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Abstract—The task of predicting conversion rates (CVR) lies at
the heart of online advertising systems aiming to optimize bids to
meet advertiser performance requirements. Even with the recent
rise of deep neural networks, these predictions are often made
by factorization machines (FM), especially in commercial settings
where inference latency is key. These models are trained using
the logistic regression framework on labeled tabular data formed
from past user activity that is relevant to the task at hand.

Many advertisers only care about click-attributed conversions,
which are conversions that occurred after a user has clicked
on an ad. A major challenge in training models that predict
conversions-given-clicks comes from data sparsity - clicks are
rare, conversions attributed to clicks are even rarer. However,
mitigating sparsity by adding conversions that are not click-
attributed to the training set impairs model calibration, causing
the mean prediction to no longer converge to the actual CVR.
Since calibration is critical to achieving advertiser goals, this is
infeasible.

In this work we use the well-known idea of self-supervised
pre-training, and use an auxiliary auto-encoder model trained
on all conversion events, both click-attributed and not, as a
feature extractor to enrich the main CVR prediction model.
Since the main model does not train on non click-attributed
conversions, this does not impair calibration. We adapt the basic
self-supervised pre-training idea to our online advertising setup
by using a loss function designed for tabular data, facilitating
continual learning by ensuring auto-encoder stability, and incor-
porating a neural network into a large-scale real-time ad auction
that ranks tens of thousands of ads, while conforming to the strict
latency constraints, and without incurring a major engineering
cost. We evaluate our approach and show improvements both
offline, during training, and in an online A/B test. Following its
success in A/B tests, our solution is now fully deployed to the
Yahoo native advertising system, and its impact is measured in
millions of dollars annually.

I. INTRODUCTION

The Yahoo native ads marketplace serves users with native
ads that resemble the surrounding content (see Figure 1). It
shows billions of daily impressions with a run-rate of several
hundreds of millions USD each year. In order to rank native
ads for incoming users and their specific context according
to the cost-per-click price type, the expected revenue of each
ad is computed as a product of the advertiser’s bid and the
predicted click probability. The click probability is produced
by a feature enhanced collaborative filtering algorithm called
OFFSET [1].

Fig. 1. A native ad on Yahoo homepage that resembles the surrounding
content.

Advertiser bids, that should reflect the value of an ad click
to the advertiser, are either specified manually, or chosen
programmatically according to several strategies designed to
meet various advertiser goals. At the heart of programmatic
bid optimization lie OFFSET models that compute, for each
ad, the predicted conversion rate (pCVR) given a click for a
given user and a context. For example, one of the strategies
allows advertisers to specify the sum they are willing to pay
for a conversion, also known as the target cost per acquisition
(tCPA). The bid, in that case, is

bid = pCVR · tCPA .

Clearly, calibration of the pCVR model, in the sense that its
average prediction approximates the true CVR on any traffic
segment, is crucial. Consistent over-prediction causes over-
bidding, which results in the advertisers paying more than
they desire per conversion. Under-prediction causes under-
bidding, which results in the advertisers winning less auctions
and paying less for the ones they won, meaning the advertisers
are losing exposure, and we are losing revenue.

OFFSET is a variant of a factorization machine [23] that
is trained using the logistic regression framework involving
positive and negative events. OFFSET trains incrementally on
an infinite stream of data, with periodic checkpoints for hyper-
parameter tuning [2] and deployment to the production envi-
ronment. The incremental training methodology was adopted
to make sure that the delay between an event happening and a
model trained on that event being deployed to production is as
small as possible. In many systems [16], [26], [34], including
ours, model freshness is of paramount importance for the979-8-3503-2445-7/23/$31.00 ©2023 IEEE
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performance of content recommendation systems deployed in
a changing environment.

Training CVR prediction model poses many key challenges,
one of which is the data sparsity issue. Accurate models
require a large amount of data, but the required amount of
data when training conversion models is not always available.
For example, typically a few percents of the impressions result
in clicks, and a few percents of those result in a conversion.
Thus, the number of clicks and conversions for training is quite
small, and the coverage of various feature combinations, such
as ”25-30 years old people using a mobile device”, is even
smaller.

