
LEVERAGING LARGE LANGUAGE MODELS
FOR STRUCTURE LEARNING
IN PROMPTED WEAK SUPERVISION

Jinyan Su∗ ,1 Peilin Yu∗,†,2 Jieyu Zhang3 Stephen H. Bach2

1Cornell University 2Brown University 3University of Washington
† Correspondence to peilin_yu@brown.edu

ABSTRACT

Prompted weak supervision (PromptedWS) applies pre-trained large language
models (LLMs) as the basis for labeling functions (LFs) in a weak supervi-
sion framework to obtain large labeled datasets. We further extend the use
of LLMs in the loop to address one of the key challenges in weak supervi-
sion: learning the statistical dependency structure among supervision sources.
In this work, we ask the LLM how similar are these prompted LFs. We pro-
pose a Structure Refining Module, a simple yet effective first approach based
on the similarities of the prompts by taking advantage of the intrinsic structure
in the embedding space. At the core of Structure Refining Module are Label-
ing Function Removal (LaRe) and Correlation Structure Generation (CosGen).
Compared to previous methods that learn the dependencies from weak labels,
our method finds the dependencies which are intrinsic to the LFs and less de-
pendent on the data. We show that our Structure Refining Module improves
the PromptedWS pipeline by up to 12.7 points on the benchmark tasks. We
also explore the trade-offs between efficiency and performance with comprehen-
sive ablation experiments and analysis. Code for this project can be found in
https://github.com/BatsResearch/su-bigdata23-code.

Scarcity of labeled data is a crucial bottleneck for many supervised machine learning applications.
Recently, programmatic weak supervision (PWS) (Ratner et al., 2016; 2017; Zhang et al., 2022a)
emerges as a promising approach for efficiently creating large amounts of labeled data in alternative
to costly manual labeling. PWS relies on multiple expert-designed labeling functions (LFs) from
rules or heuristics to act as weak supervision sources and vote for a label. In practice, given unlabeled
data, a PWS system infers probabilistic labels by resolving the agreements and disagreements among
the noisy LFs through label modeling. Recently, a new paradigm called prompted weak supervision
(PromptedWS) (Smith et al., 2022; Yu and Bach, 2023) has been proposed to integrate pre-trained
large language models (LLMs) with PWS. In PromptedWS, program-based LFs written in code are
replaced with prompted LFs: natural language prompts in which their respective labeling decisions
are made through LLM inferences. However, the predictions from LLMs can be strongly correlated
due to model biases, leading to inferior labeling performance. Accurately estimating and managing
the dependency structure among prompted LFs presents a challenging problem. Programmatic
weak supervision has been successful for various applications in information extraction, medical
imaging and sequence tagging (Bach et al., 2019; Suri et al., 2020; Ré et al., 2019; Kuang et al.,
2022; Safranchik et al., 2020). Recently, there have been a growing interest in integrating powerful
pretrained LLMs into weak supervision workflows (Smith et al., 2022; Arora et al., 2022; Zhang
et al., 2022b). prompted weak supervision (PromptedWS) (Smith et al., 2022) presents a unique
opportunity to replace rigid code-based LFs with more flexible natural language prompts. While this
approach offers a much more flexible paradigm for weak supervision sources, prompted LFs may
be susceptible to model bias and strong correlations due to their reliance on the outputs of LLMs.
Therefore, it is crucial to identify and manage the dependency structures among the prompted LFs
to ensure accurate label estimation.

∗Equal contribution

1

ar
X

iv
:2

40
2.

01
86

7v
1

 [
cs

.L
G

]
 2

 F
eb

 2
02

4

https://github.com/BatsResearch/su-bigdata23-code

𝜆m

Subject
Matter
Expert

Does the following comment
reference the speaker's channel?
[TEXT]

Does the following comment talk
about a song? [TEXT]

𝑌

𝜆1

𝜆2…

Prompted Labeling Functions Label Modeling End-Model Training

LaRe

Votes

CosGen

Structure Estimation

Redundant LF Removal

Interpreting LLM Output

Structure Refining Module

Does the following comment ask
the reader to do something?
[TEXT]

LLM

Figure 1: Prompted weak supervision workflow showing the Structure Refining Module as a plugin.

While structure learning in the supervised learning settings has been extensively studied (Mein-
shausen and Bühlmann, 2006; Zhu et al., 2010), learning the structure in programmatic weak su-
pervision presents significant challenges due to the absence of the true labels (Bach et al., 2017).
The difficulties are further exacerbated in a prompted weak supervision setup, where individual su-
pervision sources are expressed as natural language prompts for LLMs, the sole shared knowledge
source. To handle the correlations of labeling functions (LFs), early work relies on user-specified de-
pendency structures (Ratner et al., 2016). Previous studies have also explored how to automatically
discover the structure with only unlabeled data (Bach et al., 2017; Varma et al., 2017). However,
existing methods are not designed to handle correlations in Prompted weak supervision setup. In
prompted weak supervision, weak labels are solely based on querying prompted LFs via the Large
Language Models and the model responses alone may not fully represent the correlations among the
prompted LFs.

