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Abstract—Cyber Threat Intelligence (CTI) reporting is pivotal
in contemporary risk management strategies. As the volume
of CTI reports continues to surge, the demand for automated
tools to streamline report generation becomes increasingly ap-
parent. While Natural Language Processing techniques have
shown potential in handling text data, they often struggle to
address the complexity of diverse data sources and their intricate
interrelationships. Moreover, established paradigms like STIX
have emerged as de facto standards within the CTI community,
emphasizing the formal categorization of entities and relations
to facilitate consistent data sharing.

In this paper, we introduce AGIR (Automatic Generation
of Intelligence Reports), a transformative Natural Language
Generation tool specifically designed to address the pressing
challenges in the realm of CTI reporting. AGIR’s primary
objective is to empower security analysts by automating the labor-
intensive task of generating comprehensive intelligence reports
from formal representations of entity graphs. AGIR utilizes a
two-stage pipeline by combining the advantages of template-
based approaches and the capabilities of Large Language Mod-
els such as ChatGPT. We evaluate AGIR’s report generation
capabilities both quantitatively and qualitatively. The generated
reports accurately convey information expressed through formal
language, achieving a high recall value (0.99) without introducing
hallucination. Furthermore, we compare the fluency and utility
of the reports with state-of-the-art approaches, showing how
AGIR achieves higher scores in terms of Syntactic Log-Odds
Ratio (SLOR) and through questionnaires. By using our tool,
we estimate that the report writing time is reduced by more
than 40%, therefore streamlining the CTI production of any
organization and contributing to the automation of several CTI
tasks.

Index Terms—Cyber Threat Intelligence, Natural Language
Generation, Threat Reports, STIX

I. INTRODUCTION

The evolving cyber threat landscape has witnessed a dra-
matic surge in both the frequency and sophistication of attacks
in recent years. From traditional phishing emails to the stealthy
and advanced operations of highly sophisticated cybercriminal
groups known as Advanced Persistent Threats (APTs), the dig-
ital realm has become a battleground for organizations seeking
to safeguard their data and infrastructure [1]. To counter
these evolving threats effectively, organizations have begun
implementing the discipline of Cyber Threat Intelligence (CTI)
to address them proactively. CTI involves the systematic
collection, analysis, and dissemination of data from diverse

sources, including network logs, social media, and dark web
forums, to identify, comprehend, and mitigate cyber threats.
By providing actionable insights into the Tactics, Techniques,
and Procedures (TTPs) employed by cybercriminals, as well
as the associated Indicators Of Compromise (IOCs), CTI can
enhance an organization’s situational awareness and reinforce
its ability to detect and respond to attacks swiftly, ultimately
reducing overall risk exposure [2].

An integral part of CTI is the production of comprehensive
security reports. Indeed, while several standards such as Struc-
tured Threat Information Expression (STIX) are employed
to facilitate the sharing of structured data, natural language
remains the most common and easily understandable format
to collect and disseminate intelligence [3]. These reports
are a repository of detailed information about cyber threats,
encompassing TTPs, exploited vulnerabilities, and IOCs. Fur-
thermore, they are vital in sharing CTI knowledge internally
within organizations and externally with law enforcement
agencies and other cybersecurity entities. Unfortunately, the
manual creation of these reports can be an exceptionally
time-consuming and resource-intensive task. Indeed, security
analysts must aggregate and analyze extensive datasets before
synthesizing their findings into clear and concise reports.
Additionally, the accurate reconstruction of a specific incident
or a threat might need the collaboration of several analysts
and the congregation of multiple intelligence sources, further
aggravating the complexity of the task [4]. To tackle this
challenge, Natural Language Generation (NLG) techniques
have emerged as a promising solution for automating the
report generation process [5]. Natural Language Generation
models are already deployed in many instances to facilitate
the production of textual data, such as financial summaries [6],
user tailoring and profiling in healthcare [7], and chatbots [8].
Thus, NLG tools can save security analysts substantial time
and resources by automating the conversion of structured data
into well-crafted written content. However, despite the evident
advantages NLG offers, applying such tools within the realm
of cybersecurity, specifically for generating security reports,
remains partially unexplored.