An initial idea that might come to mind is enriching the
training set with additional data, such as conversions that are
not attributed to clicks, or impression data in addition to clicks.
However, since we require the model for the regression task of
CVR prediction, rather than a classification task, it is unclear
how the labels of such events should be assigned to produce
a calibrated model.

To avoid feeding the main CVR prediction model with data
that may impair calibration, we use the celebrated approach
of self-supervised pre-training. We pre-train an auto-encoder
model [7], [14] on all conversions, both related and unrelated
to the task at hand. Then, we train the main CVR prediction
model only on the relevant data while using the encoder’s
output, which we refer to as the code, as an additional feature,
meaning that the we attach task-specific prediction layers on
top of the encoder. Since these layers are trained only on the
task-specific data, no bias is introduced. Moreover, since the
code is low-dimensional, training a low dimensional model is
potentially immune to data sparsity.

The objective of our design is to provide the CVR pre-
diction model with valuable information about user conver-
sion patterns available in the additional data present in non
click-attributed conversions, without accessing it directly. The
results of the online and offline experiments in this paper
support our thesis by demonstrating improved performance of
our CVR prediction model, both offline and in an online A/B
test.

The setting of online advertising and incremental training
pose unique challenges that require adapting the standard
self-supervised pre-training methodology. Hence, we present
several design decisions for tailoring the methodology towards
a system performing auctions under strict latency constraints,
driven by a factorization machine variant that is incrementally
trained on tabular data. Concretely, the decisions include the
choice of a loss function, careful feature selection, and a model
architecture that is driven by a set of criteria and metrics
designed to evaluate an incrementally training auto-encoder.

To summarize, the main contributions of our paper are:
• An application of self-supervised pre-training to utilize

additional data from conversion events that a CVR model
cannot access directly during training.

• A set of techniques for training and using auto-encoders
with incrementally trained factorization machine variants
that are used in ranking under strict latency constraints.

II. RELATED WORK

Our work primarily addresses the task of conversion pre-
diction [33]. This task is similar to click prediction, the ’core’
task of online ad models, and often uses similar approaches. Its
distinct challenges, such as the click-to-conversion delay, the
difficulty in attribution to a specific event, and the attribution
gap between different platforms and advertisers have been
tackled in [10], [17], [18], [27] and many subsequent works.

In this work we adapt a self-supervised pre-training tech-
nique to the task of conversion rate prediction in a strict
latency constraints settings. Self-supervised pre-training is the
technique that leverages self-supervised learning [11], [19] to
generate feature representations, typically using a deep neural
network, that are (somewhat) agnostic of the overall prediction
task and subsequently injecting them in some fashion to the
dedicated predictive model. In previous works this main model
has also been some type of deep-neural networks model [28],
[30], [35]. In [20] a universal user representation is learned
from multiple forms of data and then applied to multiple
predictive models. [36] considers a sequential ordering of pre-
dictive tasks and injects representations learned from multiple
tasks into various points of a self-attentive network. [13], [31]
suggest ways of taking the standard deep learning predictive
flow (i.e., embedding layer into cross layers into predictive
output) and injecting intermediate output of one task’s model
into the other (and vice versa) to boost the performance of
both.

In contrast to recent works that tackle this task using
deep neural networks, our underlying model is a variant of
a factorization machine [23], specifically OFFSET [1], [2].
This is also the underlying model for most prediction tasks
in Yahoo’s native advertising network.

III. OUR APPROACH

In this section we describe the techniques we use to integrate
an auto-encoder into the CVR prediction models in a way
that facilitates incremental training, and enables real-time ad
auctions under strict latency constraints.

A. Training a CVR model with an autoencoder

Like many probability-based regressions models, OFFSET
models compute their output (in this case, a pCVR) with the
sigmoid function:

pCVR(Ω) =
1

1 + e−f(Ω)

where Ω is the user,ad and contextual properties of the given
event. The f used by OFFSET can broken into:

f(Ω) = ⟨U,A⟩+
∑
i∈S

wixi + b (1)

where U is a latent representation vector of the user and
contextual features, A is a latent representation of the ad
features, S is a set of potential additional features, xi is an
indicator the feature i, wi is the learned weight for feature i
and b is a global bias. The continual model training process



is responsible for generating the latent representation for all
possible combinations of user,contextual and ad features as
well as the various wi’s and the global bias term. For more on
how OFFSET constructs the various latent vectors from Ω and
its parameters please see [1] and [2]. S is used for features
that aren’t separable between the user and ad, such as how
often and how recently this user has seen this ad, see [3] for
more. The training process uses the logloss function as its
error function:

L(Ω, y, t) = −(1− y) log (1− pCVR(Ω))− y log pCVR(Ω)

where y is an indicator for a positive event (in our case, click
attributed conversion)

We quickly note that this form of computation has benefits
for the ability to handle real-time inference. Each ad has it pre-
computed latent representation, while each user has a singular
latent vector (calculated at inference time).

We want to introduce the code generated by the auto-
encoder into this computation. Since the code depends on both
user and ad features, it makes sense to include it in the same
way that S is used, so as not to intrude on the portions of the
computation that are user/ad isolated. So the resulting f is

f(Ω) = ⟨U,A⟩+
∑
i∈S

wixi + b+ ⟨W, C(Ω)⟩ (2)

where C(Ω) is the code associated with a specific event, and
W is vector of weight learned by the model as part of the
training process. The resulting system is illustrated in Figure
2. Learning a linear function of the code is our way to re-use
the existing training and serving infrastructure that is built for
OFFSET models, that already include a linear term. Although
at first glance it might look like having a limited representation
power, we show in later sections how we significantly enhance
it using a classical method in machine learning.

So a single training interval of the model does the following:
1) in interval t - load previous OFFSET model Mt−1 and

previous encoder Enct−1

2) For each event Ω, calculate the code C = Enct−1(Ω)
3) (CVR training) adapt model parameters (including W)

using SGD according to f(Ω, C) using logloss error
4) (Autoencoder trainig) adapt parameters of the auto-

encoder, whose encoder is Enct.

B. Architectural challenges

Despite the architecture’s apparent simplicity and ease of
integration into an existing serving system, it poses several
challenges. We describe them here, and present our solution
in the following sub-sections. The first challenge stems from
incremental training. The basic premise is that the model has
long-term memory, and its parameters at interval t − 1 are a
good initialization point for training at interval t. Therefore,
the codes C(Ω) need to be stable, in the sense that the
expectation EΩ[Enct−2(Ω)−Enct−1(Ω)] is small. Otherwise,
the premise is broken, since the vector W that OFFSET learned
in the previous interval encodes little information that is useful
at interval t.

Second, the expressive power of the linear function
WTC(Ω) is weak. Indeed, typically the prediction layers on
top of an auto-encoder is, by itself, a neural network of several
layers. This is because the separation between positive and
negative samples in the encoder’s latent space is often non-
linear.

The final challenge comes from our need to perform fast
real-time auctions. In our system, the time it takes to use a
neural network for every item in the auction introduces latency
that is orders of magnitude beyond our latency constraints.

C. Auto-encoder architecture and design

Suppose our data-set comprises of C categorical columns
where column i has one of ni possible values. The encoder’s
first layer is an embedding layer - each column has an
embedding table of dimension ni × d. Next, the embedding
vectors are concatenated to form a vector of length C ·d, which
is then passed to a multi-layer perceptron (MLP) network to
produce the code. The hidden layers use ReLU activations,
while the layer that produces the code uses a tanh activation
to produce code that is bounded in the unit box.

Since the encoder’s input is composed of categorical fea-
tures, we treat the decoder as a set of multi-class classifiers
with a classifier of ni classes for every column. To that end, it
consists of an MLP that transforms the code to a vector of size∑C

i=1 ni, that we treat as C blocks of size ni each. The last
layer applies a log-softmax activation to each block to produce
valid multi-class logits. The reconstruction loss is, naturally,
the average of cross-entropy losses applied to each block. Our
architecture is illustrated in Figure 3. We denote the loss of
auto-encoder M on sample Ω as RecLoss(M,Ω), and the code
it produces by Code(M,Ω). We note that the naı̈ve method
of reconstructing a concatenation of one-hot encoded feature
indicators using the L2 loss did not result in any improvement
of the downstream CVR model.