In this paper, we propose a Structure Refining Module, a simple yet effective structure learning
method that plugs into existing PromptedWS workflows (Figure 1). The key idea is to guide and
accelerate the structure learning process by using the LLM’s internal representation of prompted
LFs. We find that the similarity of the representations of the prompted LFs is predictive of harm-
ful correlations. Further, they can be computed much more quickly than executing the prompted
LFs on many examples. Our approach contains two core components: Labeling function Removal
(LaRe) and Correlation Structure Generation (CosGen). LaRe is used for automatically detecting
redundant prompted LFs to reduce both LLM query cost and avoid severe biases. CosGen is specif-
ically designed to efficiently learn the dependency structures among prompted LFs, utilizing only
the vector embeddings of the prompted LFs themselves, without relying on any labels or unlabeled
data. In practice, LaRe will first be applied on the given set of prompted LFs to detect and remove
any unnecessary prompted LFs. Then CosGen will produce the dependency structure for label mod-
eling. Our approach allows the end users to quickly and accurately discover the correlations while
significantly reducing the computational cost for both structure learning and label modeling.

To summarize, our main contributions are three-fold:

1. We propose a novel method for efficient structure learning in prompted weak supervision
by leveraging similarity in the embedding space of prompted labeling functions.

2. We demonstrate the effectiveness of our proposed method by showing that it outperforms
the prompted weak supervision baseline by an average of 5.9 points while saving significant
computation.

3. We conduct comprehensive ablation and analysis experiments. We validate the core as-
sumptions and analyze the contribution of each component of our method.

1 BACKGROUND

1.1 PROBLEM SETUP

Prompted Weak Supervision: In a prompted weak supervision (PromptedWS) setup, given a
dataset D = {x1, x2, · · · , xn} of classification task with n unlabeled data points and each

2

xi(i ∈ [n]) with an unobserved true label yi ∈ Y , the goal is to infer the true label using weak
supervision. We are also given a small set of heuristics created by subject matter experts (SMEs)
manually for labeling the unlabeled data. For example, in the case of labeling spam comments, the
SME may find that many spam examples contains call to action, such as asking readers to subscribe
to a channel or asking the readers to buy something. Then she may create a heuristic such as “Does
the following comment ask the reader to do something?". In PromptedWS, these heuristics are for-
matted as prompts, which are then fed into an instruction-tuned LLM such as T0++ (Sanh et al.,
2021) to get the answer. After that, we map the answer to a label or abstain according to the SMEs’
heuristics. Formally, by observing the features in the development set, the SME could design a set
of heuristics H = {h1, · · · , hm} as well as a label mapM : S → Y ∪ {∅}. The heuristics are en-
capsulated by a prompt template. For example, in the case of website comment, the prompt template
would be

Does the following comment ask the reader to do something? [TEXT]

where [TEXT] is a placeholder for the text of each comment. By feeding this template to the pre-
trained LLM A, it returns a text string: s = A(h, x) ∈ S, where S is the set of all possible strings
that could be returned from the LLM. Then the label map M maps the returned answer s to one
of the class labels within the label space λi ∈ Y to vote for a label or maps s to a special symbol
∅, indicating abstaining and not voting for any label. In the case of the above example prompt, the
label map would map positive responses such as YES and True to the SPAM label and all the other
responses to abstentions.

Combining the above prompt template and label map together, we get a set of Prompted labeling
functions: SLF = {M(A(h1, ·)), · · · ,M(A(hm, ·))}. Applying the above m LFs to the unlabeled
dataset D = {x1, · · · , xn} would create a n×m label matrix L. The rest of the workflow remains
the same as a standard weak supervision framework: a label model is used to aggregates the votes in
L to produce probabilistic estimates of the true label. While many label modeling methods assume
conditional independence among the LFs given the latent label (Ratner et al., 2016; 2017), recent
label models may consider dependency structures provided by the user (Fu et al., 2020). Finally
an appropriate end model, such as a deep neural network, is trained by minimizing the expected
empirical risk with respect to the probabilistic estimates of the true labels.