Contribution. This paper aims to address this gap in the
cybersecurity literature by introducing AGIR, an NLG tool
designed to automate the creation of cybersecurity reports
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from structured data. AGIR leverages STIX graphs, constituted
by threat entities and their relationships, to parse them with
a template-based approach and subsequently leverage a Large
Language Model (LLM) to improve the fluency and utility
of the generated report. While AGIR currently supports four
distinct report types, its pipeline is designed with extensibility
in mind, allowing for the incorporation of additional report
formats as needed. The quantitative evaluation of our approach
shows that the information in the structured data is conveyed
in the generated reports with almost perfect recall values
(0.99) without introducing any hallucination in the process.
Furthermore, we qualitatively evaluate the outputs of our tool
through the Syntactic Log-Odds Ratio (SLOR) metric and
questionnaires answered by experienced cyber threat analysts.
The results show that AGIR produces fluent reports that
outclass state-of-the-art models while also maintaining a high
level of utility and reducing report writing time by 42.6%.

Our contributions can be summarized as follows.
• We introduce AGIR, a Natural Language Generation

(NLG) tool designed to automate the creation of cyber-
security reports from structured data.

• We propose a pipeline design aimed at enhancing the
scalability of our tool and enabling the inclusion of a
wider range of supported report types.

• We assess AGIR’s performance through a combined
quantitative and qualitative approach, utilizing several
metrics and conducting surveys with expert threat ana-
lysts.

• We make several samples of the generated reports avail-
able at https://github.com/Mhackiori/AGIR.

Organization. The paper is organized as follows. In Sec-
tion II, we introduce key CTI and NLG concepts, setting the
stage for our discussion. In Section III, we explore the use
of Natural Language Processing (NLP) and NLG techniques
in the cybersecurity domain. Section IV gives an overview
of the system model and the possible implementations of
AGIR. Section V delves into the technical specification of
AGIR, offering insights into its pipeline. In Section VI, we
evaluate AGIR’s performance both quantitatively and qualita-
tively through human evaluation and SLOR metric. Finally,
Section VII concludes this work.

II. BACKGROUND

In this section, we give a more thorough background on
the techniques and notions that we use in the methodology. In
particular, we focus on Cyber Threat Intelligence and the type
of data that this discipline deals with (Section II-A) and the
core concepts of Natural Language Generation (Section II-B).

A. Cyber Threat Intelligence
CrowdStrike, an American security company, defines Threat

Intelligence as the process of collecting, processing and ana-
lyzing data to comprehend threat actors’ motives, targets, and
attack behaviors.1 This intelligence empowers quicker, data-
driven security decisions, shifting from a reactive to a proactive

1https://www.crowdstrike.com/cybersecurity-101/threat-intelligence/

stance against threat actors. Threat intelligence sources en-
compass open source data, social media, device logs, internet
traffic, and information from the deep and dark web. In today’s
cybersecurity landscape, it is pivotal in enabling organizations
to proactively identify and mitigate potential threats, making
them more resilient against cyberattacks.

Threat intelligence can be divided into three main cate-
gories: strategic intelligence (intended for non-technical audi-
ences and offering high-level insights into threats and vulnera-
bilities), tactical intelligence (intended for technically prolific
teams and providing immediate threat indicators), and oper-
ational intelligence (intended for professionals and offering
in-depth insight into TTPs) [9]. Additionally, each piece of
intelligence undergoes a defined life cycle, spanning from
planning and direction to dissemination and integration [10].

Each of the intelligence types can be shared among orga-
nizations in various formats. While natural language reports
are the most common medium when dealing with elaborate
threats, structured data standards have been created to facili-
tate machine-readability and ease of dissemination. The most
common standard used in CTI is STIX (Structured Threat
Information Expression), which includes several types of en-
tities and relationships that allow for a graph representation
of the intelligence [3]. Effectively, with STIX, intelligence is
shared in the form of JSON files that can be represented as
a connected graph of nodes and edges, in which each node
represents an entity and each edge represents a relationship
between entities. A graphical overview of one of these graphs
is shown in Figure 1. These JSON files constitute part of
AGIR’s input.

Asprox198.51.100.2

Malware Botnet Example

198.51.100.4 192.51.100.7

used-byconsists-of

consists-of consists-of

Fig. 1. Graphical example of a STIX graph. Icons used in this paper are from
the ’stix2-graphics’ repository by Bret Jordan [11].

