their
updates, the round is finished and the updated model published
to JobID-Agg. Then the next round starts.

Job termination criteria may be different depending on the
type of the FL job, as discussed earlier. A time-based or a
quorum-based completion criterion may be also used.

G. Durability

Aggregation checkpointing for fault tolerance determines
how frequently the aggregator checkpoints its state to ex-
ternal stable storage. While this is needed for traditional
FL platforms, AdaFed does not use checkpointing. If the
execution of a serverless aggregation function fails, it is simply
restarted. All aggregator state (updates from parties, partially
fused models, etc) is durably stored in message queues. This
aspect of AdaFed is vital to understanding AdaFed’s resource
usage; we observe that the resource overhead of using message
queues is equal to that of checkpointing using cloud object
stores in single/hierarchical aggregator schemes.

H. Implementation and Elastic Scaling

We implement AdaFed using the popular Ray [1] dis-
tributed computing platform. Ray provides several abstrac-
tions, including powerful serverless functions (Ray remote
functions). We explored a couple of alternate implementations,
including KNative [20] and Apache Flink [21], and settled on
Ray because it provides arbitrarily long serverless functions, is
well integrated with common Python libraries (numpy, scikit-
learn, Tensorflow and PyTorch) and provides the freedom to
use accelerators if necessary. Ray’s internal message queue
could have been used in lieu of Kafka, but we found Kafka
to be more robust. Aggregation triggers are implemented
using Ray, and support typical conditions on JobID-Parties
(receipt of a certain number of messages, etc.), but are flexible
enough to execute user functions that return booleans (whether
aggregation should be triggered or not).

Our implementation using Ray executes on the Kubernetes
cluster manager. Ray’s elastic scaler can request additional
Kubernetes pods to execute serverless functions, depending on
how frequently aggregation is triggered. It is also aggressive
about releasing unused pods when there are no model updates
pending. When aggregation is triggered, groups of model
updates are assigned to serverless function invocations. Each
invocation is assigned 2 vCPUs and 4GB RAM (this is
configurable). If there are insufficient pods to support all these
invocations, Ray autoscales to request more Kubernetes pods.
This also enables AdaFed to handle large scale party dropouts
and joins effectively. Only the exact amount of compute
required for aggregation is deployed – overheads to spawn
tasks on Kubernetes pods and create new pods are minimal,
as demonstrated in our empirical evaluation.

It is also vital to ensure that model updates are not consumed
twice by aggregation functions. When aggregation is triggered
for a model update in a Kafka queue, it as marked using a
flag. The flag is released only after the output of the function
is written to Kafka. If the aggregation function crashes, Ray
restarts it, thereby guaranteeing “exactly once” processing and
aggregation semantics.

I. Expressivity and Security

The programming model of AdaFed and its implementation
using Ray enables us to support a wide variety of FL aggrega-
tion algorithms. Associativity is a pre-requisite for aggregation
scalability; and any associative algorithm can be programmed
using AdaFed. Most FL aggregation algorithms, including
FedAvg/FedSGD [4], FedProx [22], FedMA [23], Mime [25],
Scaffold [26], FedPA [27], FedPD [28] and FedDist [24] are
associative. In the rare case that the aggregation algorithm
is not associative, AdaFed still uses serverless functions to
spawn the single aggregator instance and does so with a
Docker container of the maximum size (configurable) sup-
ported by the underlying Kubernetes cluster. The size and
number of aggregator instances, as well as the number of par-
ties handled by any single instance are configurable, enabling
AdaFed to support FL jobs with varying participation.



Furthermore, none of the design choices of AdaFed has
any impact on FL privacy mechanisms used. Transport layer
encryption (TLS) used to transmit model updates in existing
FL platforms can be used to send updates to Kafka in
AdaFed. Updates are decrypted by the aggregation function
reading them from Kafka. AdaFed is oblivious to any noise
added by parties for differential privacy. And the fact that
functions in AdaFed can execute most Python code means
that aggregation of homomorphically encrypted model updates
(using appropriate libraries) is also feasible.

