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ABSTRACT
Graph Neural Networks (GNNs) have become increasingly impor-
tant in recent years due to their state-of-the-art performance on
many important downstream applications. Existing GNNs have
mostly focused on learning a single node representation, despite
that a node often exhibits polysemous behavior in different contexts.
In this work, we develop a persona-based graph neural network
framework called PersonaSAGE that learns multiple persona-based
embeddings for each node in the graph. Such disentangled represen-
tations are more interpretable and useful than a single embedding.
Furthermore, PersonaSAGE learns the appropriate set of persona
embeddings for each node in the graph, and every node can have a
different number of assigned persona embeddings. The framework
is flexible enough and the general design helps in the wide appli-
cability of the learned embeddings to suit the domain. We utilize
publicly available benchmark datasets to evaluate our approach
and against a variety of baselines. The experiments demonstrate
the effectiveness of PersonaSAGE for a variety of important tasks
including link prediction where we achieve an average gain of 15%
while remaining competitive for node classification. Finally, we
also demonstrate the utility of PersonaSAGE with a case study for
personalized recommendation of different entity types in a data
management platform.
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1 INTRODUCTION
In recent years, Graph Neural Networks (GNNs) have become in-
creasingly important due to their state-of-the-art performance on
many important downstream applications including link prediction
and node classification [5, 15, 23, 24, 27, 31, 32]. Existing GNNs
have mostly focused on learning a single node embedding (or rep-
resentation) [23, 32], despite that a node often exhibits polysemous
behavior in different contexts [3]. For instance, an individual may
have many different personas, e.g., a user may be a researcher,
father, coach, and activist [14, 22]. These personas may be funda-
mentally different or even impossible for other individuals. Each
one of these general personas may also have sub-personas that
capture specific behaviors and characteristics of each, which we
call sub-personas. However, existing methods are unable to learn
such sets of persona embeddings for each node in the graph.

To address this limitation, we develop a persona-based graph
neural network framework called PersonaSAGE that learns a set of

Single Embedding Multiple Embeddings

PersonaSAGE

Figure 1: Overview of the learning objectives of Per-
sonaSAGE and prior work. While previous work has mainly
focused on learning single embedding per node, a few recent
works learn multiple embeddings per node. In contrast, Per-
sonaSAGEnot only learnsmultiple persona embeddings but
also learns the appropriate number of persona embeddings
per node.

embeddings for each node in the graph. Furthermore, PersonaSAGE
learns the appropriate set of persona embeddings for each node in
the graph, and every node can have a different number of assigned
personas. In Figure 1, we provide an intuitive overview comparing
the learning objective of PersonaSAGE to previous work. Consider
the real-world scenario of roles in a data management platform. The
central node is that of a data science manager and is represented by
two embeddings: blue and green. The green embedding denotes the
role of the manager (and their sub-roles). The other nodes being
individual contributors such as a data analyst, data engineer or
data scientist are represented by embeddings other than the green
embedding based on their respective roles. The manager doubles
as one of these roles, for instance, data scientist, and is additionally
represented by a blue embedding. This scenario illustrates the need
for different nodes in the graph to be represented by a varying
number of embeddings depending on their role and community
membership. Each set of embeddings collectively represents the
node. Notably, as shown in Figure 1, every node can have a different
set of embeddings along with a different number of assigned embed-
dings as well. For instance, one node in Figure 1 has 3 embedding
vectors compared to the other nodes that have only 2 embeddings.
Furthermore, the nodes with 2 embedding vectors are also distinct,
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representing different personas (behaviors and structural charac-
teristics) altogether, which is shown by the color of the embedding
vectors in Figure 1.

The experiments demonstrate the effectiveness of our approach
for link prediction and node classification. Overall, we find that Per-
sonaSAGE always outperforms the other methods across all graphs
and prediction tasks. For link prediction, PersonaSAGE achieves a
mean gain of 15% over the best baseline method across all graphs.
PersonaSAGE also performs well for node classification achieving a
mean gain of 1% and up to 17% over the other methods. Furthermore,
we also conducted a case study in Section 4 where PersonaSAGE
is applied for personalized recommendation of queries, attributes,
and datasets. In this case study, PersonaSAGE learns multiple em-
beddings per node from a large heterogeneous graph derived from
the usage logs of users (from a data management platform). No-
tably, PersonaSAGE significantly outperforms the other methods,
achieving a gain of 19.2%, 15.7%, and 21.7% in AUC over the best
baseline method for query, attribute, and dataset recommendation
tasks, respectively. These results demonstrate the effectiveness of
PersonaSAGE and its ability to learn sets of embeddings for ev-
ery node in the graph that appropriately capture the contextual
behavior and personas of the nodes.

The main contributions are as follows:

• Problem Formulation: We introduce the problem of auto-
matically learning sets of embeddings for each node in the
graph, which may also be of different sizes depending on the
structural characteristics surrounding the node.
• Novel Framework: This work develops PersonaSAGE, a
novel graph neural network framework that learns multiple
embeddings for every node, which are also flexible in size.
Hence, PersonaSAGE may learn 2 embeddings for one node
and 3 embeddings for another, thus, every node is automati-
cally assigned the appropriate set of embeddings.
• Effectiveness: Through comprehensive experiments, Per-
sonaSAGE is shown to be extremely effective for a wide
variety of application tasks including link prediction and
node classification. Notably, PersonaSAGE outperforms the
other methods across a wide variety of graphs. Finally, we
also demonstrate the utility of PersonaSAGE on a case study
where we apply these techniques for personalized recom-
mendation of queries, datasets, and attributes in a data man-
agement platform.

2 PersonaSAGE FRAMEWORK
In this section, we describe the proposed approach called Per-
sonaSAGE. We first provide an overview and then detail the al-
gorithm for the generation of multiple sets of persona embeddings.
Later, we describe specific choices involved in our approach such
as persona assignments and the kind of aggregations involved. An
end-to-end optimization problem is designed to learn the parame-
ters for downstream applications such as link prediction and node
classification.