B. Natural Language Generation

Natural Language Generation (NLG) is a subset of Natural
Language Processing (NLP) centered on creating computer
systems capable of generating human-like language output,
such as documents and reports [5]. NLG can be categorized
into text-to-text and data-to-text applications. Text-to-text pro-
cesses utilize existing texts to generate coherent new text,

https://github.com/Mhackiori/AGIR
https://www.crowdstrike.com/cybersecurity-101/threat-intelligence/


while data-to-text systems transform non-linguistic structured
data, like tables or graphs, into natural language text. Our focus
is on data-to-text generation, as it aligns with the contribution
of this paper.

Data-to-text generation approaches fall into three categories.
• Rule-based – These methods follow a three-stage

pipeline, starting with content selection and text struc-
turing in the Document Planner [12]. The Microplanner
combines sentence aggregation, lexicalization, and refer-
ring expression generation [13]. Finally, the Linguistic
Realizer generates grammatically correct sentences [14].

• Template-based – Unlike rule-based approaches,
template-based methods directly map non-linguistic
input to linguistic surface structure. Text generation
occurs through string manipulation, where users create
programs with string patterns containing empty slots to
be filled with relevant information.

• Neural-based – Neural approaches are data-driven and
require no manual feature engineering. They develop end-
to-end models where neural networks learn to generate
high-quality text descriptions directly from input data,
bypassing explicit modeling of intermediate stages.

In the early stages of NLG, rule-based systems were fa-
vored for embodying linguistic insights [15]. This perception
shifted with the development of more sophisticated template-
based systems like D2D, which could adapt output based
on context and perform complex syntactic operations [16].
Template-based systems offer ease of development, control,
and speed but may sacrifice fluency, maintainability, and
flexibility compared to rule-based systems. In modern NLG,
neural-based approaches have taken precedence, thanks to
their superior generalization and output variation capabilities.
However, neural-based systems might lack control over the
generation process, potentially resulting in inaccurate text
generation. They also require extensive training data, limiting
their feasibility when large datasets are unavailable. Hybrid
approaches, which combine two or more methods, aim to
leverage the strengths of each approach. For instance, Kale
and Ratsogi implemented a two-stage pipeline combining
a template-based approach for a baseline response and a
pre-trained language model (T5) for rewriting the response
into coherent, natural-sounding text [17]. This hybrid method
blends the control and ease of development from templates
with the fluency and diversity offered by neural approaches.

III. RELATED WORKS

In this section, we overview related works on applying Nat-
ural Language Processing and Natural Language Generation
in the cybersecurity domain, respectively, in Section III-A and
Section III-B.

A. NLP for CTI

While the use of Natural Language Generation in Cy-
ber Threat Intelligence applications has not been thoroughly
explored in the literature, Natural Language Processing has
been extensively researched for Information Extraction (IE)

purposes. Indeed, automatically processing CTI reports to
retrieve entities and relationships can be pivotal for an organi-
zation seeking to gather intelligence with minimal time delays
and manpower. Effectively, these systems drive researchers
towards fully automating CTI reporting, making cyber defense
practices more accessible to all organizations. One of these
systems is STIXnet, which deploys several IE models to ex-
tract all STIX entities and relationships from natural language
reports [18]. By combining IE systems such as STIXnet with
AGIR, it will be possible to automatically process a multitude
of reports and parse their intelligence in one single report,
tailored according to the user’s needs.

B. NLG for CTI

To the best of our knowledge, there is only one NLG
approach applied to CTI in a setting similar to ours, while only
a few instances are applied to the cybersecurity domain. One
of these few examples involves Das and Varma’s work, who
developed a system employing Recurrent Neural Networks
(RNN) to generate text for advanced email masquerading [19].
Other instances instead include implementing NLG models
for cybersecurity education and training purposes [20]. The
usage of NLG models for CTI report generation has also been
explored by Ranade et al. for poisoning attack purposes [21].
In their paper, the authors use GPT-2 to generate fake CTI
text to poison the dataset of Cybersecurity Knowledge Graphs.
However, while this paper also treats the problem from the
perspective of an attacker, it also utilizes textual inputs and
thus differs from our application, which uses structured data
as input. The research work that deals with a setting similar
to ours is the one by S. Polzunov and J. Abraham, where they
introduced Narrator, a tool capable of creating intelligence
reports from the JSON representation of STIX graphs [22].
Narrator employs a rule-based approach to generate four types
of reports, which can be edited and exported in PDF format.
AGIR expands upon the foundation laid by Narrator, enhanc-
ing overall performance. In its first pipeline step, AGIR adopts
a template-based approach inspired by the D2D system. The
second step incorporates a technique akin to that employed
by Kale and Ratsogi, utilizing ChatGPT to rewrite reports in
a more human-like manner.