IV. EVALUATION

In this section, we evaluate the efficacy of AdaFed, by
first comparing AdaFed against a centralized aggregator setup
common in several FL frameworks like IBM FL [7], FATE [8]
and NVFLARE [9]. We demonstrate how such single ag-
gregator setups have difficulties when scaling beyond 100
participants. We then demonstrate how a static hierarchical
(tree) overlay of aggregator instances can help with the scal-
ability issue, but is ineffective from a resource consumption,
utilization, cost and elasticity perspectives.

A. Metrics

Given that aggregation depends on whether the expected
number of model updates are available, we define aggregation
latency as the time elapsed between the reception of the
last model update and the availability of the aggregated/fused
model. When compared to a static tree deployment of aggre-
gator instances, serverless functions are dynamically instanti-
ated in response to model updates. Deployment of serverless
functions takes a small amount of time (< 100 milliseconds)
and elastic scaling of a cluster in response to bursty model
update can also take 1-2 seconds. Consequently, the overhead
of aggregation in AdaFed will usually manifest in the form
of increased aggregation latency. It is measured for each
FL synchronization round, and the reported numbers in the
paper are averaged over all the rounds of the FL job. We
want aggregation latency to be as low as possible. Scalability,
or the lack thereof, of any FL aggregation architecture, also
manifests in the form of increased aggregation latency when
the number of parties rises. We therefore evaluate (i) efficiency
by examining whether serverless functions increase the latency
of an FL job, as perceived by a participant, (ii) scalability by
examining the impact of the number of parties on latency,
(iii) adaptivity/elasticity, by examining the impact of parties
joining midway on latency.

We evaluate resource efficiency, by measuring resource
consumption (in terms of the number and duration of con-
tainers used for aggregation), resource (CPU and memory)
utilization and projected total cost. We execute both hierarchi-
cal aggregation and AdaFed using containers on Kubernetes
pods in our datacenter, and measure the number of container
seconds used by an FL job from start to finish. Container
seconds is calculated by multiplying the number of containers
used with the time that each container was used/alive. This

includes all the resources used by the ancillary services,
including MongoDB (for metadata), Kafka and Cloud Object
Store. Measuring container seconds helps us use publicly
available pricing from cloud providers like Microsoft Azure
to project the monetary cost of aggregation, in both cases, and
project cost savings. We also report average CPU and memory
utilization, averaged over the entire FL job.

B. Experimental Setup

Aggregation was executed on a Kubernetes cluster on CPUs,
using Docker containers. For IBM FL, the container used for
the single aggregator was run on a dedicated server with 16
CPU cores (2.2 Ghz, Intel Xeon 4210) and 32GB of RAM.
Each container for hierarchical or serverless aggregation was
equipped with 2 vCPUs (2.2 Ghz, Intel Xeon 4210) and 4
GB RAM. For hierarchical/tree aggregation, each instance
was encapsulated using the Kubernetes service abstraction.
Parties were emulated, and distributed over four datacenters
(different from the aggregation datacenter) to emulate ge-
ographic distribution. Each party was also executed inside
Docker containers (2 vCPUs and 4 GB RAM) on Kubernetes,
and these containers had dedicated resources. We actually had
parties running training to emulate realistic federated learning,
as opposed to using, e.g., Tensorflow Federated simulator.

We select three real-world federated learning jobs – two
image classification tasks from the Tensorflow Federated
(TFF) [11] benchmark and one popular document classifica-
tion task. From TFF [11], we select (i) CIFAR100 dataset
which can be distributed over 10-10000 parties, with clas-
sification performed using the EfficientNet-B7 model and
the FedProx [22] aggregation algorithm and (ii) iNaturalist
dataset which can be distributed over 10-9237 parties, with
classification performed using the InceptionV4 model and
FedProx [22] aggregation algorithm. Thus, we consider two
types of images and two models of varying sizes. We do
not consider other workloads from TFF because they involve
less than 1000 parties. For additional diversity, we consider a
third workload using the VGG16 [32] model and FedSGD [4]
aggrgeation algorithm on RVL-CDIP [33] document classifi-
cation dataset. Each job was executed for 50 synchronization
rounds, with model fusion happening after every local epoch.
For all scenarios, the datasets were partitioned in a realistic
non-IID manner.