Just like OFFSET, our auto-encoder is trained in an online
manner on data sub-divided into intervals D1, D2, . . . , training
on each event only once. The process produces a sequence of
auto-encoder models M1,M2, . . . . On our data, the optimizer
that produced the best results was stochastic gradient-descent
with momentum [21], [24]. We found the online paradigm
to produce satisfactory results, and our use of the paradigm is
driven both by the practical success of OFFSET and theoretical
results about generalization of online learning [9]. We note that
in the online learning paradigm there is no test set separate
from the training set, and instead each sample is first evaluated
and then trained upon.

The architecture we describe is the result of a process that
was driven by empirical evaluation of several metrics that
represent its quality in terms of learning data patterns, stability,
and generalization. We gradually increased the complexity
of the encoder until we found its performance to be satis-
factory, while meeting the strict latency constraints. Beyond
embedding, code, and hidden layer dimensions, we also tried
different ways of combining the column embeddings: addition,
product, sum of pairwise component-wise products (à la FM),



Fig. 2. Schematic illustration of our self-supervised pre-training framework. On the left - the auto-encoder that is trained on all conversions, both click-
attributed and not. On the right - the CVR prediction model that is trained on clicks and click-attributed conversions, and uses the encoder’s code for its
training data as an additional feature.

sum of pairwise outer product matrices, and concatenation.
The best results according to the metrics described below were
obtained with concatenation.

We designed our model with several desired properties in
mind. Below, we describe these properties and the metrics we
used to measure the model’s performance against them.

a) Small reconstruction loss: We aim at a reconstruction
loss that is much smaller than that of uniformly distributed
columns:

RecLosst ≡ EΩ∼Dt
[RecLoss(Mt,Ω)] ≪

1

C

C∑
i=1

ln(ni).

b) Stability: The code produced by the encoder of the
current interval should be close to the one produced by the
encoder of the previous interval. Therefore, the following
quantity should be as small as possible:

Difft = EΩ∼Dt
[∥Code(Mt,Ω)− Code(Mt−1,Ω)∥].

c) Interval generalization: Previous interval’s auto-
encoder should generalize well to the samples in the current
interval, and the following quantity should be close to 1:

Gent =
EΩ∼Dt

[RecLoss(Mt,Ω)]

EΩ∼Dt
[RecLoss(Mt−1,Ω)]

.

d) Learning meaningful patterns: The encoder should
reconstruct real data well, and random data badly. The random
data-set Rt is of the same length as Dt, but with column values
chosen uniformly at random from the column’s dictionary.

The reconstruction loss on Rt is denoted by RecLossRt ≡
EΩ∼Rt

[RecLoss(Mt,Ω)]. The random loss ratio, defined by

RandRatiot =
RecLosst

RecLossRt
,

should be close to zero, preferably < 10−2 - the reconstruction
of real data should be orders of magnitude better than that of
random data.

We would like to point out that interval generalization
Gent is tightly related to stability Difft. In fact, generalization
implies stability. Intuitively, if the model from the last interval
generalizes well to the current interval’s data, then its loss
gradients w.r.t the data of the current interval are small, and
its parameters will not change significantly. In the evaluation
section we show that this phenomenon happens in practice.

We observed that the most profound positive effect on all
of the above metrics was obtained from embedding concate-
nation, rather than other strategies of handling the embedding
vectors, and from increasing the embedding dimension. In-
creasing the number of hidden layers beyond a certain amount
had little effect, and so was increasing their dimension. At
first the above seems to be in contrast to classical machine-
learning, where increasing model complexity results in over-
fitting and reduces generalization. However, it is known [5],
[6], [15] that over-parameterized networks, which are networks
that are complex enough to achieve near zero training loss,
generalize well. As is apparent in our evaluation section, our
auto-encoder’s training loss is indeed close to zero. This is
despite the fact that it is quite small - we have 7 categorical



Fig. 3. Auto-encoder model architecture. For clarity, illustrated with C = 3
tabular columns. The input is used to choose embeddings, that are concate-
nated, and fed to a multi-layer perceptron to produce the code. The decoder,
in turn, is a multi-layer perceptron that acts as a set of classifiers with cross-
entropy losses, that are averaged to obtain the output.

columns, the embedding dimension is 20, the code dimension
is 12, and the total number of parameters of our encoder is
roughly 105.