2.1 Problem Formulation
In this work, we investigate the new problem formally described
below. Given an arbitrary graph 𝐺 = (𝒱,ℰ) along with its ad-
jacency matrix A, the problem is to learn multiple embeddings
𝒳𝑣 = {x1, x2, . . .} for every node 𝑣 ∈ 𝒱 where (i) for any two dif-
ferent nodes 𝑢, 𝑣 ∈ 𝒱 , |𝒳𝑢 | ≠ |𝒳𝑣 | may hold and (ii) |𝒳𝑢 ∪𝒳𝑣 | =
|𝒳𝑢 | + |𝒳𝑣 |. Intuitively, (i) implies that different nodes can have
different number of embeddings whereas (ii) implies that the embed-
dings learned for any node in the graph are unique (non-identical),
otherwise ∃ 𝑢, 𝑣 ∈ 𝒱, |𝒳𝑢 ∪ 𝒳𝑣 | < |𝒳𝑢 | + |𝒳𝑣 | would hold. Let
𝐾 = max𝑣∈𝒱 |𝒳𝑣 | denote the maximum number of embeddings
per node in 𝐺 such that 𝐾 ≪ 𝑛, where 𝑛 is the number of nodes
in 𝐺 . Without loss of generality, all embeddings are assumed to
be of fixed size 𝐷 , i.e., (x𝑖 ∈ 𝒳𝑣) ∈ R𝐷 . Intuitively, each learned
embedding x𝑖 ∈ 𝒳𝑣 represents a set of “sub-personas” for a given
“structural context”, which are also automatically learned from the
data.1 As an aside, in this work, uppercase letters in calligraphic
bold font denote sets,𝒳 .

2.2 Overview
Figure 2 highlights the given inputs and desired outputs of the
system and an overview of our proposed model, PersonaSAGE. As
shown, given a sample graph comprising 𝑛 = 6 nodes and their
node embeddings, we compute a reference persona label for each
node through a clustering algorithm by assuming𝐾 sets of personas
in the input graph data. Suppose that𝐾 = 4 personas are considered
and each persona is represented by a distinct color. To visualize,
assume the output cluster labels as highlighted in Step 1 of the
figure. We can convert them into one-hot characteristic encodings,
c𝑣 ∈ R𝐾 for each node 𝑣 in the graph.We refer to these encodings as
initial persona membership vectors whose each element defines the
degree of association of every persona to the given node. For each
node, by using an initial node embedding and persona member-
ship vector as input, each layer of PersonaSAGE iteratively updates
them based on the neighboring nodes as highlighted in Step 2 in the
figure. The model finally yields a set of persona embeddings and a
corresponding updated persona membership vector for each node.
The desired output for this example is represented in the last block
of the figure where node𝐴 has a higher membership for the red per-
sona than the violet and has 2 corresponding persona embeddings
as intuitive from its neighborhood. Similarly, node 𝐵 has a persona
embedding for each of the 3 persona memberships, namely red,
violet, and blue with proportions relative to its neighborhood. Our
model is capable of finding the appropriate number of personas for
each node. In the next section, we describe the update procedures
for the persona membership vector as well as their corresponding
persona embeddings for each node.

2.3 Algorithm
The core idea behind the PersonaSAGE algorithm is to represent
each node as a set of persona embeddings where the cardinality of
this set may differ for different nodes. Let 𝐾 denote the maximum
number of persona embeddings (or embedding vectors) per node.
For instance, 𝐾 = 4 in Figure 1 as a user may have four embedding
1This is in contrast to recent work [8] that assumes the different contexts are given as
input and simply learns an embedding for each one.
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Figure 2: Overview of our proposed approach, PersonaSAGE.

vectors since there are four different colors denoting the various
persona embedding vectors. Furthermore, let 𝐷 denote the maxi-
mum embedding size for the 𝐾 different persona embeddings that
a node in 𝐺 can be assigned. Our approach models the persona
representation of a node 𝑣 as a combination of two aspects: (i) a
persona membership vector c𝑣 ∈ R𝐾 of unit length (∥c𝑣 ∥1 = 1)
denoting proportionate degree of membership for each persona,
and (ii) the corresponding persona embeddings for non-zero per-
sona memberships,𝒳𝑣 = {x𝑖 | c𝑣,𝑖 > 0, x𝑖 ∈ R𝐷 }. We represent c𝑣,𝑖
to denote the degree of engagement or association of a particular
node 𝑣 to a persona 𝑖 ∈ 1, . . . , 𝐾 while x𝑖 denotes the corresponding
persona embedding in a 𝐷 dimensional vector space.

The forward propagation algorithm for PersonaSAGE is formally
defined in Algorithm 1. Given a graph, 𝐺 (𝒱,ℰ), its initial set of
node embeddings {x𝑣,∀𝑣 ∈ 𝒱} and the number of personas𝐾 to be
computed, along with the given set of initial membership vectors
{c𝑣 | 𝑣 ∈ 𝒱} as prior knowledge, the algorithm finds multiple (and
different) sets of persona embeddings 𝒳𝑣 for each node 𝑣 in the
graph. We also provide a strategy to learn membership vectors in
the next section, in case the prior knowledge is not known.