C. Aggregation Latency and Scalability

First, we consider a scenario where the number of parties
remains constant throughout the FL job, for all synchronization
rounds, i.e., once the job starts, no parties join or leave.
From Figure 4, we observe that a centralized single aggregator
setting does not scale to a large number of parties, as average
aggregation latency increases significantly – almost linearly.
This is because of both constrained compute/memory capacity
at the single aggregator and constrained network bandwidth
needed to transfer/load model updates for aggregation. Fig-
ure 4 also illustrates that the increase in aggregation latency is



101 102 103 104

Num. Parties

100

101

102

Ag
gr

eg
at

io
n 

la
te

nc
y 

(s
)

EfficientNet on CIFAR100
IBM FL
Static Tree
AdaptFL

101 102 103 104

Num. Parties

101

102

103

Ag
gr

eg
at

io
n 

la
te

nc
y 

(s
)

VGG16 on RVL-CDIP
IBM FL
Static Tree
AdaptFL

101 102 103 104

Num. Parties

100

101

102

Ag
gr

eg
at

io
n 

la
te

nc
y 

(s
)

InceptionV4 on iNaturalist
IBM FL
Static Tree
AdaptFL

Fig. 4. Aggregation Latency (s) – time taken for aggregation to finish after the last model update is available

# parties Static Tree (s) Serverless (s) Static Tree
Serverless

100 4.58 1.57 2.92×
1000 12.46 4.34 2.87×

10000 15.59 4.82 3.23×

Fig. 5. Effect of 20% party joins on aggregation latency (seconds).
EfficientNet-B7 on CIFAR100 using FedProx aggregation algorithm.

# parties Static Tree (s) Serverless (s) Static Tree
Serverless

100 10.59 4.29 2.47×
1000 17.6 6.45 2.73×

10000 26.82 7.4 3.62×

Fig. 6. Effect of 20% party joins on aggregation latency (seconds). VGG16
on RVL-CDIP using FedSGD aggregation algorithm.

much more gradual for both static tree overlays and AdaFed
(which uses serverless functions), enabling these architectures
to scale to larger FL settings. In fact, for both static tree
and AdaFed, latency increases only by ≈ 4 × when the
number of parties increases 1000×. This trend is due to the
data parallelism inherent in both the static tree and AdaFed.

From an efficiency standpoint, we observe that the aggrega-
tion latency is similar between static tree and AdaFed, within
4% of each other, with aggregation latency of AdaFed being
slightly higher than that of the static tree overlay. This is
because using serverless functions does not reduce the number
of aggregation steps; it merely avoids having to keep the
aggregators provisioned and alive when they are not needed.
We used runtime profiling to determine that the slight (up
to 4%) increase in aggregation latency over the static tree
is primarily due to cold starts when functions are started;
the other minor factor is the latency due to the aggregation
trigger. Thus, we observe that the runtime overhead of using
and triggering serverless functions is minimal.

D. Adaptivity/Elastic Scaling for Party Joins

Next, we illustrate how AdaFed can handle parties joining
in the middle of the job with minimal impact on aggregation
latency. For this, we consider a single synchronization round,
and increase the number of parties by 20%. Figures 5,6 and 7
illustrate the aggregation latency when 20% more parties send
model updates during the synchronization round. For these

# parties Static Tree (s) Serverless (s) Static Tree
Serverless

100 20.64 7.5 2.75×
1000 36.64 10.66 3.44×
7000 59.78 13.45 4.44×

Fig. 7. Effect of 20% party joins on aggregation latency (seconds). Incep-
tionV4 on iNaturalist using FedProx aggregation algorithm.

experiments, we only illustrate static tree based overlays and
AdaFed. This is because Section IV-C has already demon-
strated that centralized aggregators do not scale to handle
large numbers of parties; the effect of party joins is similar
– aggregation latency increases almost linearly w.r.t number
of parties joining. Serverless aggregation in AdaFed needs
no overlay reconfiguration, while static tree aggregation needs
to add more aggregator instances and reconfigure the tree.
This manifests as a significant increase in aggregation latency
(2.47× to 4.62×). This is due to the fact that the number
of serverless function invocations depends on the aggregation
workload, and partially aggregated updates can be stored in
message queues. However, with a tree overlay, new aggregator
nodes have to be instantiated and the topology changed. Thus,
although both static tree and serverless aggregation methods
are elastic, using serverless functions provides significantly
better outcomes.