D. Nonlinear separability

Having learned an encoder, there is no guarantee that a
linear function can differentiate well between positive and
negative samples in the encoder’s embedding space. Classical
machine learning methodology suggests using kernel methods
[4], [8], [25] as the go-to technique for creating linear models
that represent non-linear functions. However, kernel methods
require having the entire training set in advance, and thus do
not fit incremental training. As a remedy, we use random
Fourier features (RFFs) [22] as an approximation of the
Gaussian radial basis function kernel. This technique suits
incremental training well, since it dictates a simple formula for

transforming the raw Code(Ω) into the feature vector C(Ω)
in Equation (2) with randomly generated matrix P and vector
q:

C(Ω) = cos(PCode(Ω) + q).

To verify that RFFs have significantly more representation
power, we ran a simple experiment of training a linear CVR
model based on the encoder’s code, with and without RFFs.
We observed that RFFs provide a substantial improvement of
15% in logloss and 3.6% in AUC. The model improves as
the number of rows of P increases, until it reaches a plateau
at 200 rows. This means that computing C(Ω) requires an
additional multiplication by by a 200×12 matrix, which does
not incur any significant latency cost.

E. Latency constraints

During an ad auction we rank tens of thousands of ads in a
matter of milliseconds. Neural network inference for every ad
is prohibitive, because it introduced a significant latency cost
far beyond the acceptable range in our system. The above
is true even for small encoders of a few tens of thousands
of parameters. In theory, if we had only user features in the
auto-encoder, we could use the code only once per auction.
However, an auto-encoder that was trained without features of
the ads that were responsible for conversions did not improve
the downstream CVR model.

To avoid inference for every ad, we use only high-level ad
taxonomy features in our auto-encoder. In our system, we have
a two-level taxonomy hierarchy - the first level breaks down
ads by high-level categories, such as Finance or Tourism, and
the second level by a few dozen categories. Hence, during
ranking, we need to compute the product WTC(Ω) from
Equation (2) only once for every low-level category, and add
the result to the score f(Ω) we compute for every ad according
to its taxonomy.

IV. EVALUATION

We performed several experiments on our CVR models
that predict the probability of a conversion given a click. For
training our CVR prediction model, we treat clicks as negative
events, and conversions attributed to clicks on our properties
as positive events. In addition, we also have conversions that
are attributed to ad views. All models train on daily intervals.

In this section we first corroborate our thesis that directly
adding view-attributed conversions to the training set produces
a less accurate model. Then, we evaluate our auto-encoder
according to the metrics in Section III-C. Next, we show
that equipping a CVR model with an auto-encoder improves
the model’s accuracy during training. Then, we verify that
the incurred computational cost has no visible effect on the
auction latency, and demonstrate the improved performance of
the model on real traffic via an A/B test against the production
model.



Fig. 4. Reconstruction losses over real and random data, of an auto-encoder
trained on a month worth of data.

A. Training on view-attributed conversions

The paper’s premise is that training on conversions that are
not attributed to clicks, in addition to those that are attributed
to clicks, degrades model accuracy. We trained a model that
includes view-attributed conversions as positive events, in
addition to the relevant events. In both models, the logloss
was evaluated only for clicks and conversions attributed to
clicks. The logloss achieved by the model that includes view-
attributed conversion is between 3% and 7% higher (depending
on the day) than that of the model which does not include
them, which makes such a model much worse.

B. Auto-encoder evaluation

Here we evaluated the desired properties of our auto-
encoder using the metrics RecLosst, RecLossRt , Gent, and
Difft from Section III-C.

In order to validate that our auto-encoder learns meaningful
patterns, rather than just the identity function, we measure
RecLosst and RecLossRt for an auto-encoder trained on a
month worth of data. We plot the results in Figure 4. It
is evident that as the model trains on more data, its per-
formance on true data improves, on random data degrades,
the reconstruction loss approaches zero, and the RandRatiot
approaches 10−4, as desired.

In order to verify that our auto-encoder is stable and
generalizes well between consecutive days, we measure Gent
and Difft over a few weeks worth of data. The results are
plotted in Figure 5, where each point is the result of training
on a day of data. As is apparent, most of the values of
Gent are close to 1, which means that our auto-encoder often
generalizes well. Moreover, as we claimed in Section III-C,
generalization and stability are tightly coupled. Indeed, most
of the points lie along a straight regression line, and there are
no points where Gent is small but Difft is large.

