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Abstract—In the rapidly evolving healthcare industry, plat-
forms now have access to not only traditional medical records, but
also diverse data sets encompassing various patient interactions,
such as those from healthcare web portals. To address this
rich diversity of data, we introduce WellFactor: a method that
derives patient profiles by integrating information from these
sources. Central to our approach is the utilization of constrained
low-rank approximation. WellFactor is optimized to handle the
sparsity that is often inherent in healthcare data. Moreover, by
incorporating task-specific label information, our method refines
the embedding results, offering a more informed perspective on
patients. One important feature of WellFactor is its ability to
compute embeddings for new, previously unobserved patient data
instantaneously, eliminating the need to revisit the entire data
set or recomputing the embedding. Comprehensive evaluations
on real-world healthcare data demonstrate WellFactor’s effec-
tiveness. It produces better results compared to other existing
methods in classification performance, yields meaningful cluster-
ing of patients, and delivers consistent results in patient similarity
searches and predictions.

Index Terms—Patient profiling, Healthcare, Nonnegative ma-
trix factorization, Recommendation systems

I. INTRODUCTION

The digital revolution and the rise of healthcare web por-
tals have significantly changed patient interactions within the
healthcare domain. While these portals primarily serve pur-
poses such as accessing personal clinical records or scheduling
appointments, they also store extensive data on patient activi-
ties, including searches for clinical information and browsing
patterns [1]–[4]. This surge in healthcare big data comes with
challenges. One such challenge is the infrequent nature of user
interactions on these portals. While these portals experience
infrequent user interactions, unlike generic web domains, they
maintain a more accurate record of user demographics and
offer detailed clinical diagnosis information.

Profile-based models, leveraging user interaction histories,
have been effectively used for recommendation across various
domains [5]–[8]. Studies on embedding often focus on using
the learned vector in downstream machine learning models

§Haesun Park is the corresponding author.

Fig. 1. Illustration of the diverse patient data sources collected from
interactions on the web portal and with medical professionals.

regardless of their numerical value [9]. In contrast, our ap-
proach, akin to profile-based models, recognizes the latent
significance of each dimension in the learned profiles for
further recommendations. This is demonstrated in our Clus-
ter Analysis (subsection V-D), where embedding dimensions
directly correspond to key patient cluster characteristics.

This study aims to create comprehensive patient profiles
on healthcare web portals and utilizes demographic data
for refined classification and recommendation tasks. These
profiles integrate interaction data with diagnostic information,
offering a robust foundation for various applications, including
personalized healthcare recommendations. While many digital
platforms aim solely to enhance user engagement, healthcare
portals have additional considerations. Consequently, every
patient embedding or subsequent recommendation must reflect
both patient preferences and prospective health advantages.
For instance, demographic nuances, such as age, can sig-
nificantly influence user interaction patterns. Younger users,
notably those in their 20s and 30s, may display a pronounced
affinity for mobile applications, making them more receptive
to app-based health recommendations [10]–[13]. Conversely,
older users, particularly those in their 50s and above, may also
require more mental wellness support due to chronic illnesses
and related pains [14]–[16].

In this study, we introduce WellFactor, an algorithm based
on constrained low rank approximation (CLRA) that partic-
ularly employs nonnegativity constraints. This approach fa-
cilitates the integration of diverse user feature vectors directly
within the objective function. Several innovative aspects define
WellFactor:
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• Integration of data: The incorporation of integrative ob-
jective function and nonnegativity constraints, WellFactor
seamlessly blends various data sources, creating a com-
prehensive representation of patient profiles. Moreover,
our method handles missing or unobserved data domains,
addressing few-shot scenarios.

• Efficient embedding computation: WellFactor utilizes
an alternating block coordinate descent algorithm opti-
mized for unique characteristics of the objective function.
It avoids materializing extensive data matrices. Moreover,
WellFactor predicts embeddings for previously unseen
patients without the need to re-examine the entire data.

• Task-specific embeddings: With the incorporation of
semi-supervision, WellFactor is tailored to produce high-
quality embeddings, particularly optimized for certain
tasks. The enhanced embeddings offer a more refined
view of patients.

We evaluated WellFactor using real-world datasets obtained
from Kaiser Permanente’s web portal. Our evaluation process
has shown the effectiveness of WellFactor compared to other
methods. The results consistently showed that WellFactor
outperformed other existing methods, particularly in terms of
classification accuracy. The method demonstrated its capacity
to generate meaningful patient clusters with the potential to
tailor personalized healthcare recommendations. Moreover, its
efficacy in patient similarity searches and predictive tasks
showcases its comprehensive capability to utilize and rep-
resent patient data. Our results indicate the effectiveness of
WellFactor in handling healthcare data and its potential use
for healthcare professionals and researchers.

II. RELATED WORK

As described in Section I, the recommendation of wellness
apps in healthcare web portals is related to several areas such
as content-based recommendation, prediction in the healthcare
domain, clustering, and nonnegative matrix factorization. We
offer a brief literature review on each of these topics related
to our proposed approach.