E. Resource Consumption & Cost

We compare AdaFed with static tree aggregation in terms
of resource usage. Although the single aggregator deployment
(e.g., using IBM FL) has much lower resource requirements
when compared to AdaFed, it has significantly higher latency
and does not scale. So, we do not consider it in the experiments
in this section. We first illustrate the resource consumption of
experiments where parties participate actively (as defined in
Section II). Figures 8,9 and 10 tabulate the resource usage
for the three workloads, in terms of container seconds and
CPU/memory utilization. This data illustrates the real benefits
of using serverless aggregation, with > 85% resource and
cost savings for the EfficientNet-B7/CIFAR100/FedProx job,
> 90% for VGG16/RVL-CDIP/FedSGD and > 80% for
InceptionV4/iNaturalist/FedProx. These savings are significant
and are a direct result of the adaptivity of AdaFed, by



Num. Tot. container seconds Proj. Total cost US$ Cost Avg. CPU Util. (%) Avg. Memory Util. (%)
Parties Static Tree AdaFed Static Tree AdaFed Savings % Static Tree AdaFed Static Tree AdaFed

10 1723 228 0.46 0.06 86.96% 12.31% 82.95% 46.54% 73.35%
100 2653 351 0.71 0.09 87.32% 17.09% 83.08% 20.89% 72.89%

1000 22340 2951 6.01 0.79 86.86% 10.99% 83.52% 17.23% 72.87%
10000 298900 40849 80.46 11 86.33% 10.61% 84.27% 18.66% 75.39%

Fig. 8. EfficientNet-B7 on CIFAR100 using FedProx aggregation algorithm. Active Participants. Resource usage and projected cost, using container cost/s of
0.0002692 US$ (source Microsoft Azure [34])

Num. Tot. container seconds Proj. Total cost US$ Cost Avg. CPU Util. (%) Avg. Memory Util. (%)
Parties Static Tree AdaFed Static Tree AdaFed Savings % Static Tree AdaFed Static Tree AdaFed

10 1953 162 0.53 0.04 91.73% 13.17% 91.98% 47.01% 84.36%
100 3078 234 0.83 0.06 92.4% 10.75% 90.22% 20.27% 82.01%

1000 25250 1992 6.8 0.54 92.11% 13.86% 92.92% 22.9% 85.82%
10000 337830 30303 90.94 8.16 91.03% 12.36% 89.25% 22.96% 82.89%

Fig. 9. VGG16 on RVL-CDIP using FedSGD aggregation algorithm. Active Participants. Resource usage and projected cost, using container cost/s of
0.0002692 US $ (source Microsoft Azure [34]

Num. Tot. container seconds Proj. Total cost US$ Cost Avg. CPU Util. (%) Avg. Memory Util. (%)
Parties Static Tree AdaFed Static Tree AdaFed Savings % Static Tree AdaFed Static Tree AdaFed

10 2365 389 0.64 0.1 83.55% 10.86% 91.86% 49.73% 82.25%
100 3354 548 0.9 0.15 83.65% 14.17% 91.18% 21.71% 83.49%

1000 30545 5144 8.22 1.38 83.16% 10.87% 91.77% 23.12% 83.43%
9237 420870 68307 113.3 18.39 83.77% 13.44% 91.01% 21.33% 82.49%

Fig. 10. InceptionV4 on iNaturalist using FedProx aggregation algorithm. Active Participants. Resource usage and projected cost, using container cost/s of
0.0002692 US $ (source Microsoft Azure [34]

Num. Tot. container seconds Proj. Total cost US$ Cost Avg. CPU Util. (%) Avg. Memory Util. (%)
Parties Static Tree AdaFed Static Tree AdaFed Savings % Static Tree AdaFed Static Tree AdaFed