1.2 RELATED WORK

Programmatic Weak Supervision: Manually labeling training data is prohibitively expensive and
time-consuming. A common alternative is to use weak supervision sources. Estimating the accuracy
of multiple sources is well studied in many areas such as crowd sourcing(Dalvi et al., 2013; Joglekar
et al., 2015), boosting (Schapire and Freund, 2013; Balsubramani and Freund, 2015; Zhang et al.,
2016), and co-training (Blum and Mitchell, 1998). In this paper, we focus on programmatic weak
supervision (Ratner et al., 2016; 2017; Zhang et al., 2022a), which estimates the accuracy of weak
sources without any labeled data. In programmatic weak supervision, users encode various weak
supervision sources such as user-written heuristics (Ratner et al., 2017; Meng et al., 2018; Awasthi
et al., 2020), knowledge bases (Liang et al., 2020; Hoffmann et al., 2011), pre-trained models (Bach
et al., 2019; Zhang et al., 2021a; Yu et al., 2022; Smith et al., 2022), and third-party tools (Lison
et al., 2020) into labeling functions (LF), which can then give votes on the true labels of the unlabeled
data.

Integrating LLMs into Weak Supervision: Prompting is a powerful technique for many few-
shot and zero-shot applications with large language models (Liu et al., 2021). Prompting has been
used to create and modify datasets in many ways (Schick and Schütze, 2021; Ye et al., 2022; Chia
et al., 2022; Wu et al., 2022; Bonifacio et al., 2022; Lang et al., 2022; Elazar et al., 2021; Zhang
et al., 2022c). Recent studies explored integrating prompting and weak supervision (Smith et al.,
2022). Prompting also offers a unique opportunity to relax rigid code-based programmatic weak
supervision sources. In this work, we aim to make the integration of LLMs into weak supervision
more effective by mitigating the downside of hazardous correlations among the prompted LFs.

Structure Learning in Weak Supervision: It can be highly beneficial to capture the statistical
dependencies among LFs during label modeling since model misspecification can lead to incorrect
estimates of the true labels (Cachay et al., 2021). Multiple methods for learning such dependencies
have been proposed (Bach et al., 2017; Varma et al., 2017; 2019a). Bach et al. (Bach et al., 2017) and

3

Varma et al. (Varma et al., 2019a) learn dependency structures from the votes of the LFs. Varma et
al. (Varma et al., 2017) infer the structure through static analysis of the code specifying the LFs, with
additional assumptions that the LFs operate over domain-specific primitives. With the dependency
structure in hand, many methods can then incorporate this information into the label modelling
process for improved label quality, either through factor functions (Ratner et al., 2016; Shin et al.,
2021) or graph structures (Ratner et al., 2019; Fu et al., 2020; Varma et al., 2019b). The structure
obtained by our Structure Refining Module can be incorporated into any such method.

2 APPROACH

In this section, we describe Structure Refining Module for estimating the dependency structure
among prompted LFs in the PromptedWS setting. We explore the potential of Large Language Mod-
els beyond its current usage in PromptedWS by leveraging its powerful representation capabilities.
The core idea is to extract embeddings in addition to the inference output. Our method assumes that
LFs with high similarity in the latent representation space are more likely to be correlated. Specif-
ically, for each prompted LFs, we first extract vector embeddings from the last hidden layer of the
LLMs. Then we can compute a pairwise similarity matrix M based on the extracted embeddings for
all prompted LFs. Specifically, we encapsulated our method into one plug-in for PromptedWS. Our
method contains two sequential components: Labeling function Removal (LaRe) and Correlation
Structure Generation (CosGen). LaRe is designed to remove heavily correlated LFs while balancing
performance and efficiency. It can be especially helpful when the total number of LFs is very large.
In addition to LaRe, we introduce CosGen to estimate the dependency structures for the prompted
LFs. We include the pseudocode in 1. Next, we describe the LaRe and CosGen in detail.

Algorithm 1 Pseudocode for Structure Refining Module

1: Input: Similarity matrix M , original Prompted LF set SLF, number of LF to be removed: mr,
number of edges in the graph: me.

2: Sr = ∅, E = ∅
3: // Labeling function removal (LaRe)
4: for t ∈ [mr] do
5: (i, j) = argmaxMi,j