IV. SYSTEM MODEL

As an automatic CTI report generation system, AGIR lever-
ages the STIX graphs of entities and relationships to fulfill its
objective. Thus, to maximize its capabilities, an underlying
Knowledge Base (KB) can be deployed to store the STIX
data. The usage of a KB yields several advantages.

• Intelligence Categorization – Entities and relations can
be stored and categorized using the STIX guidelines.

• Incident Recostruction – Several sources of intelligence
can be parsed together to generate a single report contain-
ing the most amount of information on a specific threat
or incident.



• Threat Evolution – Intelligence collected over a period
of time can be aggregated to construct a timeline, pro-
viding insights into the evolution of a specific threat.

Several sources can be employed to collect the intelligence
stored in the KB. One example is the MITRE ATT&CK
framework, which publicly stores and updates intelligence on
threat groups, TTPs, mitigations, and software [23]. Through
the usage of APIs, it is also possible to collect the intelligence
automatically in a structured format, which can then be con-
verted to STIX. Reports and CTI bulletins can also be used as
a starting point for populating the KB. Indeed, as anticipated
in Section III-A, IE systems can be deployed for this purpose,
making CTI reporting almost fully automatic.

The storage of entities, relations, and the reports from
which the intelligence has been collected allows for a more
flexible implementation of AGIR. Suppose the generation of a
report on a specific infrastructure is requested. The system
can automatically query the Knowledge Base with all the
intelligence related to that specific entity, reporting attributes,
dates, and other information that can be of use. Users can
dynamically select the amount of intelligence they want to
include by using the Graphical User Interface (GUI) of the
service, expanding nodes on the graphs as shown in Figure 2.

Malware Botnet
Example

consists-of consists-of consists-of

used-by

Malware Botnet
Example

198.51.100.4198.51.100.2 198.51.100.7

uses

Asprox

delivers

PhishingSQL Injection

Fig. 2. Proof-of-concept of AGIR’s GUI.

In this example, we use the same dummy data used for
Figure 1. We first consider the “Malware Botnet Example”
infrastructure as a singular entity, which will constitute the
main subject of the report. By expanding the node, all the
information about IPv4 addresses and malware previously
shown in Figure 1 appear. We can further expand those nodes,
as it is possible to see for the “Asprox” entity, which will
introduce two attack patterns in the graph. The selected STIX
graph can then be fed as input to AGIR, creating a CTI report
accordingly. Figure 3 shows an overview of the overall system
model.

Intelligence
Sources

STIX
Conversion

Knowledge
Base

AGIR

User Input

Report

Fig. 3. Overview of the system model.

V. METHODOLOGY

In this section, we overview the methodology that consti-
tutes AGIR and the modules that allow for generating CTI
reports. The template-base module and the neural-based are
presented, respectively, in Section V-A and Section V-B. An
overview of AGIR’s pipeline is shown in Figure 4.

A. Template Based Module

The template-based module is AGIR’s first module and,
thus, inherits its input, which is constituted as follows.

1) STIX Graph – A JSON file representing the graph from
which to generate the report.

2) Report Type – A parameter given by the user indicating
the type of report that the system should generate.

In the initial stage of the template-based module execution,
we analyze the report type parameter and designate the tem-
plate accordingly. Then, depending on the selected template,
we select a subset of entities and relationships from the JSON
representation of the previously mentioned graph. This is done
because of the specific type of intelligence that each report
template contains. Thus, by first considering the template
selection, we reduce the number of API calls that we need
to perform to retrieve the entities from the Knowledge Base.
Indeed, our system supports four different report types.

1) Overview Report – Provides a summary of information
from the STIX graph. Analysts can use this template



STIX Graph

Template-Based Module

Report Type
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Report
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Fig. 4. Overview of AGIR’s pipeline.

to obtain a clear understanding of a specific incident
portrayed in the JSON file.

2) Subject Report – This template focuses on specific
entities such as threat actors or intrusion sets. It also
includes relationships, IOCs, and MITRE sections for
all other selected entities. This type of intelligence helps
understand the landscape where the subject is inserted.

3) Timeline Report – Provides a timeline overview of the
entities related to the STIX graph. This template sorts
the events chronologically and reports them according
to their sequencing.