The model initializes each persona embedding for a given node
𝑣 ∈ 𝒱 from the same input node features of that node to avoid
any bias in Line 1. For each layer 𝑙 of the network, the algorithm
performs two updates. The first update happens for persona mem-
bership vector C𝑙𝑣 by aggregating information from its neighbors
𝒩 (𝑣) and then applying normalization in Line 5 and 6 respectively.
We assume that the persona membership vector of a node is likely
to be influenced by that of its neighbors and we update it at each
layer of the network. This update strategy is based on the intu-
ition that the persona of a node is a function of itself and that of
its neighbors where the neighborhood of a node is defined as its
directly connected nodes. The next update happens separately for
each persona, where the updated membership vector is used to
condition the neighboring persona embeddings of the previous
layer {X𝑙−1

𝑢,𝑖
, 𝑢 ∈ 𝒩 (𝑣)} for a reference node 𝑣 before applying a

suitable aggregator function as described in Line 10. Intuitively, for
the 𝑖-th persona embedding of a node is updated based on 𝑖-th per-
sona embeddings of its neighbors conditioned upon their persona
memberships C𝑙

𝑢,𝑖
. We discuss various alternatives for aggrega-

tion functions in a subsequent section. The aggregated information
from neighbors’ 𝑖-th persona h𝑙𝒩 (𝑣),𝑖 is then concatenated with the
node’s own 𝑖-th persona embedding {X𝑙−1

𝑣,𝑖
} and passed through a

neural network (affine transformations followed by a non-linear ac-
tivation function 𝜎 (·) such as Sigmoid) where W𝑙 denote learnable
weight matrices of this neural network. Note that a single neural

network is trained per layer and is the same for each persona. Both
the update steps could be individually parallelized at the node level
for efficient computation. Finally, the set of embeddings for which
persona memberships are non-zero is returned. To reiterate, we aim
to disentangle the node embeddings as a set of multiple persona
embeddings conditioned by the persona membership vector.

The time complexity of the forward propagation phase of Algo-
rithm 1 is 𝑂 (𝐿 · 𝑛 · 𝐾 · 𝑑), where 𝑛 is the cardinality of 𝒱 , and 𝑑 is
an upper bound of the maximum degree of the nodes. This time
complexity can be significantly reduced by accounting for matrix
computation and parallelism. We examine various clustering al-
gorithms (e.g., KMeans, Ward) along with a choice of aggregation
functions in an ablation study in Section 3.

Algorithm 1: PersonaSAGE Forward Propagation
Input :Graph 𝐺 (𝒱,ℰ); input features {x𝑣,∀𝑣 ∈ 𝒱};

number of clusters 𝐾 ; membership vectors
{c𝑣 ∈ R𝐾 ,∀𝑣 ∈ 𝒱}; number of layers 𝐿

Output :Persona Embeddings𝒳𝑣,∀𝑣 ∈ 𝒱
/* Initialisation */

1 X0
𝑣,𝑖

= x𝑣,∀𝑖 ∈ {1, . . . , 𝐾},∀𝑣 ∈ 𝒱 ;
2 C0

𝑣 = c𝑣,∀𝑣 ∈ 𝒱 ;
3 for 𝑙 ← 1 to 𝐿 do

/* Persona Membership Update */

4 for 𝑣 ∈ 𝒱 do
5 C𝑙𝑣 = C𝑙−1𝑣 +∑𝑢∈𝒩 (𝑣) C𝑙−1𝑢 ;
6 C𝑙𝑣 = C𝑙𝑣/∥C𝑙𝑣 ∥1 ;
7 end

/* Persona Embeddings Update */

8 for 𝑣 ∈ 𝒱 do
9 for 𝑖 ← 1 to 𝐾 do
10 h𝑙𝒩 (𝑣),𝑖=𝑓

𝑙
𝑎𝑔𝑔𝑟𝑒𝑔𝑎𝑡𝑒

({
(C𝑙
𝑢,𝑖
,X𝑙−1
𝑢,𝑖
) |𝑢 ∈ 𝒩 (𝑣)

})
;

11 X𝑙
𝑣,𝑖

= 𝜎

(
W𝑙 ·𝐶𝑂𝑁𝐶𝐴𝑇

[
X𝑙−1
𝑣,𝑖
,h𝑙𝒩 (𝑣),𝑖

] )
;

12 end
13 end
14 end
15 𝒳𝑣 =

{
X𝑣,𝑖 | C𝑣,𝑖 > 0,∀𝑖 ∈ {1, . . . , 𝐾}

}
;

16 return𝒳𝑣 ;

2.4 Persona Assignment
We now describe how to obtain initial persona membership vectors
which our algorithm relies on as prior knowledge. We pose it as
a clustering problem by partitioning the nodes in a graph 𝐺 into
𝐾 mutually exclusive sets. More formally, a node 𝑣 belonging to
cluster 𝑖 will have a persona membership vector c𝑣 = e𝑖 ∈ {0, 1}𝐾 ,
i.e., a one-hot encoded vector. We investigate various clustering al-
gorithms such as KMeans, Spectral Clustering, Ward’s Hierarchical
Clustering, etc. for partitioning nodes in a graph. The clustering out-
puts a label denoting a hard assignment of a persona to each node.
Our algorithm leverages this static assignment and automatically
learns new personas for every node based on their neighborhood.
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2.5 Aggregator Functions
An aggregator function is used to collect and transmit important
and combined information from neighboring nodes 𝒩 (𝑣) to a
given node 𝑣 . Since this information aggregation is not tied to a
specific order, the aggregator functions are to be order invariant.
We investigate three kinds of aggregator functions that are used to
combine the persona information from neighborhood nodes 𝒩 (𝑣)
to a reference node 𝑣 . Each describes how the persona membership
value 𝑐 ∈ R≥0 combine with its corresponding persona embedding
x𝑢 ∈ R𝐷 and interact in the neighborhood𝒩 (𝑣) of node 𝑣 .

2.5.1 Mean. This aggregation performs an average operation of
the information collected from neighbors, i.e.,

𝑓𝑎𝑔𝑔𝑟𝑒𝑔𝑎𝑡𝑒 ({(𝑐, x𝑢 ) | 𝑢 ∈ 𝒩 (𝑣)}) =
∑
𝑢∈𝒩 (𝑣) 𝑐 · x𝑢
|𝒩 (𝑣) |

2.5.2 Sum. This aggregation sums up the information collected
from neighbors, i.e.,

𝑓𝑎𝑔𝑔𝑟𝑒𝑔𝑎𝑡𝑒 ({(𝑐, x𝑢 ) | 𝑢 ∈ 𝒩 (𝑣)}) =
∑︁

𝑢∈𝒩 (𝑣)
𝑐 · x𝑢

2.5.3 Max. This aggregation performs the element-wise max op-
eration of the neighboring node vectors, i.e.,

𝑓𝑎𝑔𝑔𝑟𝑒𝑔𝑎𝑡𝑒 ({(𝑐, x𝑢 ) | 𝑢 ∈ 𝒩 (𝑣)}) = [ max
𝑢∈𝒩 (𝑣)

(𝑐 · x𝑢,1), ...]