6: k = max{i, j}
7: Sr ← Sr ∪ {k}
8: Mk,: ← 0,M:,k ← 0
9: end for

10: S
′

LF ← SLF/Sr

11: // Correlation structure generation (CosGen)
12: Let M

′
be the similarity matrix of LFs in S

′

LF
13: (i, j) = argminM

′

i,j

14: M
′

i,: ← 0, M
′

:,i ← 0, M
′

j,: ← 0, M
′

:,j ← 0
15: for t ∈ [me] do
16: (i, j) = argmaxM

′

i,j

17: E = E ∪ {(i, j)}
18: M

′

i,j ← 0,M
′

j,i ← 0
19: end for
20: return Refined labeling function set S

′

LF, edges in the graph E

LaRe: The goal of LaRe is to remove redundant prompted LFs in order to reduce computation
need while maintaining labeling accuracy. To begin, the user may decide how many LFs should
be removed by examining the similarity matrix among the prompted LFs set SLF. Higher concen-
trations in the similarity matrix indicate higher correlations or possibility of redundant LFs to be
removed. In addition, more LFs could lead to more redundant LFs to be removed when the labeling
function set SLF is large. After deciding how many labeling functions to be removed, potentially
redundant LFs are then identified, removed based on their similarity matrix M . First we will rank
the pairwise similarities for each LF pair. Then at each step, we find the LF pair that has the largest
similarity and remove the LF with a larger index to keep our algorithm deterministic. Removing the

4

Table 1: Summary statistics for text classification dataset used in our experiments. P(positive) is
the class balance of the positive label calculated by the relative frequency of all gold labeled splits
with standard error in the parentheses. Note that since we focus on PromptedWS, all the labeling
functions we refer to here are prompted LFs as defined in Smith et al. (2022).

Name Task Class P(positive) #LFs #Train #Validation #Test
YouTube Spam Detection HAM,SPAM 0.488(0.02) 10 1586 120 250

SMS Spam Detection HAM,SPAM 0.132(< 0.01) 73 4571 500 500
Spouse Relation extraction NOT SPOUSE, SPOUSE 0.074(< 0.01) 11 22254 2811 2701

Table 2: Main results from WRENCH benchmark, PromptedWS, PromptedWS with data based
weak supervision structure learning method (WSSL) and PromptedWS with Structure Refining
Module (ours). For all the experiments, we run 5 random seeds and reports the mean and stan-
dard error.

YouTube(Acc) SMS(F1) Spouse(F1)
WRENCH Zhang et al. (2021b) 94.6± 0.5 93.5± 0.7 25.5± 1.8
PromptedWS Smith et al. (2022) 94.8± 1.2 90.0± 4.1 52.1± 1.3

PromptedWS + WSSL Varma et al. (2019a) 93.0± 1.3 94.5±1.7 63.9± 0.9

Structure Refining Module
PromptedWS + 95.6±0.4 94.2± 1.4 64.8±0.2

redundant LF results in a new set of LFs S
′

LF, where |S′

LF| = m−mr and mr is the total number of
LFs we removed. We include detailed investigations into how to effectively remove redundant LFs
in Section 4.

CosGen: CosGen aim to estimate the dependency among LFs based on the correlations indicated in
the similarity matrix M

′
, which contains only the correlation information of the refined LF set S

′

LF.
One key intuition is to construct dependency for highly correlated LFs indicated by M

′
. However,

the structure directly estimated from this method may be non-identifiable and can not be used for
label modeling. In order to guarantee the structure to be identifiable, we first find two LFs that have
the smallest correlation and assume these two to be mutually independent while at the same time,
also to be independent with all the other LFs. Then we find the rest dependencies by assigning
edges to LFs with high similarity. The main hyperparameter for CosGen is the number of edges
(me) we want to have in our graph and it decides how sparse the graph is. In practice, we can also
replace this parameter to a percentage threshold on the total number of possible edges. Note that
me ≤ (m−2)·(m−3)

2 . The dependency structure inferred from our similarity matrix can serve as the
input to any probabilistic label model that supports source dependency modeling.

3 EXPERIMENTAL RESULTS

Dataset In our experiments, we evaluated on three datasets: YouTube (Alberto et al., 2015), SMS
(Gómez Hidalgo et al., 2006), and Spouse (Corney et al., 2016). (See the summary of the datasets
in Table 1.) We follow the prompted labeling functions from (Smith et al., 2022), which are trans-
lated from labeling functions from WRENCH (Zhang et al., 2021b), a standard weak supervision
benchmark. We include all natural language prompts for our experiments in 3

Baselines We empirically evaluate the our method against three baselines: (1) the standard weak
supervision with labeling functions in WRENCH benchmark (Zhang et al., 2021b). (2) PromptedWS
(Smith et al., 2022) (without our refining module) (3) PromptedWS with weak supervision structure
learning (WSSL) (Varma et al., 2019a) by passing the structure learned from WSSL to the label
model in the PromptedWS) We report default metrics specified in the WRENCH benchmark (Zhang
et al., 2021b) for direct comparison: for YouTube dataset, we report accuracy and for SMS and
spouse dataset, we report F1. Our performance metrics are reported as the mean and standard error
of 5 independent runs using different random seeds.