4) Vulnerability Report – Deals with vulnerabilities re-
lated to a specific entity and thus constitutes the most
specific template out of the four. For each vulnerability,
it also includes a table showing specific properties
such as CVSS (Common Vulnerability Scoring System)
score, mitigations, and vulnerable configurations.

After the template selection, for each entity in the STIX graph,
we extract its type from the Knowledge Base, which will be
retrieved in conjunction with its unique identifier. Using IDs
allows for efficiently storing reports, relationships, and events
associated with a specific entity. Thus, each time an entity
is called from the Knowledge Base, we can also retrieve all
its history and the previous relationships it had with other
entities. To do so, for each selected entity from the STIX
graph, we initialize a dictionary with the following six keys:
overview, relationships, stats, useful resources, IOCs, and
TTPs. Based on the entity ID, we then query the KB through
several API calls to populate the dictionary accordingly. This
means performing content selection based on a predefined set
of rules (e.g., properties specific to the entity are inserted
in the overview section, and information about related IOC
is inserted in the IOC section). Once all the information
is available, the module goes through each section of the

report template and fills the gaps with the appropriate piece
of intelligence.

B. Neural Based Module

While the output of the template-based module can already
be considered as a report, being generated from a set of rules
implies that it is naturally mechanic and not fluent. Thus, to
improve on this aspect, we use the neural-based module. To do
so, we use ChatGPT, a Large Language Model that, in recent
months, has attracted an incredible amount of attention due to
its efficiency in Natural Language Generation [24]. Through
its APIs, we prompt the model for a more fluent version of
the report, highlighting the need for keeping the information
in the text unchanged. Once the generation is complete, the
final result is given as the output of the overall AGIR pipeline.

Two main challenges arise from using ChatGPT as a ”fine-
tuning” model for the report.

• Cost – While using the LLM through its graphical
interface is free for all registered users, the payment of
a fee is needed for each API call. At the time of the
development of AGIR, the cost of generating a single
report is, on average, 0.0024 US dollars. Since, in real-
world scenarios, the number of reports generated each day
is not exceptionally high, the price does not constitute an
obstacle for companies and organizations.

• Lack of Control – As stated in Section II-B, neural-
based NLG approaches present a lack of control over
the generated output. To still assess the contribution of
this module on the overall fluency of the report, in
Section VI-B, we qualitatively evaluate the outputs of
both modules, proving the benefits of ChatGPT in the
report generation.



VI. EVALUATION

This section presents an experimental evaluation of our
system. Our aim is to write a precise human-like report that
supports analysts and reduces the time they spend in the report-
writing process. Given the importance of both content and
style in the generation of a report, we split the evaluation into
two parts. In the first, we evaluate AGIR quantitatively, thus
assessing the completeness of intelligence contained in the
output (Section VI-A). In the second, we evaluate the style of
those reports in terms of fluency and utility (Section VI-B).

A. Quantitative Results

We assess AGIR’s accuracy to determine whether the incor-
poration of ChatGPT has led to any instances of omission or
hallucination in the generated text. It’s worth noting that in this
analysis, we do not evaluate the initial step of AGIR singularly
(i.e., reports generated by the template-based module). This is
because the module relies entirely on predefined rules, and
unless there are implementation errors, they are not expected
to introduce accuracy concerns.

For the quantitative evaluation, we will use True Positives
(TP), False Positives (FP), and False Negatives (FN), which
in this specific application are defined as follows.

• True Positive – Information that is present both in the
final report and in the input JSON file.

• False Positive – Information that is present in the report
but not in the input JSON file.

• False Negative – Information that is present in the input
JSON file but is not found in the report.

By using these indicators, we use three different metrics to
evaluate AGIR accuracy: precision, recall, and F1-score. These
metrics are defined as follows.

Precision =
TP

TP + FP
, (1)

Recall =
TP

TP + FN
, (2)

F1 = 2
Precision ·Recall

Precision+Recall
. (3)

To evaluate our system, we use a sample of 12 STIX
graphs. From each of these graphs, we execute AGIR and
generate 12 reports, split equally between each report type.
Each JSON file underwent a manual process in which the
intended report information was identified and subsequently
verified for its presence within the generated report. Results
of this evaluation are shown in Table I. As evident from
the results, the utilization of ChatGPT consistently avoided
introducing new information (i.e., hallucination events) into
the report. However, in a very limited number of cases, the
model did omit information from the JSON file. Nonetheless,
having a recall and F1 score value close to 1 means that the
generated reports almost always contain the same amount of
information from the JSON file, highlighting the completeness
of the reports.