C. CVR model offline lifts

We train a new CVR model using our auto-encoder based
approach, and measure the logloss difference between the
new model and the production model at the time. In contrast

Fig. 5. Daily generalization metric Gent (closer to 1 is better) versus daily
stability metric Difft (lower is better).

Fig. 6. Daily logloss difference (negative is better), in percents, between a
model enriched by an auto-encoder, and the production model at the time.
Marker size is proportional to the evaluation set size.

to a CVR model that is directly trained on view-attributed
conversions, the auto-encoder based model has an improved
logloss, as is apparent from Figure 6.

D. Incurred latency tests

We deployed the new workflow to our production system by
periodically loading the encoder that is trained with the model,
and using it in ad auctions according to the formula in Equa-
tion (2). Since we use only high level ad taxonomy features,
our ad auction computes the inner product ⟨W, C(Ω)⟩ only
once for each ad category, and uses the cached results for all
the ads participating in the auction. We compare the latency
incurred by auctions where our new model is used to auctions
with the production model at that time in Figure 7. Indeed,
the size of the model and the usage of high level features paid
off - there is essentially no visible latency difference between
the new and the product model at the time.

E. Online A/B tests

a) Setup: A CVR model performance is measured along
two axes - the revenue measured by the average cost per
thousand impressions (CPM), and the percentage of advertiser



Fig. 7. Average hourly latency difference, in milliseconds, between the new
encoder-augmented model and the production model at the time. Negative
values are better.

spend belonging to campaigns that attain advertiser cost per
acquisition (CPA) goals. The objective is obtaining improve-
ment in at least one metric without impairing the other. This is
since a better model can either correct under-prediction, which
results in lower bids and lower revenue, or over-prediction,
which results in missing the advertiser CPA goal. To evaluate
the online performance, we launched an online bucket serving
50% of Yahoo native traffic and measured lifts of both metrics
against the production model. The evaluation was conducted
over a week and included billions of impressions.

b) Results: On average, the online test bucket showed
0.6% CPM lift and 0.67% revenue lift overall. Such a CPM
(or revenue) lift translates to many millions of USD in yearly
revenue once the solution is deployed to all traffic. The results
also indicate a +10.1% increase to the spend that is under
oCPC influence, with a slightly larger percentage of spend
belonging to campaigns hitting the CPA goal (83.45% vs
82.96% in test and control bucket receptively). In short, the
results show that the new model increases the overall revenue
while maintaining the advertiser’s CPA goals. Following these
positive results, the new model was fully deployed and serves
100% of the Yahoo Gemini native traffic.

V. DISCUSSION AND FUTURE WORK

We described a framework for reducing the effect of data
sparsity in CVR prediction by incorporating conversions that
are considered un-labaled via self-supervised pre-training.
Moreover, we adapted the basic idea to systems based on
incrementally-trained factorization machines that are used in
ad auctions with strict latency constraints. We have shown that
even a simple auto-encoder with a small number of parameters
already provides a significant improvement. Therefore, natural
future directions, beyond adding more features, should aim to
squeeze more information out of the un-labaled conversions
by further improvements of model architecture and training
techniques.

One direction is looking for better ways to incorporate the
encoder’s output into the factorization model without incurring
a significant latency increase. Currently, we are using the

random Fourier features technique as a ‘projector network’. It
can be viewed as a shallow one-layer network whose activation
is the cosine function, and its weights are random, rather than
learned. However, the projector does not have to be a random
one-layer network. It can be an arbitrary deep neural network
with arbitrary activation functions and learnable weights. As
long as this network is small enough to facilitate fast inference,
it can potentially squeeze out more performance out of the
encoder network. Moreover, the projector’s incorporation into
the factorization model does not have to be in the form of an
additive term, but can be in the form of another latent vector.
For example, instead modifying the score in Equation (1) as
in (2), it can be alternatively modified as

f(Ω) = ⟨U,A, P (Code(Ω))⟩+
∑
i∈S

wixi + b,

where ⟨x,y, z⟩ =
∑n

i=1 xiyizi denotes a ”triple” inner prod-
uct, and P (·) is the projector network whose output dimension
is equal to the dimension of the user and ad vectors.