Setup We follow the conventional workflow of programmatic weak supervision and compare 4 ap-
proaches relevant to programmatic weak supervision and structure learning. For each dataset in

5

our analysis, we assume the training splits are unlabeled, the LFs (either prompted LFs in Prompt-
edWS or code-based LFs from WRENCH benchmark) are applied to the unlabeled training splits to
generate weak labels. Throughout our experiments, we use T0++ (Sanh et al., 2021), a 11 billion
parameter instruction-tuned large language model based on T5 (Raffel et al., 2020) architecture.
T0++ is trained using large dataset of supervised tasks transformed into instruction prompted train-
ing data and can achieve competitive zero shot classification performance. T0++ model requires 42
GB of GPU to efficiently run locally without parameter offloading. We use 2 NVIDIA A100 GPUs
for inference. In all of our experiments, unless otherwise specified, we use Flyingsquid (Fu et al.,
2020) as our label model to combine and denoise the labelers’ votes into probabilistic labels and
incorporate infered LFs dependency structures. The resulting probabilistic labels are then used to
train an end classification model based on RoBERTa (Liu et al., 2019).

Results Table 2 outlines the performance of the 3 baselines (WRENCH, PromptedWS, Prompt-
edWS+WSSL) and as well as our method (PromptedWS+Structure Refining Module). The hy-
perparameters for LaRe, CosGen and the end model are chosen by performance on the validation
dataset. For Spouse dataset, our method improves 39.3 F1 points compared to WRENCH bench-
mark, and improved 12.7 F1 score compared to the PromptedWS. For Youtube, Structure Refining
Module increase 1.0 and 0.8 Acc points in comparison to WRENCH and PromptedWS respectively
while surpassing PromptedWS+WSSL by 2.6 Acc points. For SMS dataset, Structure Refining
Module also provides performance advantage ovber WRENCH and PromptedWS by 0.7 and 4.2
F1 points. On average, our method improves 13.7 points compared to WRENCH benchmark, 5.9
points compared to PromptedWS and 1.1 points compared to PromptedWS+WSSL over the three
datasets. Besides potential performance advantage compared to WSSL, Structure Refining Module
can be more efficient in both time and computation. We provide further analysis on performance
efficiency of Structure Refining Module in Section 4.5.

Overall, our experimental results demonstrate that Structure Refining Module can significantly im-
prove the performance over the PromptedWS which doesn’t take into account the correlations among
prompted LFs. In addition, the PromptedWS in complementary with our method can achieve su-
perior performance, outperforming the WRENCH benchmark in all the three datasets used in our
experiment. Most notably in Spouse dataset, we improved 39.3 F1 points over WRENCH bench-
mark. Our method outperforms or achieves comparable result to the state-of-the-art structure learn-
ing method WSSL (Varma et al., 2019a), indicating that the correlations found using our refining
model are more effective or comparable to learning the structure from data.

4 ABLATION AND ANALYSIS

In this section, we provide further analysis on our core assumption that high similarities in LFs
embedding similarities suggest correlation. We also exam the contribution of LFs removal and
correlation structure generation from similarities from both performance and efficiency perspectives.
We conduct experiments to evaluate the efficiency trade-offs for label modeling in our settings and
lastly we provide intuitions on how to set the hyperparameters for Structure Refining Module.

4.1 SIMILARITIES REVEAL CORRELATIONS

In this subsection, we aim to show that LFs similarities in the embedding spaces are valid indicators
for their correlations. Previous work (Bach et al., 2017; Varma et al., 2019a) characterizes LFs
correlation structures based on their output, which can be sensitive to the data and can result in
spurious correlations. We aim to learn more expressive correlations that are invariant to data. To
achieve this, we focus on finding correlations intrinsic to the LFs. Here we consider each LF as a
task and capture their correlations through their respective task embeddings. We use T0++ (Sanh
et al., 2021) to embed each LFs with last layer embeddings to compute cosine similarities matrix.
The heatmap visualization of the similarity matrix for the YouTube dataset is shown in Figure 2. As
demonstrated by the figure, the similarity information has significant overlaps with the correlated
errors among LFs, which can be used to remove the most correlated LFs and still achieve good
performance. In addition, we construct a toy experiment to further exam our assumption. This
experiment is based on the intuition that if two labeling functions (LFs) are correlated, removing one
should not significantly harm the model’s performance. Removing the most correlated LF leads to
more accurate weights assigned to each LF, resulting in a more accurate end model. The results from

6

Table 3: Prompted Labeling Functions for YouTube and Spouse datasets. The YouTube dataset
has class labels HAM and SPAM, and the dataset has class labels NOT SPOUSE and SPOUSE.
The label map transforms the answer “yes” to the value denoted by the label column(either HAM
or SPAM for YouTube dataset and either NOT SPOUSE or SPOUSE for spouse dataset) and we
consider other answers as abstention. for the SMS dataset, The template asks whether there are
certain keywords in the text and the label map transforms the answer “yes" to the value denoted by
the label column (either HAM or SPAM) and we consider other answers as abstention. prompted
Labeling Functions are from Smith et al. (2022).