A. Content-based Recommendation

Our goal is to produce personalized recommendations tai-
lored to individual user preferences and needs. Such method-
ologies have been explored under content-based recommen-
dation. Techniques that rely on the representation of item
contents that align with user interests are the basis of this
approach. Profile-based models emphasize the formation of
user preferences and interests as vectors or lists. Some models
construct user profiles based on users’ search or browsing
history within a specific time window [7], [8]. A clustering-
based approach groups user trajectories into distinct clusters,
suggesting different recommendations for each group [17].
Another approach treats recommendations as a classification
problem [18].

Several popular techniques are based on Artificial Neural
Networks (ANNs), with some incorporating aspects of the
Markov Decision Process [19]. For instance, some methods

employ reinforcement learning techniques to track the evolv-
ing interests of users [20], [21]. Others, such as the self-
attention-based method [22], utilize a time embedding model.

B. Contextual Embedding Methods and Clinical Domain-
Specific Embeddings

Contextual embedding methods generate vector representa-
tions of text that capture semantic nuances. GPT-2 (Generative
Pre-trained Transformer 2) [23] is a method used for capturing
long-term textual dependencies. SentenceBERT (SBERT) [24]
produces a fixed-size embedding vector for an entire text
input. Beyond generic embeddings, the healthcare domain
demands specialized embedding techniques to understand the
semantics of medical text. BioSentVec is one such approach
which focuses on matrix factorization-based embeddings for
biomedical sentences [25].

C. Prediction in the Healthcare Domain

The method we introduce is related to recommendations
within healthcare web portals. Previous research, such as
KETCH [26], has explored recommending relevant threads
on healthcare forums based on user symptoms or conditions.
The active incorporation of user diagnosis data in our study is
inspired by such insights. Our research direction is motivated
by representation techniques, such as Metacare++ [27], that
leverage the hierarchical structure of ICD-9 diagnosis codes.

D. Clustering and Constrained Low Rank Approximation

Our profiling technique is inspired by clustering methods,
especially those focused on constrained low rank approxima-
tion [28], [29]. The proposed method yields low-dimensional
representations, interpretable as probability distributions. Clus-
tering methods have been applied in recommendation systems,
including session clustering for web page recommendations
[30] and user clustering based on time-framed data [31].
Clustering based on evolving browsing data has also been
used for recommendations [32]. Recommendations have been
improved using multi-view clustering techniques [33]. Matrix
factorization-based techniques have been employed to produce
transparent recommendations [34]. The MEGA model [35]
uses nonnegative matrix factorization with a wide range of
hypergraphs.

III. HEALTHCARE WEB PORTAL DATA

In this study, our primary focus is on the integration of
clinical data with internet activity data within the healthcare
domain. Given the proprietary nature of our primary dataset,
we detail its characteristics to enhance reproducibility and
discuss its potential applicability to analogous public datasets.
The data we used in our research, sourced from Kaiser Per-
manente, has been anonymized in accordance with the Health
Insurance Portability and Accountability Act (HIPAA)1, en-
suring the privacy and security of patients’ information.

1Health Insurance Portability and Accountability Act (https://www.hhs.gov/
hipaa/)

https://www.hhs.gov/hipaa/
https://www.hhs.gov/hipaa/


Fig. 2. Graphical overview of the proposed WellFactor patient profiling framework.

TABLE I
STATISTICS ON THE DATA SET UTILIZED IN OUR STUDY

Diagnosis Search
Histories

Browsing
Activities

Demographics

# Patients 599, 499 298, 574 636, 150 1, 177, 031
# Instances 6, 268, 788 1, 220, 210 299, 099, 939 1, 177, 031
# Fields 3 1 1 2

TABLE II
OVERVIEW OF DATA FIELDS AND EXAMPLES

Data Used Field Name Examples

Diagnosis ICD-10 R80.9
official text PROTEINURIA
friendly text PROTEINURIA (PROTEIN IN URINE)

Search
Histories

query How to eat low carb

Browsing
Activities

site-path ‘kporg:health-
wellness:healtharticle.40-

positive-affirmations’

Demographics age 48
gender male

The data capture patient interactions on the Kaiser Per-
manente Digital (KPD) website2. As depicted in Figure 1,
this dataset offers a detailed view of patient information. It
encompasses medical diagnoses based on ICD-10 codes [36]
gathered during interactions with medical professionals, and
a broad spectrum of digital user interactions: search histories,
browsing activities, and demographic particulars such as age
and gender. All information, especially medical diagnoses, is
anonymized to ensure confidentiality. For a more granular
overview of the dataset, refer to Table I.

Table II provides an overview of the data sets, their fields,

2https://healthy.kaiserpermanente.org

and examples for each data set. Within the diagnosis data, the
primary field is the ICD-10 codes. These codes are derived
from treatments patients receive at Kaiser Permanente (KP)
and its affiliated clinics. Confirmed diagnoses from these
interactions are archived in KP’s electronic health record
systems. Each diagnosis in KP’s electronic health record
systems includes an “official text” (medical terminology) and
a “friendly text” (more colloquial name) annotated by KP
specialists for internal reference.