Another prominent direction is using more advanced self-
supervised learning techniques, such as masked auto-encoders
[12], or even drifting away from the auto-encoder framework
and use techniques such as Barlow Twins [32]. Another
improvement can potentially come from better model architec-
tures, such as using small transformers [29] to process feature
embedding vectors.
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[9] Nicolò Cesa-bianchi, Alex Conconi, and Claudio Gentile. On the
generalization ability of on-line learning algorithms. In T. Dietterich,
S. Becker, and Z. Ghahramani, editors, Advances in Neural Information
Processing Systems, volume 14. MIT Press, 2001.

[10] Olivier Chapelle. Modeling delayed feedback in display advertising.
In Proceedings of the 20th ACM SIGKDD international conference on
Knowledge discovery and data mining, pages 1097–1105, 2014.

[11] Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova.
Bert: Pre-training of deep bidirectional transformers for language un-
derstanding. arXiv preprint arXiv:1810.04805, 2018.

[12] Mathieu Germain, Karol Gregor, Iain Murray, and Hugo Larochelle.
Made: Masked autoencoder for distribution estimation. In Francis
Bach and David Blei, editors, Proceedings of the 32nd International
Conference on Machine Learning, volume 37 of Proceedings of Machine
Learning Research, pages 881–889, Lille, France, 07–09 Jul 2015.
PMLR.

[13] Guangneng Hu, Yu Zhang, and Qiang Yang. Conet: Collaborative
cross networks for cross-domain recommendation. In Proceedings of
the 27th ACM international conference on information and knowledge
management, pages 667–676, 2018.

[14] Mark A Kramer. Nonlinear principal component analysis using autoas-
sociative neural networks. AIChE journal, 37(2):233–243, 1991.

[15] Roi Livni, Shai Shalev-Shwartz, and Ohad Shamir. On the computational
efficiency of training neural networks. In Z. Ghahramani, M. Welling,
C. Cortes, N. Lawrence, and K.Q. Weinberger, editors, Advances in
Neural Information Processing Systems, volume 27. Curran Associates,
Inc., 2014.

[16] Andreas Lommatzsch, Benjamin Kille, and Sahin Albayrak. Incorporat-
ing context and trends in news recommender systems. In Proceedings
of the international conference on web intelligence, pages 1062–1068,
2017.

[17] Quan Lu, Shengjun Pan, Liang Wang, Junwei Pan, Fengdan Wan, and
Hongxia Yang. A practical framework of conversion rate prediction for
online display advertising. In Proceedings of the ADKDD’17, pages
1–9. 2017.

[18] Mohammad Mahdian and Kerem Tomak. Pay-per-action model for
online advertising. In Proceedings of the 1st international workshop
on Data mining and audience intelligence for advertising, pages 1–6,
2007.

[19] Tomas Mikolov, Ilya Sutskever, Kai Chen, Greg S Corrado, and Jeff
Dean. Distributed representations of words and phrases and their
compositionality. Advances in neural information processing systems,
26, 2013.

[20] Yabo Ni, Dan Ou, Shichen Liu, Xiang Li, Wenwu Ou, Anxiang Zeng,
and Luo Si. Perceive your users in depth: Learning universal user
representations from multiple e-commerce tasks. In Proceedings of the
24th ACM SIGKDD International Conference on Knowledge Discovery
& Data Mining, pages 596–605, 2018.

[21] Ning Qian. On the momentum term in gradient descent learning
algorithms. Neural Networks, 12(1):145–151, 1999.

[22] Ali Rahimi and Benjamin Recht. Random features for large-scale kernel
machines. In J. Platt, D. Koller, Y. Singer, and S. Roweis, editors,
Advances in Neural Information Processing Systems, volume 20. Curran
Associates, Inc., 2007.

[23] Steffen Rendle. Factorization machines. In 2010 IEEE International
Conference on Data Mining, pages 995–1000. IEEE, 2010.

[24] Herbert Robbins and Sutton Monro. A Stochastic Approximation
Method. The Annals of Mathematical Statistics, 22(3):400 – 407, 1951.