Dataset Template Label

YouTube

Does the following comment talk about a song?\n\n[TEXT] HAM
Is the following comment fewer than 5 words?\n\n [TEXT] HAM
Does the following comment mention a person’s name?\n\n [TEXT] HAM
Does the following comment express a very strong sentiment?\n\n [TEXT] HAM
Does the following comment express a subjective opinion?\n\n [TEXT] HAM
Does the following comment reference the speaker’s channel or video? \n\n [TEXT] SPAM
Does the following comment ask you to subscribe to a channel?\n\n [TEXT] SPAM
Does the following comment have a URL?\n \n[TEXT] SPAM
Does the following comment ask the reader to do something?\n\n [TEXT] SPAM
Does the following comment contain the words "check out"? \n\n [TEXT] SPAM

Spouse

Context: [TEXT]\n \n Are [PERSON1] and [PERSON2] family members? NOT SPOUSE
Context: [TEXT]\n \n Is [PERSON1] said to be a family member? NOT SPOUSE
Context: [TEXT]\n \n Is [PERSON2] said to be a family member? NOT SPOUSE
Context: [TEXT]\n \n Are [PERSON1] and [PERSON2] dating? NOT SPOUSE
Context: [TEXT]\n \n Are [PERSON1] and [PERSON2] co-workers? NOT SPOUSE
Context: [TEXT]\n \n Is there any mention of "spouse" between the entities [PERSON1] and [PERSON2]? SPOUSE
Context: [TEXT]\n \n Is there any mention of "spouse" before the entity [PERSON1]? SPOUSE
Context: [TEXT]\n \n Is there any mention of "spouse" before the entity [PERSON2]? SPOUSE
Context: [TEXT]\n \n Do [PERSON1] and [PERSON2] have the same last name? SPOUSE
Context: [TEXT]\n \n Did [PERSON1] and [PERSON2] get married? SPOUSE
Context: [TEXT]\n \n Are [PERSON1] and [PERSON2] married? SPOUSE

Template for SMS Does the following text message contain the words "[KEYWORDS]"?\n \n [TEXT] Label

[KEYWORDS]

??1.50, ??500, ??5000, call for offer, cash prize, chat date, chat to, childporn, credits,
dating call, direct, expires now, fantasies call, free phones, free price, free ringtones,
free sex, free tone, guaranteed free, guaranteed gift, hard live girl, important lucky,
inviting friends, latest, latest offer, message call, new mobiles, no extra, password,
please call, sms reply, unlimited calls, urgent award guaranteed, urgent prize, voucher
claim, welcome reply, win shopping, winner reward, won call, won cash, won cash
prize, won claim

SPAM

I, I can did, I it, I miss, I used to, adventuring, amrita, can’t talk, did u got, do you,
fb, goodo, hee hee, i’ll, jus, link, maggi, mine, my kids, noisy, praying, shit, should I,
thanks, that’s fine, thats nice, u how 2, we will, where are, wtf, your I

HAM

Table 4: Toy experiment of removing one of the most correlated LFs. The first row is the result of
PromptedWS without moving any LFs, and the second and third rows are the result of PromptedWS
after removing one LF from the most correlated LFs pairs.

YouTube SMS Spouse
PromptedWS 94.8(1.2) 90.0(4.1) 52.1(1.3)

Removing most correlated LF
94.7±0.7 93.0±0.8↑ 53.0±1.2↑
95.3(0.3)↑ 91.4(2.2)↑ 52.3(1.8)↑

our toy experiment align with the assumption. As shown in Table 4, after removing one of the most
correlated LFs, the result either improved or slightly dropped below the baseline. This investigation
further suggests that the similarity information in the latent embedding space can reveal information
about the underlying correlations of LFs.

4.2 ROLE OF LABELING FUNCTION REMOVAL

In this subsection, we exam the contribution of Labeling function Removal (LaRe) in our Structure
Refining Module. The core idea for LaRe is that when LFs are highly correlated and redundant,

7

HAM SPAM

HAM

SPAM

Labeling Function Similarity

HAM SPAM

HAM

SPAM

Double Faults

60% 70% 80% 1% 5% 8%

Figure 2: Visualization of the similarity matrix for labeling functions in the YouTube dataset com-
pared with double faults, i.e., examples on which both labeling functions make a mistake.