The data set also contains patients’ search histories on the
KP web portal. This platform allows users to input queries
to locate appointments, articles, and medical providers. These
search results are presented similarly to a conventional search
engine results page (SERP), and we specifically collected the
query expressions patients entered. Moreover, the browsing
activity data set contains the patients’ web page interaction
information on both desktop and mobile platforms. This
extends beyond search results to include pages displaying
personal data, clinician specifics, and appointment-booking
locations within the KP framework. We gathered information
on web pages accessed by users, which are marked with the
path signifying its position in KP’s internal web hierarchy.
Furthermore, essential demographics, such as age and gender,
were also recorded in the system. For all data, we limited the
data period of 2022 (from 2022-01-01 to 2022-12-31)

A. Label Collection for Semi-supervision and Evaluation

For semi-supervision and evaluation, we sourced labels
based on users’ interactions with a mental health app banner
displayed on KP’s home page during 2022. These apps include
Calm, Ginger, and myStrength. A cohort of randomly selected
users during this timeframe was exposed to this banner, which
directed them to download the self-care apps. Our labels
specifically identify whether a user clicked on this banner.
After label collection, we found that a mere 15,382 users
interacted with the banner, a small portion when compared

https://healthy.kaiserpermanente.org


with the total number of patients (1.1 M). Given this signifi-
cant imbalance, undersampling will be adopted in subsequent
experiments, such as classification.

B. Relation to Public Datasets

Our research dataset integrates clinical and digital do-
main records for over a million individuals, differing from
datasets like MIMIC-IV [37], which primarily offers patient
anonymized clinical notes and demographics. The integrative
nature of our dataset underscores its value and the oppor-
tunities it presents, even when public data is favored for
reproducibility. As public datasets evolve, aligning them with
diverse data sources will make them more valuable. A future
direction involves integrating textual data with public clinical
datasets like MIMIC-IV.

IV. METHODOLOGY

Our proposed patient profiling method integrates multiple
sources of data, distinguishing it from existing methods. By
integrating information from patients’ digital interactions and
medical records using our algorithms, our approach aims to
provide a broader understanding of patients. This is further
enhanced by the employment of semi-supervision techniques.
The architecture of our method is presented in Figure 2.

Leveraging the comprehensive dataset detailed in section III,
our methodology makes full use of all user data present in
the digital healthcare platform. Digital healthcare platforms
typically provide user interaction data with digital interfaces,
akin to the e-commerce sector, and diagnostic data from user
interactions with medical experts. We propose algorithms that
can effectively integrate multiple sources of heterogeneous
data domains, producing more accurate patient profiles. While
the details of our algorithms and implementations are demon-
strated using the search, browsing, and diagnosis data views
from section III, our method can be adapted to settings with
any number of heterogeneous data domains.

In this section, we introduce a new approach for learning
user profiles that utilizes multiple data sources simultaneously.
The features obtained from the proposed method provide a
richer representation of user behavior and preferences, as they
integrate information from various sources, such as content,
semantic relationships, and domain-specific information. Some
of the commonly utilized methods for information fusion
include early fusion which merges raw data at the data
representation level [38] and late fusion which solves a given
problem applying solution methods separately to each data set
and then merges the results [39]. Our method integrates the
objective functions from all data sets into a single objective
function.

The objective function level information fusion method we
introduce here does not require an input matrix that contains
all merged raw data as in early fusion. Instead, each part of the
merged objective function takes each representation of a data
set as its input. Then the goal of the overall merged objective
function is to find one common lower-dimensional embedding

that captures the essential information from all views of the
data by computing a common low rank factor.

A. Feature Processing

In order to provide effective recommendations, we consider
various user features derived from collected data. We utilize
the content information representing the content in the stan-
dard Term Frequency (TF) encoding. In addition, we incor-
porate features that capture semantic relationships between
words and phrases within the user’s textual data. We use GPT-
2 [23], a generative language model, and sentenceBERT [24],
a variation of the BERT model, optimized for sentence-level
representations, to process all data types, including search,
browsing, and diagnosis records. For the diagnosis data, we
additionally utilize BioSentVec [25], a sentence embedding
model specifically trained on biomedical texts, to capture the
domain-specific semantic information more effectively. Since
the range of elements in these three matrices from different
data sets may vary significantly, we use Min-Max scaling [40]
for each matrix.

B. Learning User Profiles

To illustrate the details, we assume that we have the three
different views for a set of n users, i.e., the users’ web search
data, browsing data, and diagnosis data. Then we generate
three feature-by-user matrices, which are search-by-user ma-
trix Ys ∈ Rms×n, browsing-by-user matrix Yb ∈ Rmb×n,
and diagnosis-by-user matrix Yd ∈ Rmd×n. Given a matrix
Yi where i ∈ {s, b, d}, the scaled matrix Xi is obtained as

Xi = (Yi −min(Yi))/(max(Yi)−min(Yi)),

where min(Yi) denotes the matrix of the same size as Yi

where all elements are identically set to the minimum of (Yi),
and max(Yi) is defined analogously using the maximum value
of the elements in Yi.