[25] Bernhard Schölkopf, Alexander Smola, and Klaus-Robert Müller. Non-
linear component analysis as a kernel eigenvalue problem. Neural
Computation, 10(5):1299–1319, 1998.

[26] David Sculley, Gary Holt, Daniel Golovin, Eugene Davydov, Todd
Phillips, Dietmar Ebner, Vinay Chaudhary, Michael Young, Jean-
Francois Crespo, and Dan Dennison. Hidden technical debt in machine
learning systems. Advances in neural information processing systems,
28:2503–2511, 2015.

[27] Xuhui Shao and Lexin Li. Data-driven multi-touch attribution models.
In Proceedings of the 17th ACM SIGKDD international conference on
Knowledge discovery and data mining, pages 258–264, 2011.

[28] Fei Sun, Jun Liu, Jian Wu, Changhua Pei, Xiao Lin, Wenwu Ou, and
Peng Jiang. Bert4rec: Sequential recommendation with bidirectional
encoder representations from transformer. In Proceedings of the 28th
ACM international conference on information and knowledge manage-
ment, pages 1441–1450, 2019.

[29] Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion
Jones, Aidan N Gomez, Ł ukasz Kaiser, and Illia Polosukhin. Attention
is all you need. In I. Guyon, U. Von Luxburg, S. Bengio, H. Wallach,
R. Fergus, S. Vishwanathan, and R. Garnett, editors, Advances in Neural
Information Processing Systems, volume 30. Curran Associates, Inc.,
2017.

[30] Fajie Yuan, Xiangnan He, Alexandros Karatzoglou, and Liguang Zhang.
Parameter-efficient transfer from sequential behaviors for user modeling
and recommendation. In Proceedings of the 43rd International ACM
SIGIR conference on research and development in Information Retrieval,
pages 1469–1478, 2020.

[31] Feng Yuan, Lina Yao, and Boualem Benatallah. Darec: Deep domain
adaptation for cross-domain recommendation via transferring rating
patterns. arXiv preprint arXiv:1905.10760, 2019.

[32] Jure Zbontar, Li Jing, Ishan Misra, Yann LeCun, and Stephane Deny.
Barlow twins: Self-supervised learning via redundancy reduction. In
Marina Meila and Tong Zhang, editors, Proceedings of the 38th Inter-
national Conference on Machine Learning, volume 139 of Proceedings
of Machine Learning Research, pages 12310–12320. PMLR, 18–24 Jul
2021.

[33] Weinan Zhang, Shuai Yuan, and Jun Wang. Optimal real-time bidding
for display advertising. In Proceedings of the 20th ACM SIGKDD
international conference on Knowledge discovery and data mining,
pages 1077–1086, 2014.

[34] Yang Zhang, Fuli Feng, Chenxu Wang, Xiangnan He, Meng Wang, Yan
Li, and Yongdong Zhang. How to retrain recommender system? a se-
quential meta-learning method. In Proceedings of the 43rd International
ACM SIGIR Conference on Research and Development in Information
Retrieval, pages 1479–1488, 2020.

[35] Yujing Zhang, Zhangming Chan, Shuhao Xu, Weijie Bian, Shuguang
Han, Hongbo Deng, and Bo Zheng. Keep: An industrial pre-training
framework for online recommendation via knowledge extraction and
plugging. In Proceedings of the 31st ACM International Conference on
Information & Knowledge Management, pages 3684–3693, 2022.

[36] Kun Zhou, Hui Wang, Wayne Xin Zhao, Yutao Zhu, Sirui Wang,
Fuzheng Zhang, Zhongyuan Wang, and Ji-Rong Wen. S3-rec: Self-
supervised learning for sequential recommendation with mutual infor-
mation maximization. In Proceedings of the 29th ACM international
conference on information & knowledge management, pages 1893–1902,
2020.


	Introduction
	Related work
	Our approach
	Training a CVR model with an autoencoder
	Architectural challenges
	Auto-encoder architecture and design
	Nonlinear separability
	Latency constraints

	Evaluation
	Training on view-attributed conversions
	Auto-encoder evaluation
	CVR model offline lifts
	Incurred latency tests
	Online A/B tests

	Discussion and future work
	References