2.6 Training and Optimization
Until now, we have discussed sets of persona embeddings with dif-
ferent cardinalities. For sake of practical usage in downstream tasks,
we may need to obtain a single embedding of fixed length for each
node.We can use multiple aggregation strategies. A straightforward
option is an orderly concatenation of all 𝐾 persona embeddings:

X̃𝑣 = X𝑣,1 ⊕ X𝑣,2 ⊕ . . . ⊕ X𝑣,𝐾

where we do not condition them with persona memberships. An-
other way is to explicitly condition them by scaling the embeddings
with persona membership vector before concatenation:

X̃𝑣 = (C𝑣,1 · X𝑣,1) ⊕ (C𝑣,2 · X𝑣,2) ⊕ . . . ⊕ (C𝑣,𝐾 · X𝑣,𝐾 )

and return this embedding than the set of persona embeddings
which is shown in Line 15 in Algorithm 1. We adopt, the above for-
mulation for computing final node embeddings in the experiments.
Here, ⊕ denotes the concatenation operation.

Now, this vector can be easily used for downstream tasks. We
describe two benchmark tasks: link prediction and node classifica-
tion. For link prediction, the similarity score between two nodes
𝑢, 𝑣 is defined as the inner vector product: 𝑠𝑖𝑚(𝑢, 𝑣) = X̃𝑢 ⊙ X̃𝑣 . For
node classification, the node embeddings X̃𝑣 can be fed to a neural
network to learn node labels. In both cases, a standard loss function,
such as cross-entropy loss, can be readily used in backpropagation
to learn the weight parameters of the PersonaSAGE model.

3 EXPERIMENTS
In this section, we design experiments to investigate the effective-
ness of PersonaSAGE for link prediction (Section 3.2) and node
classification (Section 3.3). We then conduct an ablation study in
Section 3.4.

Table 1: Dataset Statistics.

Dataset #Classes #Nodes #Edges #Features

Citeseer 6 3,327 4,732 3703
Cora 7 2,708 5,429 1433
PubMed 3 19,717 44,338 500

3.1 Experimental setup
3.1.1 Data. We consider the following citation network datasets
for experiments: Cora, Citeseer, PubMed [25]. These are datasets
are a network of scientific publications (nodes), connected via a
citation relationship, i.e., one publication cites another. Each node
in the datasets is represented by a fixed-length vector derived using
a bag-of-words representation of the document. The count of nodes,
edges, and features is shown in Table 1. The edge weights, if any,
are not considered and we assume the graphs as undirected for sake
of simplicity. The usage of these datasets is for two downstream
tasks explained in the subsequent sections. Given two publications
(an edge), the model could learn to predict if one cites another (link
prediction) or given a publication (node), the model could learn to
predict their classes as described in Appendix A. These features
are normalized (min-max) to obtain a range between 0 and 1. For
our approach, we initialize the persona membership vector as the
one-hot encoding of cluster labels obtained by applying a clustering
algorithm on the normalized features. Since the clustering algorithm
usually requires the number of clusters (𝐾 ) to be supplied as input,
we assume the number of personas is equivalent to the number of
classes found in the data for sake of simplicity. This could be set to
any other value as well.

3.1.2 Baselines. We use the following methods for comparison:
ChebNet (Cheb) [6], GraphConvolutionNetwork (GCN) [13], Graph-
SAGE [10], Graph Attention Networks (GAT) [27], Topology Adap-
tive Graph convolutional networks (TAG) [7], EdgeConv (Edge) [29],
Simple Graph convolution (SGN) [30]. See Appendinx A for fur-
ther details. We use a standard implementation of the baselines, as
provided by Deep Graph Library (DGL) [28], with default hyperpa-
rameters wherever required and keep them constant throughout.
Analogous to a simple Neural Network (NN) with a hidden layer,
we build a Graph Neural Network (GNN) model with 2 same con-
volution layers (hidden and output) for each baseline with a ReLU
activation function in between. The hidden and final embedding
dimensions are kept constant for each baseline model and that of
PersonaSAGE for a fair comparison. Though ours is a multi em-
bedding approach, we keep the final embedding size equal to that
obtained from baselines by adjusting the output dimension (𝐷) and
the number of personas (𝐾 ) such that their concatenation yields a
match.

3.1.3 Training and Evaluation. Given a graph dataset, we hold out
15% of data for testing model performance while another 15% to
select the best model learned during training as part of the val-
idation set. All models are trained for 100 epochs using Adam
Optimizer [12] with a learning rate of 0.01. The loss function used
for optimization is cross-entropy between predictions and ground
truth values. All experiments are seeded for reproducibility and
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Table 2: Link Prediction Results.

Citeseer Cora PubMed

Model Raw Feat Random Feat Raw Feat Random Feat Raw Feat Random Feat

Cheb 0.733 ± 0.03 0.563 ± 0.09 0.686 ± 0.06 0.603 ± 0.10 0.803 ± 0.03 0.778 ± 0.01
Edge 0.639 ± 0.03 0.576 ± 0.02 0.515 ± 0.02 0.475 ± 0.04 0.80 ± 0.00 0.732 ± 0.01
GAT 0.734 ± 0.02 0.661 ± 0.02 0.678 ± 0.01 0.661 ± 0.01 0.743 ± 0.01 0.699 ± 0.01
GCN 0.711 ± 0.01 0.682 ± 0.01 0.682 ± 0.01 0.676 ± 0.01 0.791 ± 0.00 0.726 ± 0.01
GraphSAGE 0.816 ± 0.01 0.802 ± 0.01 0.667 ± 0.02 0.618 ± 0.02 0.747 ± 0.01 0.713 ± 0.01
SG 0.705 ± 0.01 0.671 ± 0.01 0.681 ± 0.01 0.674 ± 0.02 0.788 ± 0.01 0.723 ± 0.00
TAG 0.822 ± 0.02 0.798 ± 0.02 0.718 ± 0.00 0.717 ± 0.00 0.829 ± 0.00 0.774 ± 0.01
PersonaSAGE 0.872 ± 0.02 0.907 ± 0.00 0.828 ± 0.01 0.911 ± 0.01 0.950 ± 0.00 0.871 ± 0.02

Table 3: Ablation study link prediction results investigating different variants of our PersonaSAGE framework.