If we were to find a low rank approximation for just one of
the data sets Xi via nonnegative matrix factorization (NMF)
[41], then the objective function would be

min
{Wi,H}≥0

∥Yi −WiH∥F .

Now we merge three objective functions and produce a com-
mon embedding. Then the objective function for this method
is as follows:

min
(Ws,Wb,Wd,H)≥0

αs ∥Xs −WsH∥2F + αb ∥Xb −WbH∥2F

+ αd ∥Xd −WdH∥2F , (1)

where αs, αb, αd denote balancing factors for each low-rank
approximation term, and Xs, Xb, Xd represent the feature by
data matrices from each domain: search, browsing, and diag-
nosis, respectively. Note that the factor H is common across
all domains, which provides an embedding in k dimensional
space for the data items that reflects their relationships with
search, browsing, and diagnosis, simultaneously. The factors
Ws, Wb, and Wd represent the basis matrices in the reduced
k dimensional space for each domain.



The matrix H, resulting from solving our merged objective
function, serves a dual purpose: soft clustering and embed-
ding. Each column within H, specifically the ith column
Hi, encapsulates an integrated embedding of the ith data
item. Furthermore, it can also be understood as a probability
distribution that illustrates how the ith data item spans across
clusters. This approach facilitates a clearer interpretation of
results, as the learned embedding can be understood in terms
of the contributions of different cluster representatives present
in the columns of the basis matrices Ws, Wb, and Wd. This
methodology not only uses user profiles for downstream tasks
but also provides a latent factor representation, unifying char-
acteristics across all domains. For a more in-depth exploration
of the interpretation of the factor matrix H within the context
of the soft clustering, we refer to [41].

To optimize the objective function in Eqn. 1, we adopt a
Block Coordinate Descent (BCD) approach. In each iteration
of our proposed BCD method, we alternate updating one of
the matrices Ws, Wb, Wd, and H while fixing the other
three matrices by solving the following subproblems until a
stopping criteria is satisfied:

min
Wi≥0

∥Xi −WiH∥F , for i = s, b, d

min
H≥0

∥∥∥∥∥∥
√αsXs√

αbXb√
αdXd

−

√αsWs√
αbWb√
αdWd

H

∥∥∥∥∥∥
F

.
(2)

Each of the four subproblems is a nonnegativity-constrained
least squares (NLS) problem and there are several methods
that can effectively solve these NLS problems. We utilize the
BPP (Block Principal Pivoting) method as it has been shown
to produce the best performance in previous extensive studies
and for various possible stopping criteria, see [41]. Assuming
that each subproblem has a unique solution, the limit point of
the iteration will be a stationary point [41], [42].

In fact, the same objective function can be expressed as

min
(W̃,H)≥0

∥∥∥∥∥∥
√αsXs√

αbXb√
αdXd

− W̃H

∥∥∥∥∥∥
F

, (3)

which is the same as applying an NMF to the Xi’s scaled by√
αi and stacking them up. Then by scaling and partitioning

the computed factor W̃, we obtain the Wi’s. However, there
are added advantages of the proposed objective function level
fusion, in terms of its generalizability. The first is when some
view of the data is in the form of data-data relationships.
For example, suppose we have an additional view of the
data representing the relationships or interactions among the
users, which is represented in a similarity matrix A. Then
we can add an additional term of Symmetric NMF [43], [44],
αa

∥∥A−HTH
∥∥
F

to Eqn. 1 and compute the common H
factor that represents all four views of the data. This data-data
relationship information cannot be represented in the form in
Eqn. 3. In addition, when there are some missing elements in a
data matrix, we can compute the common factor H bypassing
the missing elements, i.e., not letting the missing elements

influence the result. We discuss this in detail in the next section
for Eqn. 1.

C. Unobserved Data: Assumptions and Matrix Masking

Data and features in each domain are not always fully
observed. It is essential to develop a method to handle un-
observed or missing data and features. This approach aids in
producing accurate recommendations based on the available
information. For search and browsing data, we assume a
closed-world assumption [45], meaning that unobserved ma-
trix entries indicate no existing relationship. This is due to
users having the freedom to search and browse, and they can
also choose not to engage in such activities based on their
intentions. On the other hand, for diagnosis data, we utilize
an open-world assumption [46], i.e., unobserved matrix entries
are considered to represent an unknown relationship. This is
because the absence of a diagnosis does not always reflect a
user’s intention. Instead, it may indicate that the user has not
received a diagnosis from a medical expert.