TABLE I
AGIR’S QUANTITATIVE EVALUATION RESULTS.

Precision Recall F1 Score
1.000 0.993 0.996

B. Qualitative Results

We now perform a qualitative evaluation of the reports
generated by AGIR. Thus, we now focus on fluency, cor-
rectness, and utility of the information expressed in natural
language. To do so, we further divide the evaluation into two
parts: a syntactic evaluation (Section VI-B1) and a linguistic
evaluation (Section VI-B2).

1) Syntactic Evaluation: For the syntactic evaluation of the
generated reports’ qualitative properties, we introduce SLOR
(Syntactic Log-Odds Ratio) [25]. We opted for this metric
because it is widely recognized as the de facto standard
for assessing text fluency in referenceless evaluations, which
aligns with our specific evaluation context. SLOR exhibits
the strongest correlation with human sentence acceptability
compared to various sentence probability-based scoring meth-
ods [26]. Furthermore, its effectiveness has been demonstrated
in unsupervised text compression tasks. SLOR assigns a score
to each sentence S by calculating its log probability using a
specific Language Model (LM). This score is then normalized
by the log probability of unigrams and the sentence’s length.

SLOR (S) =
1

S
(ln (pM (S)))− ln (pu (S)) . (4)

In Equation 4, pM (S) is the probability assigned to the sen-
tence under the LM, while pu (S) is the unigram probability
of the sentence S. These quantities are defined, respectively,
as follows.

pM (S) = p
(
⟨t1, t2, ..., t|S|⟩

)
= p (t1)

|S|∏
i=2

p (ti|t1, ..., ti−1) ,

(5)
pu (S) =

∏
t∈S

p (t) . (6)

The rationale behind subtracting unigram log probabilities is
to mitigate the impact of a token’s rarity when considered
individually, as opposed to its rarity in a specific sentence
position. Normalizing by sentence length is essential to ensure
that shorter sentences are not favored over equally fluent
longer ones. It is worth noting that the log probability of a
sentence normalized by its length corresponds to the negative
cross-entropy of that sentence, as per the employed language
model during the evaluation. To calculate sentence probabil-
ities, we utilize the pre-trained XLNet language model [27].
SLOR scores are theoretically unbounded, with higher scores
indicating better text fluency. The value range depends on
many factors, such as the dataset, language model, and the
nature of the text being evaluated. Thus, we are interested



in comparing the results from our testbed with other state-
of-the-art NLG models applied on CTI, such as Narrator.
Furthermore, we also evaluate the fluency of the reports in
different stages of the pipeline, thus assessing the contribution
of each module. Therefore, the three models that we evaluate
are the following: Narrator, first step AGIR (i.e., the output
of the template-based module), and final AGIR (i.e., the
output of the neural-based module). The evaluation dataset
is the same as the one used for the quantitative evaluation
in Section VI-A, and thus comprises 3 STIX graphs for each
report type supported by AGIR. Results are shown in Table II.
As we can see, the SLOR score obtained by Narrator and
first stage AGIR are very close to one another, while final
AGIR has a significant increase in the score. These results
confirm not only the contribution that the neural-based module
has on the overall quality of the reports but also highlight
the possible limitations of template-based approaches when
considered independently.

TABLE II
AVERAGE SLOR SCORES AND STANDARD DEVIATION OF NARRATOR AND

DIFFERENT STAGES OF AGIR’S PIPELINE.

Model SLOR
Narrator 2.13±0.90

First Step AGIR 2.16±1.07
Final AGIR 2.75±0.72

2) Linguistic Evaluation: By using SLOR, we can assess
the fluency of each report with formally defined metrics, thus
giving an objective perspective on AGIR’s efficacy. However,
we are also interested in the human perspective, given our
system’s most important feature: the reduction of processing
times for CTI reporting. For this reason, we conduct another
type of qualitative evaluation based on the opinions shared by
expert threat analysts. All questioned analysts are employers
of Leonardo S.p.A., an Italian multinational company that
collaborated in this research. Opinions were collected in the
form of surveys, which involved rating the quality of the
reports based on the following three dimensions.