Citeseer Cora PubMed

Model Raw Feat Random Feat Raw Feat Random Feat Raw Feat Random Feat

PersonaSAGE-KM (𝐾 = 1) 0.753 ± 0.00 0.747 ± 0.00 0.740 ± 0.02 0.709 ± 0.01 0.939 ± 0.00 0.843 ± 0.01
PersonaSAGE-KM-max 0.823 ± 0.05 0.863 ± 0.00 0.748 ± 0.04 0.869 ± 0.00 0.880 ± 0.01 0.822 ± 0.00
PersonaSAGE-KM-sum 0.789 ± 0.05 0.885 ± 0.01 0.763 ± 0.03 0.884 ± 0.01 0.881 ± 0.01 0.834 ± 0.01
PersonaSAGE-KM 0.881 ± 0.02 0.916 ± 0.01 0.857 ± 0.01 0.908 ± 0.01 0.951 ± 0.00 0.885 ± 0.00
PersonaSAGE-Birch 0.872 ± 0.02 0.908 ± 0.00 0.833 ± 0.01 0.909 ± 0.01 0.951 ± 0.00 0.871 ± 0.02
PersonaSAGE-Spec 0.867 ± 0.02 0.902 ± 0.02 0.828 ± 0.01 0.878 ± 0.03 - 0.819 ± 0.01
PersonaSAGE 0.872 ± 0.02 0.907 ± 0.00 0.828 ± 0.01 0.911 ± 0.01 0.950 ± 0.00 0.871 ± 0.02

run with 5 different seeds resulting in different parameter initial-
izations of weights along with a different data split. The mean and
standard deviation of best scores are reported in tables. All other
hyperparameters (hidden size, output size, etc.) are kept constant
throughout. The embedding size for the first GNN layer is set to
128. For Cora, the embedding size of second layer 𝐷 is set to 70 for
all baseline models while for PersonaSAGE it is 10, since we assume
𝐾 = 7 personas in the data and each persona embedding is of size
10, the concatenated embedding size (7𝑥10 = 70) is unchanged.
Similarly, for Citeseer we assume 𝐾 = 6 and for PubMed 𝐾 = 3
with 𝐷 = 10. Results with ‘−’ indicate lack of completion. Unless
otherwise mentioned, the PersonaSAGE variants use the mean ag-
gregator. Further, PersonaSAGE refers to the default approach that
uses the mean aggregator with Ward clustering.
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Figure 3: Comparing link prediction test performance (AUC)
as a function of the number of epochs used for training on
the PubMed dataset. Strikingly, PersonaSAGE achieves sig-
nificantly better performance across all training epochs.

3.2 Link Prediction
Wefirst investigate the effectiveness of PersonaSAGE for link predic-
tion. In particular, the goal of the link prediction task is to accurately
predict the likelihood of the formation of new edges in the graph.
Given a pair of nodes, the likelihood can be computed in terms
of similarity between the two nodes as the inner product of the
two node embeddings followed by a Sigmoid activation. This task
measures the capability of the embeddings to capture the structure
and topology of the graph. The edge set is randomly split into train
and test sets, thus serving as positive samples for each set. An equal
size set of remaining unconnected edges is constructed and split
in the same proportions as the train and test set. This randomly
sampled set serves as negative samples. This setup is adopted in
many works, see [1, 9, 24].

In Table 2, we compare PersonaSAGE to a wide variety of other
graph representation learning methods. For link prediction, we
investigate using both the raw input features that are typically used
for node classification (due to their correlation with the class labels
of the nodes) and we also study using random features since there
is no guarantee that the raw input features would be useful for
the link prediction task. Notably, we observe that PersonaSAGE
outperforms the other methods across all graph datasets and across
both feature settings including the setting where raw input features
are used and another where we instead leverage random features
(Table 2). Interestingly, PersonaSAGE performs best on Citeseer
and Cora when the input features are randomly initialized as op-
posed to using the standard input features that are typically used
for node classification. For instance, we achieve 0.907 on Citeseer
when random features are used compared to only 0.872 when using
the raw input features as shown in Table 2. PersonaSAGE always
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Table 4: Node Classification Results.

Model Citeseer Cora PubMed

Cheb 0.707 ± 0.04 0.763 ± 0.04 0.876 ± 0.0
Edge 0.629 ± 0.08 0.719 ± 0.02 0.862 ± 0.0
GAT 0.665 ± 0.03 0.781 ± 0.02 0.830 ± 0.0
GCN 0.721 ± 0.04 0.851 ± 0.02 0.843 ± 0.01
GraphSAGE 0.714 ± 0.03 0.781 ± 0.04 0.866 ± 0.01
SG 0.709 ± 0.04 0.853 ± 0.02 0.842 ± 0.01
TAG 0.616 ± 0.10 0.833 ± 0.04 0.872 ± 0.0
PersonaSAGE 0.722 ± 0.02 0.859 ± 0.01 0.877 ± 0.01

outperforms the best baseline method with a gain of 6%, 15%, and
14% using raw input features and 13%, 27%, and 12% when random
features are used for Citeseer, Cora, and Pubmed, respectively. Nev-
ertheless, in all cases, PersonaSAGE achieves significantly better
predictive performance compared to the wide range of baseline
methods. These results indicate the advantage and utility of Per-
sonaSAGE over the other baselines for this prediction task.