In order to handle unobserved entries in the diagnosis data,
we introduce a masking matrix M ∈ {0, 1}m×n, where its
entry is 1 when the corresponding entry in the diagnosis matrix
Xd is observed and 0 when it is not observed. We modify the
objective function in Eqn. 1 to incorporate the masking matrix
as follows

min
(Ws,Wb,Wd,H)≥0

αs ∥Xs −WsH∥2F + αb ∥Xb −WbH∥2F

+ αd ∥M ◦ (Xd −WdH)∥2F . (4)

As in the previous section, we use the BCD framework to solve
Eqn. 4, updating the four factor matrices in each iteration.
Updating of Ws and Wb can be done in the same way as in
Eqn. 2, respectively. However, the updating of H and Wd will
be different due to the masking matrix. Considering the effects
of the masking matrix, the subproblems in Eqn. 2 change as
follows:

min
Wd≥0

∥M ◦ (Xd −WdH)∥F ,

min
H≥0

∥∥∥∥∥∥
 √

αsXs√
αbXb

M ◦
(√

αdXd

)
−

 √
αsWsH√
αbWbH

M ◦
(√

αdWdH
)
∥∥∥∥∥∥

F

.

Accordingly, Wd and H can be updated row by row and
column by column, respectively, using the following rules:

min
Wd(j,:)≥0

∥Xd(j, :)D(M(j, :))−Wd(j, :)HD(M(j, :))∥F ,

(5)

min
H(:,j)≥0

∥∥∥∥∥∥
 √

αsXs(:, j)√
αbXb(:, j)√

αdD(M(:, j))Xd(:, j)

−

 √
αsWs√
αbWb√

αdD(M(:, j))Wd

H(:, j)

∥∥∥∥∥∥
F

,

(6)

where D(z) denotes the diagonal matrix whose diagonal
entries are defined by the given row or column vector z, i.e.,
D(z) = [dij ]n×n and dii = zi where z ∈ Rn and zi is the
i-th component of z.



D. Semi-Supervised Embedding

Incorporating partially known prior information can enhance
the quality of patient profiles. Our semi-supervised learning
approach, grounded in data-level supervision, exploits the par-
tially observed labels of the data items to refine the embedding
quality. This semi-supervised approach optimizes the patient
profiling framework’s efficacy, potentially leading to improved
outcomes in applications.

Given the availability of partial label information for data
items, this prior knowledge can be seamlessly integrated into
the embedding algorithm using the label matrix Xl. The matrix
Xl ∈ {0, 1}p×n denotes the partially observed labels where p
represents the number of distinct label classes for users. An
entry xij

l = 1 indicates that the jth object is part of the ith

class.
In our application context, a data item represents a user. As

highlighted in Section III, we have label information indicating
whether a user has accessed any mental wellness support
apps, particularly those focused on self-care such as Calm,
Ginger, and myStrength. It is worth noting that while we
exemplify the semi-supervision process using labels of mental
wellness support app download attempts in this context, the
label could be representative of various patient statuses. This
might include particular diagnoses or interactions with specific
medical resources, emphasizing the flexibility of our approach.

By integrating this partially observed label information into
our semi-supervised learning framework, the algorithm makes
use of the available information to capture the underlying
structure of the user. Consequently, this contributes to more
informed patient profiles. To implement this semi-supervision,
we extend the objective function by including a new term
that minimizes the Frobenius norm of the difference between
the observed labels Xl and their approximated values WlH,
where Wl is an additional basis matrix for labels:

min
(Ws,Wb,Wd,Wl,H)≥0

αs ∥Xs −WsH∥2F + αb ∥Xb −WbH∥2F

+ αd ∥M ◦ (Xd −WdH)∥2F + αl ∥Ml ◦ (Xl −WlH)∥2F ,

where αl is a regularization parameter that controls the
trade-off between fitting the observed labels and the other
components of the objective function, and Ml is an entry-
wise masking matrix that indicates whether an entry in Xl is
observed or not.

The update process for Wl is analogous to the columnwise
update of Wd as shown in Eqn. 5. Therefore, the detailed
procedure will be skipped for brevity. The columnwise update
of H can be extended from Eqn. 6 and is expressed as follows:

min
H(:,j)≥0

∥∥∥∥∥∥∥∥


√
αsXs(:, j)√
αbXb(:, j)√

αdD(M(:, j))Xd(:, j)√
αpD(Mp(:, j))P(:, j)

−


√
αsWs√
αbWb√

αdD(M(:, j))Wd√
αPD(Mp(:, j))Wp

H(:, j)

∥∥∥∥∥∥∥∥
F

E. Embedding of Previously Unseen Data Items

Given the multi-domain information about users, we can
predict the embedding for a previously unseen patient based
on the already computed bases vectors for search, browsing,

and diagnosis, i.e., Ws, Wb, and Wd. In the following, we
show how to achieve this using the integrated nonnegative
least squares (NNLS) method. Suppose a new patient signs
up and we have information on the person such as search
histories, browsing activities, and diagnosis. Using the results
we have already computed from the WellFactor method from
known patients, we can determine a profile for this new patient.
Let q be the patient’s ID to be entered as a query. The
patient’s observed search, browse, and diagnosis records, once
processed analogously as described in subsection IV-A, are
represented as column vectors Xq

s , Xq
b , and Xq

d . Consequently,
computing for Hq in the equation below offers the patient’s
profile representation across three subspaces represented in
Ws, Wb, and Wd:

min
Hq≥0

αs ∥Xq
s −WsH

q∥2F + αb ∥Xq
b −WbH

q∥2
F

+ αd ∥Xq
d −WdH

q∥2
F
.