Table 5: We documented the number of labeling functions removed as well as accuracy or F1 metric
for each experiment. We report the mean and standard error with 5 random runs and the best results
are indicated in bold. We highlight results that outperform PromptedWS with arrows. We also
estimate the total number of token saved when running with Train/Test/Validation splits.

Estimated # saved tokens
Performance(Acc/F1) #(LF removed) # (prompts saved) Train Test Validation

Youtube

PromptedWS 94.8 ± 1.2 0 0 0 0 0
removing 10% 95.3 ± 0.3 ↑ 1 1586 70900 11369 5186
removing 30% 90.5±1.7 3 4758 212700 34107 15558
removing 50% 87.5±1.9 5 7930 354500 56845 25930
removing 70% 83.1±0.5 7 11102 496300 79583 36302

SMS

PromptedWS 90.0 ± 4.1 0 0 0 0 0
removing 10% 94.2± 1.4 ↑ 7 31997 1343069 144984 147903
removing 30% 93.5± 0.8 ↑ 22 100562 4221074 455664 464838
removing 50% 88.6±3.4 36 164556 6907212 745632 760644
removing 70% 88.7±3.1 51 233121 9785217 1056312 1077579

Spouse

PromptedWS 52.1 ± 1.3 0 0 0 0 0
removing 10% 53.0± 1.2 ↑ 1 22254 1980962 234659 249159
removing 30% 58.5± 1.3 ↑ 3 66762 5942886 703977 747477
removing 50% 55.4±1.1 ↑ 6 133524 11885772 1407954 1494954
removing 70% 0±0 8 178032 - - -

removing some can improve performance and efficiency. To extensively understand effect of LFs
removal, we can set me = 0 for our Structure Refining Module to only use LaRe. We examined the
impact of removing LFs based on correlation by conducting experiments where we removed 10%,
30%, 50%, and 70% of labeling functions.

As shown in 3, using LaRe alone could improve the performance over vanilla PropmtedWS. Even
though the original labeling functions used in PromptedWS are carefully selected to avoid correla-
tion and facilitate weak supervision, remove 10% of the labeling functions (on YouTube and SMS)
and remove 30% of the labeling functions (on Spouse) can still improve the performance, further
suggesting that there still could be some redundancies with manually selected LFs. Note that our
experiments are relatively coarse by setting the removal rate to be 10%, 30%, 50%, 70% for all
the dataset because the total number of labeling functions varies from 10 to 146 for the six group
experiments, so the effects of “removing 70%" could be different on different dataset based on the
total number of LFs as well as the redundancies of the total LFs set. In practice, the number or por-
tion of removal should be more fine-grained and tailored to the total number of labeling functions
to achieve a better performance. We expect to remove redundant labeling functions without tuning
hyperparameters on label model and end model, so we apply the same hyperparameters set used
for PromptedWS when doing our experiments on removal. In practice, as in our experiments, we

8

0 10% 30% 50% 70%

0.85

0.90

0.95
Pe

rfo
rm

an
ce

YouTube

0 10% 30% 50% 70%
0.85

0.90

0.95
SMS

0 10% 30% 50% 70%
0.00

0.25

0.50

Spouse

Figure 3: Performance on different removal rate. The dashed lines are the prompted weak supervi-
sions without any removal. We plot the results of removing 10%, 30%, 50%, 70% of the labeling
functions.

use the validation split from WRENCH to evaluate, compare and choose the appropriate removal
threshold. Overall, the experiments show that the LaRe in our Structure Refining Module can help
improving the performance. These experiments demonstrate that the removing part in our refin-
ing module could help to improve the performance even in the worst case. Note that whether the
performance improve or drop depends on the trade-off between the performance gain by handling
the dependencies and the performance drop due to the reduced information from removing labeling
functions, so the performance plot over removal isn’t perfectly concave. Also, we should not only
care about the removal threshold that achieves the best performance, but all the removal thresholds
where the performance are better or equivalent to the PromptedWS (namely, the all the points above
or near the dashed line in Figure 3), since these are points indicating an improved efficiency without
negatively affect performance.

Performance and efficiency: trade-off or win-win? Inference with Large Language Models
(LLMs) can be computationally expensive and time-consuming. One benefit of removing redun-
dant LFs is efficiency: when the total number of labeling functions is reduced, we are feeding less
tokens to the LLMs and therefore save more computations and time. When weighing performance
and efficiency, it’s important to consider the feasibility of removing LFs in terms of the effect on
performance. However, as our experiments show, it may not always be a trade-off; Sometimes it
could be a win-win scenario with Structure Refining Module. As shown in Figure 3, for YouTube
dataset, removing 10% of the labeling functions improves the performance while saving more com-
putations. For SMS, removing 10% or 30% both improve performance. In the most extreme cases of
removing 70% of the labeling functions, though the performance decreases 1.3 points, it reduces 51
labeling functions, and saved in total of 233121 prompts. For the Spouse dataset, removing 30% of
LFs presents a win-win scenario, both improving performance and saving computation. We include
the detailed statistics in table 5.