In Figure 3, we investigate the performance of the different
methods as the number of training epochs varies. Strikingly, Per-
sonaSAGE achieves significantly better performance across all num-
ber of training epochs. This holds true for training with very few
epochs as observed in Figure 3. Furthermore, the best performance
of PersonaSAGE is achieved when using only 20 training epochs,
and slightly decreases with additional epochs. In contrast, many of
the other methods achieve their best performance using a far larger
number of epochs compared to PersonaSAGE. For instance, Graph-
SAGE achieves an AUC of 0.70 when using 100 training epochs
whereas PersonaSAGE achieves a significantly better AUC of 0.90
using only 10 epochs. This is a 10x difference in the number of
epochs, while significantly outperforming GraphSAGE in terms of
AUC (0.90 compared to 0.70).

In Table 3, we investigate a few different variants from the pro-
posed PersonaSAGE framework. Notably, we observe that these
different variants often outperform the previous variant in Table 2.
For instance, the PersonaSAGE-KM-max variant that uses K-Means
(KM) with the max aggregator performs the best on PubMed. Fur-
thermore, while there is not a single PersonaSAGE variant that
always performs best across all graphs and input features, the Per-
sonaSAGE variant that uses k-means with the mean relational ag-
gregator outperforms the other variants most consistently. In partic-
ular, this variant always performs best when using the actual input
features compared to using random input features (which models
the case where such features may not exist for the input graph). As

Table 5: Ablation study results comparing different Per-
sonaSAGE variants for node classification.

Model Citeseer Cora PubMed

PersonaSAGE-KM (K=1) 0.663 ± 0.07 0.837 ± 0.04 0.872 ± 0.01
PersonaSAGE-KM-max 0.720 ± 0.02 0.858 ± 0.01 0.878 ± 0.0
PersonaSAGE-KM-sum 0.699 ± 0.03 0.850 ± 0.02 0.728 ± 0.17
PersonaSAGE-KM 0.716 ± 0.03 0.838 ± 0.02 0.874 ± 0.01
PersonaSAGE-Birch 0.722 ± 0.02 0.861 ± 0.01 0.875 ± 0.01
PersonaSAGE-Spec 0.729 ± 0.02 0.854 ± 0.02 -
PersonaSAGE 0.722 ± 0.02 0.859 ± 0.01 0.877 ± 0.01
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Figure 4: Comparing the node classification test accuracy as
a function of the number of epochs on the PubMed dataset.
Notably, PersonaSAGE outperforms the othermethods even
when a relatively small number of epochs is used for train-
ing.

an aside, we also compare a PersonaSAGE variant that leverages a
single embedding per node called PersonaSAGE-KM (K=1), which
as shown in Table 3 often performs the worst compared to the other
PersonaSAGE variants, indicating the effectiveness of learning mul-
tiple embeddings per user. We perform additional ablation study
experiments in Section 3.4.

3.3 Node Classification
Now we investigate using PersonaSAGE for the node classification
task. In Table 4, we observe that PersonaSAGE always outperforms
the other methods across all benchmark datasets. For node clas-
sification, we use the raw input features since they are known to
be correlated with the class labels we are predicting for the nodes.
We also investigate a number of PersonaSAGE variants from the
proposed framework for node classification. Results are provided in
Table 5. Notably, we observe that different PersonaSAGE variants
perform best for the different graphs. In particular, PersonaSAGE-
Spec performs best for Citeseer, PersonaSAGE-Birch performs best
for Cora, and PersonaSAGE-KM-max performs best for PubMed.
Most importantly, in all cases, we find that these results are even bet-
ter than the PersonaSAGE results in Table 4. Hence, these variants
achieve even better performance compared to the other methods.

To investigate the effectiveness of PersonaSAGE as the number
of epochs increases, we compare the node classification accuracy
as the number of epochs increases for PersonaSAGE along with
a variety of state-of-the-art methods. From Figure 4, we observe
that PersonaSAGE achieves the best performance compared to the
other methods, even when a modest number of epochs is used. In
particular, PersonaSAGE always outperforms the other methods
when using 40 epochs or more as shown in Figure 4.

3.4 Ablation Study
We investigate the impact of the maximum number of persona
embeddings per node 𝐾 by varying this hyperparameter from 𝐾 ∈
{1, 2, . . . , 10}. For this experiment, we use the PersonaSAGE variant
that leverages K-Means and mean aggregator (PersonaSAGE-KM).
We ensure the final embedding size remains constant by reducing
the size of the persona embeddings accordingly. For instance, sup-
pose the final embedding size is 50 and the maximum number of
embeddings per node is 𝐾 = 10, then the size of each of the 𝐾 = 10
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Figure 5: Varying the maximum number of persona embed-
dings 𝐾 per node in PersonaSAGE for link prediction and
node classification.

embeddings per node is set to be of size 𝐷 = 5. Results are reported
in Figure 5 for both link prediction and node classification. Overall,
we observe that for link prediction, the performance generally in-
creases for Cora and Citeseer while remaining approximately the
same for PubMed. In contrast, node classification performance of
Citeseer is best when 𝐾 = 4, then decreases as 𝐾 increases further,
whereas the best performance of PersonaSAGE on Cora is 𝐾 = 2
and remains approximately the same for Citeseer. These results
indicate the utility of PersonaSAGE and its ability to learn multiple
embeddings per node in the graph.

4 CASE STUDY
In this section, we investigate using PersonaSAGE to recommend
different types of entities from usage log data of a data management
system. Such user interaction logs contain the data queries executed,
datasets used, along with the attributes selected in those datasets.
By leveraging such usage logs of user activities, we can learn a
model for the personalized recommendation of such entities. The
goal is to leverage user interactions (from the usage logs) with the
platform for building a personalized recommendation engine for
users, datasets, queries, etc.