(7)

The objective function in Eqn. 7 computes the patient embed-
ding, Hq . This embedding succinctly represents the patient
based on their individual records, placing them within the
established embedding subspace.

To foster reproducibility and encourage further develop-
ments in patient profiling, the code for our WellFactor frame-
work has been made publicly available. Interested researchers
and developers can access and utilize the codebase via our
GitHub repository3.

V. EVALUATION AND RESULTS

In this section, we evaluate our method across various tasks
related to patient profiling and recommendation. Specifically,
our evaluation concentrates on three primary tasks: classifica-
tion (identifying which group a patient belongs to), clustering
(grouping similar patients), predicting patient embeddings,
and similarity search (finding patients analogous to a given
example).

A. Evaluation Setting

1) Competing Methods: We selected several baseline algo-
rithms for user embedding as comparisons for our proposed
method:

• HashGNN [47]: Given that our problem setting can
be conceptualized as graphs, incorporating HashGNN is
a logical step. It involves constructing a graph where
nodes signify patients, diagnoses, queries, and pages. This
method was run with standard parameters.

• Text Embeddings: GPT-2 and SentenceBERT are promi-
nent text embeddings. To create user embeddings with
them, we computed embeddings for each domain-specific
text associated with users and then derived their average.

• Biomedical-Domain Embedding: BioSentVec, specifi-
cally designed for the biomedical domain, was applied
only to diagnosis domain texts to compute average em-
beddings.

3https://github.com/skywalker5/wellfactor

https://github.com/skywalker5/wellfactor


TABLE III
COMPARISON OF VARIOUS EMBEDDING METHODS EVALUATED USING XGBOOST: METRICS INCLUDE ROC-AUC, ACCURACY, RECALL, PRECISION,

AND F1-SCORE. RESULTS ARE PRESENTED IN TERMS OF MEAN PERCENTAGES WITH STANDARD DEVIATIONS. THE BOLD VALUES REPRESENT THE BEST
SCORES AND UNDERLINED VALUES SIGNIFY THE SECOND-BEST SCORES FOR EACH METRIC.

Method ROC-AUC Accuracy Recall Precision F1-score

HashGNN 65.95 ± 0.63 62.09 ± 0.44 65.91 ± 3.84 61.60 ± 1.20 63.61 ± 1.56
GPT-2 (PCA) 76.73 ± 0.52 69.74 ± 0.58 69.92 ± 3.53 70.11 ± 1.79 69.94 ± 1.26
SentBERT (PCA) 75.46 ± 0.58 68.86 ± 0.56 71.96 ± 4.29 67.88 ± 1.39 69.77 ± 1.56
BioSentVec (PCA) 65.37 ± 1.04 61.41 ± 0.82 68.45 ± 6.19 60.44 ± 1.82 64.01 ± 2.15
WellFactorNS 81.47 ± 0.56 73.68 ± 0.70 74.70 ± 4.27 73.64 ± 2.98 74.01 ± 0.81
WellFactorS 81.65 ± 0.55 73.98 ± 0.55 76.13 ± 1.91 73.11 ± 0.97 74.57 ± 0.79

These competitors were selected based on their common use
and relevance to our application. Since GPT-2, SentenceBert,
and BioSentVec were utilized to constitute our initial data
features, our intent is to assess if an integrative embedding
approach with the same embedding size can improve upon
performance of these individual methods.

2) Experimental Details: For a fair comparison, we stan-
dardized the embedding length at 128 dimensions. If the inher-
ent dimensionality of any method exceeded this, we employed
Principal Component Analysis (PCA) to reduce the dimension
to 128. In our XGBoost model, we appended patients’ age and
gender information to the embedding for training and testing,
acknowledging age and gender’s potential impact on health-
related outcomes. We treated gender as a categorical feature,
exercising the flexibility XGBoost offers in handling diverse
data types. To ensure the reliability and stability of our results,
we averaged metrics over 10 experiments and also computed
the standard deviations. This iterative approach provides a
broad overview of the method’s robustness.