• Fluency – Whether the text is easy to read and under-
stand.

• Correctness – Whether the content of the text is true and
derivable from the input data.

• Utility – Whether the text helps the user to write the final
report faster.

The questionnaire collected opinions on all of these aspects
from 38 analysts. Fluency and correctness have been mea-
sured using a Likert scale from 1 (not good) to 5 (very
good) [28]. The utility dimension instead is evaluated by
asking each analyst how long they think it will take for
them to write a final report starting from the output of the
system. The utility value is then compared with a baseline
score of 127.3 minutes, which was obtained by asking all
analysts how much time, on average, it takes for them to
write a report. To prevent the outcomes from being biased
by a single questionnaire instance, we have devised three

questionnaires with identical structures and distributed the
analysts evenly into three groups. Furthermore, the presented
reports are unmarked, and therefore, analysts cannot know
from which model they are generated. The questionnaires
consist of four sections, each corresponding to a report type
and containing one report from each system, resulting in a total
of 12 reports for each questionnaire. Each report is assessed
based on the three dimensions mentioned earlier. In Table III,
we show the obtained results from the survey. As we can see,
we also notice that first step AGIR still outclasss Narrator on
every metric. Moreover, final AGIR reports outperform the
other models used for comparison in all three dimensions.
Fluency is the metric that is most impacted by the neural-based
module, confirming our hypothesis and thus further asserting
its contribution to the report generation process. An increase in
correctness from first step AGIR to final AGIR stands out from
this evaluation, dispelling previous uncertainty about possible
omissions or hallucinations that could have appeared with the
usage of LLMs. As for the model’s utility, analysts believe
that AGIR can reduce report production times by 42.6% with
respect to the baseline, resulting in a total time reduction of
54 minutes. It should be noted that the results shown here are
averaged on all the report types. A more detailed analysis can
be found in Appendix A.

TABLE III
QUESTIONNAIRE RESULTS GROUPED BY DIMENSION.

Model Fluency Correctness Utility
Narrator 2.98 3.00 97.5 min

First Step AGIR 3.48 3.77 79.6 min
Final AGIR 4.13 3.90 74.3 min

VII. CONCLUSIONS

Cyber Threat Intelligence is an important topic for all com-
panies and organizations. With the use of CTI, defenses against
threat actors can be built proactively and more efficiently, thus
increasing the security of each asset. However, the sharing of
CTI data is still anchored to natural language, which further
delays the integration of the intelligence and the application
of the defense mechanisms. Furthermore, the dissemination of
the information is extremely time-consuming, forcing analysts
to write several reports each day to distribute their data.

Contribution. In this paper, we presented AGIR, a system
for the Automatic Generation of Intelligence Reports. AGIR
takes in input the JSON representation of a STIX graph
and uses it to generate a report containing all entities and
relationships contained. AGIR uses two different approaches
for Natural Language Generation: a template-based module
used for building a baseline report and a neural-based module
used to increase its fluency. Using this pipeline, we allow for
the generation of four different types of reports (overview, sub-
ject, timeline, and vulnerability). We experimentally evaluated
AGIR both quantitatively and qualitatively. We showed that
reports almost perfectly include the entities and relationships
contained in the STIX graph given in input (recall value of



0.99) without introducing any hallucination (precision value
of 1). Also, we assessed through Syntactic Log-Odds Ratio
scores and questionnaires that our reports are more fluent with
respect to other state-of-the-art models and that the usage of
AGIR can reduce production times by 42.6%.

Future Works. For future research endeavors, we aim to
validate the accuracy of the extrinsic evaluation results by
involving more domain experts who can assess AGIR in the
context of crafting actual security reports. Presently, AGIR
relies on ChatGPT, which may raise concerns related to cost
and privacy. An intriguing avenue for further investigation
would be to explore the development of an equivalent deep
learning model that can be employed locally, thereby mit-
igating the aforementioned issues. Additionally, a valuable
contribution could involve the creation of an extensive dataset
containing the pertinent STIX properties for a range of entities.
Such a dataset could serve as the foundation for training a
language model to generate initial reports, thus addressing the
maintainability challenge associated with template usage.
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APPENDIX A
QUESTIONNAIRES

In this appendix section, we give more details on the
questionnaires given to the expert analysts for the qualitative
evaluation of AGIR. In Appendix A-A, we show a sample of
the questionnaires and the reports provided to the analysts.
Moreover, we divide the evaluation of each model on each
report type and show their results in Appendix A-B.