4.1 Data and Graph Construction
The usage log data (from a data management system) consists of a
list of queries issued by users interacting with a data management

Figure 6: Personalized recommendation performance (ROC
AUC) as a function of the max number of persona embed-
dings per node (number of clusters) 𝐾 for the usage log data
(from a data management system).

platform. Each query consists of a list of attributes (columns) refer-
enced from their respective datasets. We parse the query to yield
its referenced attributes and datasets using SQL Parser (Python
Library) and map it with the corresponding user along with the
issued query. We consider a heterogeneous graph with 4 types of
nodes including users, queries, datasets, and attributes. We form an
(undirected) edge between, for instance, a user and query node if
the user has initiated that query. Similarly, we form edges between
users and datasets, users and attributes based on interactions.

4.2 Experimental Setup
We investigate the persona embeddings for this large and sparse
heterogeneous graph in the context of link prediction. The task
designed is exactly same as stated in Section 3.2 just that the whole
graph is treated as homogeneous and the negative samples are
drawn uniformly across the graph. This set would contain uncon-
nected node pairs from all combinations such as user-user, user-
query, query-dataset, and so on. Further, for conducting the experi-
ment, we use a two-layer GNN architecture with the same hyperpa-
rameters as described in Section 3.1.3 unless explicitly stated. Since
we do not have input features, we randomly initialize all of them
with embedding size 100. The hidden size is kept 128 and output
dimension 𝐷 is varied over {20, 30, 50, 70, 100}.

Table 6: Results for Personalized Query, Attribute, and
Dataset Recommendation (AUC).

Query Attribute Dataset

Cheb 0.500 0.500 0.500
Edge 0.668 0.684 0.548
GAT 0.593 0.495 0.689
GCN 0.700 0.730 0.635
GraphSAGE 0.723 0.716 0.660
SG 0.683 0.655 0.604
TAG 0.722 0.707 0.579
PersonaSAGE 0.862 0.845 0.839
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4.3 Results
In this section, we investigate using PersonaSAGE to recommend
any arbitrary type of entity to a user in a personalized fashion. In
particular, results for three different personalized recommendation
tasks includingqery, attribute, and dataset recommendation
are provided in Table 6. Overall, we observe that PersonaSAGE
outperforms the other methods across all three personalized recom-
mendation tasks as shown in Table 6. The improvement compared
to the next best method across the three different recommenda-
tion tasks is significant. Notably, compared to the best performing
baseline method, PersonaSAGE achieves a gain of 19.2%, 15.7%, and
21.7% in AUC for query, attribute, and dataset recommendation
tasks, respectively. Furthermore, while PersonaSAGE always out-
performs the other methods across all three recommendation tasks,
there is not a single baseline method that always performs best
across all three recommendation tasks. For instance, GraphSAGE
is the best performing baseline method for query recommenda-
tion, whereas GAT outperforms the other baseline methods for the
dataset recommendation task. In contrast, PersonaSAGE performs
best independent of the personalized recommendation task.

To further understand the approach, we now investigate a slightly
different experimental setup where the held out set for a specific
user can contain a mix of different entity types, including datasets,
attributes, and queries. Results are provided in Table 7. Notably, we
observe that PersonaSAGE outperforms the other methods across
all embedding sizes 𝐷 ∈ {20, 30, 50, 70, 100} as shown in Table 7.
Furthermore, PersonaSAGE achieved a mean gain of 12.37% in AUC
over the best performing baseline when 𝐷 = 100 is used. In Fig-
ure 6, we report performance as we vary the maximum number
of persona embeddings per node for 𝐷 ∈ {20, 50, 100}. Notably,
these results indicate that PersonaSAGE is well-suited to predict
any arbitrary link type, as we do not restrict the held-out links to
a specific type in this experiment. These results demonstrate the
overall effectiveness of our approach for prediction in such complex
heterogeneous graphs.

Table 7: Results for recommendation of any arbitrary link-
type (AUC). These results include recommendation of a va-
riety of different link-types such as user-query links, user-
dataset links, and user-attribute links.

𝐷 = 20 𝐷 = 30 𝐷 = 50 𝐷 = 70 𝐷 = 100
GraphSAGE 0.770 0.770 0.778 0.755 0.778
GCN 0.828 0.803 0.72 0.837 0.822
TAG 0.787 0.848 0.854 0.809 0.824
GAT 0.725 0.75 0.687 0.731 0.729
PersonaSAGE 0.857 0.861 0.907 0.909 0.926

5 RELATEDWORK
Recent advances in approaches for network embeddings have re-
ceived a lot of attention due to their effectiveness in capturing both
local and global contexts of the networks. These approaches for
learning network representations can be grouped based on various
criteria. Some of the graph convolution methods include GCN [13]
and Chebnet [6], which present a model based on spectral convo-
lution graph operations, extending convolutions from Euclidean

grids to graphs. The forward propagation is computed by stacking
layers of the product of a normalized graph Laplacian, the data,
and the model parameters, which is the result of approximating
Chebyshev polynomials. These papers utilize techniques to opti-
mize computation, and report results across distinct datasets. In [6]
results are presented for the image classification dataset, and text
categorization dataset. [13] showcases results for a 2-layer GCN
node classifier on citation network datasets.

Apart from spectral-based approaches [11], there are various
spatial-based convolution approaches [10, 16] for effectively lever-
aging the spatial contexts. For instance, Graph Attention Networks
(GAT) [27] implements multi-head attention on the local neighbor-
hood of a node and demonstrates results on citation networks, and
a protein-protein interaction dataset. Edgeconv [29] builds mod-
els for the tasks of classification, part segmentation, and semantic
segmentation through edge convolutions on point cloud data. SGN
[30] simplifies the architecture of GCN by removing non-linearities,
and presents results on citation and social networks. A survey of
several graph neural network architectures is presented in [31].