B. Classification for App Recommendations

In applying our method, our goal is to predict if a user will
engage with a mental health support app among the available
options. This task bears resemblance to link prediction or
ranking challenges commonly encountered in the realm of
information retrieval. To assess the quality of our app rec-
ommendations, we collected visitation logs for the relevant
download pages of the apps: Calm, Ginger, and myStrength
as described in subsection III-A. A binary representation
was employed to capture user engagement. Users visiting the
download page at least once were assigned a value of 1, and
all others were assigned a value of 0. We employed XGBoost
for our evaluations, due to its reputation for efficiency and
accuracy. XGBoost, an implementation of gradient boosted
decision trees, is known for its flexibility in handling various
data types, including categorical variables like gender. Conse-
quently, we incorporated patients’ age and gender information
in concatenation with the computed embeddings, widening
data’s breadth and depth.

1) Performance Metrics: To evaluate the classification per-
formance, we compare the output predictions with actual
labels. We compute the count of categories: true positive (TP),
false positive (FP), true negative (TN), and false negative (FN).
Then, fundamental metrics such as recall (or true positive

rate, TPR), precision, and the F1 score are computed. The
classifier’s outcome is a list of probabilities of patients being
positive. Setting the optimal threshold of the probability will
modify the number of predicted positives and metrics like
precision and recall. The ROC curve visualizes this by plotting
the TPR against the false positive rate (FPR) across thresholds
between 0 and 1. The area under this curve, known as the
ROC-AUC, gives us a singular metric indicative of our model’s
performance across all thresholds.

To address the problem that metrics such as recall, precision
or F1 score are sensitive to threshold selections, the Youden
index offers a way to determine an optimal threshold. This
index, mathematically represented as J = TPR−FPR, com-
putes the threshold where the balance between sensitivity (or
recall) and specificity is maximized. Thus, by optimizing the
Youden index, we identify a threshold that best translates our
continuous prediction scores into binary outcomes, enabling
meaningful comparisons using metrics such as Precision,
Recall, and F1 score.

C. Classification results

Our proposed methods, namely WellFactorNS (without semi-
supervision) and WellFactorS (with semi-supervision), have
showcased remarkable efficacy when contrasted with other
baseline techniques. Specifically, the WellFactorS method
achieved an impressive ROC-AUC of 81.65%, accuracy of
73.98%, recall of 76.13%, and an F1-score of 74.57%. Its
counterpart, WellFactorNS, although slightly trailing in some
metrics, presented a praiseworthy ROC-AUC of 81.47% and
an F1-score of 74.01%, reflecting its competitive performance.

D. Cluster Analysis of Patients

Our approach inherently provides information on both em-
bedding and soft clustering results. One of the unique attributes
of WellFactor is the imposition of nonnegative constraints
[48]. The dimension with the highest value in a patient’s
embedding can be interpreted as the predominant cluster that
best describes that patient.

The basis matrices, represented by Wi(i = s, b, d), serve as
the outputs of our model, characterizing representative patients
for each cluster within specific domains (search, browse, and
diagnose). It is important to note that while part of each Wi

matrix is derived from term-frequency matrix decomposition,
other rows correspond to other text embeddings. Every row



TABLE IV
SUMMARY OF CLUSTER ANALYSIS RESULTS

Data Domain Cluster 1 Cluster 2 Cluster 3 Cluster 4 Cluster 5

Search 1 cpap autopay general autopay pharmacy
2 apria auto optometrist auto refill
3 supplies taxes mandarin payments refills
4 department 1095a indian payonline receipts
5 wang payonline appoitment send phone

Browse 1 sleep premium task html5 technical
2 problems estimates whoops reprom dispose
3 durable billing ns pb unwanted
4 equipment getting videovist vb termsconditions
5 apnea manager footer autopay drugs

Diagnose 1 sleep bloating nose resuscitate meningioma
2 apnea salivary dysphagia myasthenia myopathy
3 snoring leiden idiopathic gravis manic
4 cpap splints prolactinoma macrocytosis fall
5 rhythm shin hands dependent l1

in Wi represents either a specific keyword from the term-
frequency decomposition or an embedding from the other
mentioned models.

Using WellFactor, we derived a 128-dimensional embed-
ding. Out of these 128 clusters, we selectively emphasized the
five largest clusters. Then, the top five keywords are selected
within each cluster that exhibited the highest values in the
corresponding columns of Wi matrices for each domain.
The results are summarized in Table IV. For example, in
Cluster 1 in particular, we observe recurring keywords such as
‘sleep’ and ‘apnea’ across various domains, demonstrating the
robustness of our method. Such findings underline the efficacy
of our approach and also suggest its potential application in
facilitating group-based recommendations.

E. Prediction and Similarity Search

The subsequent analyses focus on the evaluation of our
embedding method for predictability and similarity search.
Given the multifaceted nature of healthcare data, it is critical
to assess whether our embedding technique can capture the
intrinsic relationships between patients and reliably predict
their future interactions or diagnoses. Our primary objective
is to evaluate the predictability of our embedding technique.
Here is how we approached this:

a) Selection of Diseases for Analysis: As presented in
Table VI, the diseases chosen for this study were selected
based on worldwide prevalence, profound impact on mortality,
and significant associations with modifiable risk factors. Hy-
pertension and Diabetes, for instance, are directly influenced
by dietary habits, sedentary lifestyles, and obesity [49]. COPD
(Chronic Obstructive Lung Disease) emerges primarily due
to smoking and environmental pollutants [50], while Chronic
Kidney Disease is frequently a complication of other con-
ditions, illustrating the intricate interrelations of these dis-
eases [51]. Depression, exacerbated by modern-day stressors
and societal pressures, is becoming increasingly prevalent [52].
Cancers, on the other hand, span a vast range of conditions,
with a mix of genetic, environmental, and lifestyle origins [53].