A. Samples

The survey was conducted through a Google Forms module
that was sent to Leonardo’s employees. In particular, we
focused on the staff members of the Security Operation Center
(SOC), given their experience in CTI and, in particular, in
threat intelligence reporting. The questionnaires given to the
analysts are structured as follows. First, to establish a baseline
to evaluate AGIR’s utility, we ask each expert how much
time, on average, it takes for them to write a full report.
Afterward, for each of the four supported report types, we
do the following.

1) We describe the aim of the report type and the focus of
their entities and relationships. We also provide several
use cases to further contextualize the usage of those
particular reports.

2) We provide a graphical overview of the JSON input from
which the reports have been generated. Some examples
of those STIX graphs are shown in Figure 5, Figure 6,
and Figure 7.

3) We provide three examples of generated reports. Those
three samples are the report generated by Narrator, the
report generated by first step AGIR, and the report gen-
erated by final step AGIR. To avoid biases, the samples
are unmarked and randomized so that the analysts do not
know which report has been generated by our system.

4) We ask for an evaluation of each report’s accuracy,
described as the presence of true intelligence derivable
from the input.

5) We ask for an evaluation of each report’s fluency,
described as the quality of the text, its clarity, ease of
reading, and how close it is to a human-generated report.

6) We ask for an evaluation of each report’s utility, de-
scribed as how long the analyst would take to write a
full report starting from the presented one.

We provide several samples of the generated reports in our
publicly available repository.2

B. Results Divided by Report Type

The results of the survey divided into overview report,
subject report, timeline report, and vulnerability report are
shown, respectively, in Table IV, Table V, Table VI, and
Table VII. As we can see, the report type can heavily influence
the utility score, while fluency and correctness are more
consistent across the different templates. In particular, with
respect to Narrator, we can see a time reduction in report

2https://github.com/Mhackiori/AGIR/tree/main/Reports

uses

uses
target

target

usestarget

target related-toWinnti Group

Japan

ThailandT1014 - Rootkit

[Unknown Defense]

[Unknown Financial] 60.186.72.92

related-to
Cobalt Strike

unit42.paloaltonetworks.com

uses

ToddyCat

uses

Mustang Panda

PlugX

Fig. 5. JSON input example for Overview and Subject reports. When dealing
with the Subject report, we focus on the “Winnti Group” entity.

uses uses

S0183 - Tor

uses

APT29

usesLeviathan uses CostaRicto

T1573.002
Asymmetric Cryptography

T1090.003
Multi-hop Proxy uses

APT28

uses

CostaRicto

uses

Operation Wocao

related-to

Test_Hash

Fig. 6. JSON input example for Timeline reports.

https://github.com/Mhackiori/AGIR/tree/main/Reports


has

has

BloodHound

CVE-2050-001

CVE-2050-002

mitigates

Privileged Account
Management

mitigates

User Training

mitigates

Restrict Web-Based Content

Fig. 7. JSON input example for Vulnerability reports.

production of 27.8% for overview reports, 20.7% for subject
reports, 6.2% in timeline reports, and 46.9% in vulnerability
reports (on average 25.4%).

TABLE IV
QUESTIONNAIRE RESULTS FOR THE OVERVIEW REPORTS.

Model Fluency Correctness Utility
Narrator 2.92 2.77 109.2 min

First Step AGIR 3.85 3.46 86.9 min
Final AGIR 4.08 4.23 78.9 min

TABLE V
QUESTIONNAIRE RESULTS FOR THE SUBJECT REPORTS.

Model Fluency Correctness Utility
Narrator 2.85 2.92 91.2 min

First Step AGIR 3.92 3.54 68.1 min
Final AGIR 4.00 4.15 72.3 min

TABLE VI
QUESTIONNAIRE RESULTS FOR THE TIMELINE REPORTS.

Model Fluency Correctness Utility
Narrator 3.38 3.15 111.5 min

First Step AGIR 3.46 3.38 114.6 min
Final AGIR 3.61 3.92 104.6 min

TABLE VII
QUESTIONNAIRE RESULTS FOR THE VULNERABILITY REPORTS.

Model Fluency Correctness Utility
Narrator 2.84 3.07 78.1 min

First Step AGIR 3.84 3.53 48.8 min
Final AGIR 3.92 4.23 41.5 min
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