10 634 272 0.17 0.07 99.28% 10.58% 81.3% 42.67% 75.26%
100 576 385 0.16 0.1 98.89% 11.97% 79.77% 12.17% 74.77%

1000 10516 1113 2.83 0.3 99.82% 11.41% 81.06% 11.05% 74.15%
10000 105021 18741 28.27 5.05 99.7% 10.25% 81.09% 10.29% 74.71%

Fig. 11. EfficientNet-B7 on CIFAR100 using FedProx aggregation algorithm. Intermittent participants updating over a 10 minute interval for every
synchronization round. Resource usage and projected cost using Container cost/s of 0.0002693 US $ (source Microsoft Azure [34]).

deploying aggregator functions only when needed. Resource
wastage due to static tree can also be observed from the
CPU/memory utilization figures, which are consistently low
for static tree because aggregator instances are idle for long
periods. We also observe that, while compute resources needed
for aggregation increase with the number of participants for
both static tree and serverless aggregation, the amount of
resource and cost savings remains fairly consistent. We use
Microsoft Azure’s container pricing for illustrative purposes
only; pricing is similar for other cloud providers.

We stress that the experiments in Figures 8,9 and 10 are
conservative; they assume active participation. That is, parties
have dedicated resources to the FL job, parties do not fail
in the middle of training, and training on parties for each
round starts immediately after a global model is published
by the aggregator. In realistic scenarios, parties (e.g., cell
phones or laptops or edge devices) perform many functions
other than model training, have other tasks to do and can
only be expected to respond over a period of time (response

timeout). Depending on the deployment scenario, this can
be anywhere from several minutes to hours. Figures 11,12
and 13 demonstrate that resource and cost savings are huge
(> 99%) when response timeout is set to a modest 10 minutes
per aggregation round. Real world FL jobs typically use
higher response timeouts and will thus reap enormous benefits.
Thus, our experiments reinforce our confidence that serverless
aggregation can lead to significant resource and cost savings
with minimal overhead.

V. RELATED WORK

Parallelzing FL aggregation using a hierarchical topology
has been explored by [4], though the design pattern was
introduced by and early work on datacenter parallel com-
puting [15]. While [4] uses hierarchical aggregation, its pro-
gramming model is different from AdaFed. Its primary goal
is scalability and consequently, it deploys long lived actors
instead of serverless functions. AdaFed aims to make FL
aggregation resource efficient, elastic in addition to being



Num. Tot. container seconds Proj. Total cost US$ Cost Avg. CPU Util. (%) Avg. Memory Util. (%)
Parties Static Tree AdaFed Static Tree AdaFed Savings % Static Tree AdaFed Static Tree AdaFed

10 33043 258 8.9 0.07 99.21% 13.23% 87.06% 46.98% 82.11%
100 33037 385 8.89 0.1 98.88% 14.12% 84.2% 10.3% 81.56%

1000 510039 2975 137.3 0.8 99.42% 14.46% 85.77% 10.69% 81.7%
10000 5700030 40884 1534.45 11.01 99.28% 10.91% 84.27% 12.08% 80.86%

Fig. 12. VGG16 on RVL-CDIP using FedSGD aggregation algorithm. Intermittent participants updating over a 10 minute interval for every synchronization
round. Resource usage and projected cost using Container cost/s of 0.0002693 US $ (source Microsoft Azure [34]).

Num. Tot. container seconds Proj. Total cost US$ Cost Avg. CPU Util. (%) Avg. Memory Util. (%)
Parties Static Tree AdaFed Static Tree AdaFed Savings % Static Tree AdaFed Static Tree AdaFed

10 34365 509 9.25 0.14 98.52% 13.49% 87.75% 51.13% 84.17%
100 34358 588 9.25 0.16 98.29% 11.08% 87.08% 11.88% 83.72%

1000 734456 17700 197.72 4.76 97.59% 11.59% 89.09% 10.1% 87.28%
9237 6783036 206883 1825.99 55.69 96.95% 11.43% 88.55% 11.19% 84.4%

Fig. 13. InceptionV4 on iNaturalist using FedProx aggregation algorithm. Intermittent participants updating over a 10 minute interval for every synchronization
round. Resource usage and projected cost using Container cost/s of 0.0002693 US $ (source Microsoft Azure [34]).

scalable; and use off-the-shelf open source software like Ray,
Kafka and Kubernetes.