Additionally, the study addresses obesity, with recent findings
indicating alarming health effects of being overweight and
obesity in a majority of countries over the past 25 years [54].
Osteoarthritis, a degenerative joint disease particularly of the
hip and knee, represents another significant global health
burden, and its occurrence is expected to increase with an
aging population [55].

b) Data Preparation: We initially established cohorts of
individuals diagnosed with major diseases in the 4th quarter
(Q4) of 2022. The underlying assumption is that people with
similar embedding vectors are more likely to share certain
health outcomes, including the emergence of specific diseases.

c) Embedding Calculation: Using data from the first
three quarters (Q1, Q2, and Q3), we computed the embedding
for each patient. This ensures that our embedding results
are derived solely from historical data, allowing us to make
predictions about events in the upcoming quarter (Q4).

d) Similarity Search: For each patient diagnosed with a
major disease in Q4, we calculated the vector distance between
their embedding (from Q1-Q3) and the embedding results of
all other patients. This allowed us to rank other patients based
on their similarity.

e) Performance Assessment: To evaluate the efficacy of
our embedding method in identifying similar patients, we
measured its accuracy using the “precision@k” metric. This
metric indicates the proportion of retrieved relevant patients
among the top k predictions. Given a patient diagnosed with
a disease in Q4, another patient is considered “relevant” if they
were also diagnosed with the same disease in Q4. Formally:

Precision@k =
# of relevant items in the top k predictions

k
.

As a baseline, we also compute the theoretical precision when
matching patients randomly by ranking patient similarities
without any consideration for their embedding vectors. Thus,
we aim to demonstrate the absolute baseline performance one
might expect without any predictive modeling. Comparing the
precision values obtained from our embedding approach with



TABLE V
PERFORMANCE OF THE PROPOSED EMBEDDING METHOD FOR PREDICTING MAJOR DISEASES IN Q4 BASED ON DATA FROM Q1, Q2, AND Q3. THE

EVALUATION IS DONE BY FINDING THE TOP SIMILAR PATIENTS USING THE VECTOR DISTANCE IN THE EMBEDDING SPACE AND CHECKING HOW MANY OF
THEM ARE IN THE SAME COHORT. THE PRECISION@K VALUES INDICATE THE PROPORTION OF TRUE POSITIVE PREDICTIONS AMONG THE TOP K

PREDICTIONS.

Disease Number of Patients in Cohort precision@10 precision@20 precision@50 Random Precision

Hypertension 3,244 1.25% 1.23% 1.18% 0.51%
Diabetes 5,313 2.78% 2.65% 2.49% 0.83%
COPD 363 0.34% 0.25% 0.20% 0.06%
Chronic Kidney Disease 2,949 2.67% 2.64% 2.41% 0.46%
Depression 2,945 1.28% 1.29% 1.27% 0.46%
Cancers 2,136 0.95% 0.91% 0.91% 0.34%
Obesity 6,159 2.35% 2.32% 2.31% 0.97%
Osteoarthritis 2,269 0.78% 0.80% 0.83% 0.36%

TABLE VI
SELECTED DISEASES AND THEIR ICD-10 CODES

Disease ICD-10 Code

Hypertension I10
Diabetes E11, E12, E13, E14
Chronic Obstructive Pulmonary Disease (COPD) J44
Chronic Kidney Disease N18
Depression F32, F33
Cancers C00-C97
Obesity E66
Osteoarthritis M15-M19

the theoretical random baseline offers a clear picture of our
method’s predictive capability.

f) Discussion of Results: The results, as summarized in
Table V, clearly demonstrate the potential of our embedding
approach for predicting major diseases for patients based
on historical data. For every disease under consideration,
our method consistently outperforms the theoretical random
baseline, highlighting its efficacy in capturing meaningful
patient similarities. Furthermore, even in instances where the
precision values might seem modest, such as in COPD, the
difference between our method’s precision and the random
baseline is still marked, reinforcing the utility of our approach
for identifying patients with similar health outcomes.

VI. CONCLUSION

We propose WellFactor, a method for patient profiling
using integrative embedding of healthcare data. Our method
seamlessly integrates information from multiple sources to
create comprehensive patient profiles and has been shown
to outperform existing methods in classification, clustering,
and similarity searches. It efficiently handles missing or un-
observed data and can compute embeddings for previously
unseen patients. WellFactor is a versatile tool for deriving
meaningful insights from diverse healthcare data sources, en-
abling personalized healthcare recommendations and improved
patient care.
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