Another line of works learn node representations using simu-
lated random walks on the graph. Works by [2, 9, 20, 26], which
compute (single) node embeddings based on random walks are
transductive approaches in nature. They require a retraining pro-
cedure every time a new node is encountered. There have been
some inspiring recent advances in the direction of capturing the
polysemous behavior of nodes in a graph. PolyDeepwalk [14] pro-
pose a multi-embedding approach to model multiple facets of nodes
and highlight the effectiveness of a multi-embedding representa-
tion than a single vector. Asp2vec [19] propose an unsupervised
end-to-end pipeline to compute multiple aspects of nodes based
on their local context. However, these approaches follow the same
drawback of using random walks which render them less effective
in scenarios for growing networks. PinnerSage [18] is a bipartite
clustering approach that assigns users multiple embeddings. How-
ever, the embeddings assigned to the users are not unique, that
is, two or more users can share the exact same embedding vector,
which makes the multiple embeddings not as useful. Other work
introduced polysemy embeddings [8] but simplify the problem by
learning embeddings for each facet (or graph). This is essentially
equivalent to heterogeneous embedding methods that learn embed-
ding vectors for each context/mode.

All these works inspire our thinking for developing a flexible,
general, and yet performant framework for capturing polysemous
nature (persona) in a large-scale network. We note a differentiation
of our work from these multi-embedding approaches is that our
approach learns a set of embeddings where the number of (persona)
embeddings may be different for different nodes which are learned
automatically from local and global structures.

6 CONCLUSION
We generally come across scenarios where a single entity performs
in a polysemous way, such as an individual’s behavior in the context
of a sports player, father, etc. We represent this nature as multiple
personas of the same entity but in different contexts. In this work,
we proposed a novel approach called PersonaSAGE that learns
multiple persona embeddings per node along with their persona
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weights. Notably, the set of embeddings learned for every node may
differ depending on the structural context around a given node. We
demonstrated the effectiveness of PersonaSAGE for a wide variety
of application tasks including node classification and link prediction.
Finally, we also conducted a case study where we investigated using
PersonaSAGE for recommending queries, attributes, and datasets
to users. In all cases, PersonaSAGE significantly outperformed the
other methods across all graphs and application tasks.
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APPENDIX
A EXPERIMENTAL SETUP DETAILS
A.1 Data
The datasets used in the experiments are described below:
• Each node (a publication) in the Citeseer dataset is labeled
as one of the six domains: Agents, Artificial Intelligence,
Databases, Information Retrieval, Machine Learning, and
Human Computer Interaction.
• The Cora dataset consists of publications (nodes) belonging
to one of the following classes: Case Based, Genetic Algo-
rithms, Neural Networks, Probabilistic Methods, Reinforce-
ment Learning, Rule Learning, and Theory.
• The PubMed dataset comprises of publications (nodes) clas-
sified as one of the 3 categories of Diabetes (Experimental,
Type 1 and Type 2).

A.2 Baselines
The baselines used in experiments are described below:
• ChebNet (Cheb) [6]: The Chebyshev spectral filter, derived
from the Spectral CNN, uses an efficient pooling strategy to
capture the features in a localized region.
• Graph Convolution Network (GCN) [13]: This kind of con-
volution operation introduced a first-order approximation
of the ChebNet in the space of spectral filters. It can be con-
sidered as combining information from neighbors with a
self-loop on every node.
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• GraphSAGE [10]: The authors proposed an inductive ap-
proach to aggregate neighborhood information with the
node’s current information and apply linear transformations
followed by non-linearity (e.g., Sigmoid).
• Graph Attention Networks (GAT) [27]: Unlike GraphSAGE,
this approachweighs the neighborhood information by learn-
ing the relative edge weights using an attention network.
• Topology Adaptive Graph convolutional networks (TAG) [7]:
The authors propose a topology-aware spectral filter for
graph convolution operation by extending the neighborhood
definition used in GCN to capture higher-order neighbor-
hood information.
• EdgeConv (Edge) [29]: Inspired from PointNet [21], the au-
thors propose a differential and pluggable convolution opera-
tormodule designed to capture the topological and geometric
features of point clouds.
• Simple Graph convolution (SGN) [30]: The authors propose a
rather simplifying computation for graph convolution opera-
tion by reducing the non-linearities in order to scale to large
graphs and without drastically reducing the performance.

B PROPERTIES OF PERSONASAGE
In this subsection, we note some salient aspects of the PersonaSAGE
algorithm by remarking on the variation in the number of persona
embeddings per node.

Variable number of persona embeddings: For an arbitrary
graph, the number of embeddings per node will depend on the
clustering algorithm and topology of the graph. For instance, con-
sider a graph with 𝑛 nodes and 𝑘 = 𝑛 clusters, where start and end
nodes have degree 1 and interior nodes have degree 2 and are con-
nected to the previous and next nodes. In this case, if the number of
GNN layers is less than log3 𝑛, then there will be a variable number
of persona embeddings for each node, which can be obtained by
analyzing the aggregation of the membership vectors across the
layers.

Weisfeiler-Lehman test: The GraphSAGE algorithm is related
to the Weisfeiler-Lehman test. This is a graph isomorphism test,
which maintains node labels or hashes by aggregating labels of
neighboring nodes, and across iterations. The 1-WL test, which is
also called the vertex color refinement algorithm, aggregates infor-
mation for a node across its node neighbors. The 𝑘-dimensional
Weisfeiler-Lehman test defines the node neighborhood to be𝑛many
𝑘-tuples of nodes, whereas the 𝑘-FWL version considers 𝑘 number
of 𝑘-tuples. It is known that for each 𝑘 ≥ 2 there is a pair of non-
isomorphic graphs distinguishable by (𝑘 + 1)-WL but not by 𝑘-WL.
Higher-order variants of the WL-test form the basis of recent work
on graph neural networks [4, 5, 15, 17]. Though there are similari-
ties with the WL-test, we do not consider the graph isomorphism
problem in this paper further. In comparison to the prior art, 𝑘-
dimensional cluster membership provides a distinct definition of a
node’s neighborhood, which determines the aggregation logic in
the PersonaSAGE algorithm.
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