Another closely related concurrent work is FedLess [35],
which predominantly uses serverless functions for the training
side (party side) of FL. FedLess is able to use popular
serverless technologies like AWS Lambda, Azure functions
and Openwhisk to enable clients/parties on cloud platforms
perform local training and reports interesting results on using
FaaS/serverless instead of IaaS (dedicated VMs and contain-
ers) to implement the party side of FL. It also has the ability
to run a single aggregator as a cloud function, but does not
have the ability to parallelize aggregation, and does not seem
to scale beyond 200 parties (with 25 parties updating per FL
round, per [35]). Our work in AdaFed has the primary goal
of parallelizing and scaling FL aggregation. Fedless [35] also
does not adapt aggregation based on party behavior, and it is
unclear whether parties on the edge (phones/tablets) can train
using FedLess.

A number of ML frameworks – Siren [36], Cirrus [37]
and the work by LambdaML [38] use serverless functions for
centralized (not federated) ML and DL training. Siren [36]
allows users to train models (ML, DL and RL) in the cloud
using serverless functions with the goal to reduce programmer
burden involved in using traditional ML frameworks and
cluster management technologies for large scale ML jobs.
It also contains optimization algorithms to tune training per-
formance and reduce training cost using serverless functions.
Cirrus [37] goes further, supporting end-to-end centralized ML
training workflows and hyperparameter tuning using serverless
functions. LambdaML [38] analyzes the cost-performance
trade-offs between IaaS and serverless for datacenter/cloud
hosted centralized ML training. LambdaML supports various
ML and DL optimization algorithms, and can execute purely
using serverless functions or optimize cost using a hybrid
serverless/IaaS strategy. AdaFed differs from Siren, Cirrus
and LambdaML in significant ways – Distributed ML (in
Siren, Cirrus and LambdaML) is different from FL. Distributed

ML involves centralizing data at a data center or cloud service
and performing training at a central location. In contrast, with
FL, data never leaves a participant. FL’s privacy guarantees are
much stronger and trust requirements much lower than that of
distributed ML.

The term “serverless” has also been used to refer to peer-
to-peer (P2P) federated learning, as in [12]–[14]. In such
systems, aggregation happens over a WAN overlay and not
in a datacenter. The first step involves establishing the over-
lay network, by following existing technologies like pub-
lish/subscribe overlays, peer discovery, etc [16], [17]. The next
step involves establishing a spanning tree over the P2P overlay,
routing updates along the spanning tree and aggregating at
each node on the tree. Gossip based learning, [14] does not
construct overlays but uses gossip-based broadcast algorithms
to deliver and aggregate model updates in a decentralized
manner. While these techniques are scalable and (in the case of
gossip algorithms) fault tolerant, they do require either (i) that
the model be revealed to more entities during routing, or (ii)
homomorphic encryption [39] which can be challenging both
from a key agreement and model size explosion standpoints,
or (iii) differential privacy [40] which reduces model accuracy
in the absence of careful hyperparameter tuning.

VI. CONCLUSIONS AND FUTURE WORK

In this paper, we have presented AdaFed, a system for
adaptive serverless aggregation in federated learning. We have
described the predominant way of parallelizing aggregation
using a tree topology and examined its shortcomings. We
have demonstrated how serverless/cloud functions can be
used to effectively parallelize and scale aggregation while
eliminating resource wastage and significantly reducing costs.
Our experiments using three different model architectures,
datasets and two FL aggregation algorithms demonstrate that
the overhead of using serverless functions for aggregation is
minimal, but resource and cost savings are substantial. We also
demonstrate that serverless aggregation can effectively adapt



to handle changes in the number of participants in the FL job.
We are currently working to extend this work in two

directions: (i) increasing the dependability and integrity of
aggregation using trusted execution environments (TEEs) and
(ii) effectively supporting multi-cloud environments by using
service mesh (like Istio) to find the best aggregator function
to route a model update.
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