4.3 EFFECT OF COSGEN

Table 6: Comparison of CosGen, weak supervision structure learning(WSSL) and without struc-
tures.

YouTube SMS Spouse
PromptedWS 94.8±1.2 90.0±4.1 52.1±1.3
PromptedWS + WSSL 93.0±1.3 94.5±1.7 63.9±0.9
PromptedWS + CosGen 94.2±0.5 93.4±1.2 64.6±0.5

Another core component of Structure Refining Module is Correlation Structure Generation (Cos-
Gen). The main output of CosGen is the estimated structure E , which contains all the labeling
function pairs that are considered as correlated and potentially dependent on each other. In this sub-
section, we compare the CosGen module of our Structure Refining Module with weak supervision
structure learning (WSSL) (Varma et al., 2019a), a state-of-the-art structure learning for program-
matic weak supervision that learns a sparse structure from data. We compare, evaluate and analyze

9

5 0 5 10 15 20 25
0

10

20

30

40

tim
e(

s)

45 35 25 15 5 02468
0

500

1000

1500

2000

2500

5 0 5 10 15 20 25
0

200

400

600

15 10 5 0 5 10 15
#(Removing) #(edges)

0

2

4

6
tim

e(
s)

0 1 2
#(Removing) #(edges)

116k

10 5 0 5 10 15
#(Removing) #(edges)

0

20

40

60

80

5 2 0

0.0075

0.0100
zoom in

45 35 25 15 50
0.25
0.50
0.75

zoom in

5 2 0
0.03

0.04

zoom in

15 10 5 00.01

0.02

zoom in

80 60 40 20 0

2.5

5.0
zoom in

10 5 0
0.050

0.075

zoom in

80
0

Figure 4: Label model running time for LaRe (left side of the dashed vertical line; plotted using
blue) and CosGen (right side of dashed vertical line; plotted with orange). We zoom in the LaRe
(blue plots) to better show the tendency in the subplots. From left to right columns are plots for
Youtube, SMS and Spouse respectively. The first row describes experiments with original set of
prompted LFs and the second row describes experiments with augmented LFs.

both methods in terms of performance and efficiency. The performance comparisons are given in
Table 6.

Table 6 shows that compared to PromptedWS without any consideration of correlations, pass-
ing the structure is extremely effective on Spouse dataset, improved 12.5 F1 score with CosGen
and improved 11.8 F1 score using the WSSL. For SMS dataset, passing the structure also im-
proves the results, boosting 3.4 Acc score and 4.5 Acc score using CosGen and the structure from
WSSL respectively. Although both the structure from our refining module and the structure learned
from data help to deal with dependencies and can effectively improve the performance, CosGen
is much more efficient than WSSL. The time and computational cost for CosGen is negligible
while the time of learning structures using WSSL depends on the data and the number of LFs.

Table 7: WSSL runtime for inferring LFs
structures.

YouTube SMS Spouse
time(s) 0.11 24.76 0.15

As shown in Table 7, structure learning with WSSL
takes around 0.1s for YouTube and Spouse dataset and
around 24s to learn a structure of SMS for WSSL. Note
that running a label model without any structures for
SMS dataset only takes less than 1s. Compared to the
label model run time, 24s for computing the structure
alone should be considered as expensive and should
not be ignored. The same holds for both YouTube and
Spouse dataset: when using WSSL to learn a structure, the time spend on obtaining the structure
could be longer than label model runtime. In contrast, CosGen produces a structure that can be as
effective as WSSL, but with negligible computation time.

4.4 HANDLING HIGH REDUNDANCY

Table 8: Comparisons with PromptedWS in augmented settings with redundent prompted LFs.

YouTube(Acc) SMS(F1) Spouse(F1)
PromptedWS (Smith et al., 2022) 93.8±1.2 89.0±3.6 31.0±4.2
w/ Structure Refining Module 94.9±1.1 95.0±1.0 58.9±1.9

To empirically evaluate the performance of Structure Refining Module in high redundancy scenarios,
we conducted additional experiments using an original augmentation strategy for prompted LFs.
Using the same datasets, we translated the natural language prompts for each prompted LFs into a
different language and then back into English. This process resulted in a new set of prompted LFs
that are highly redundant with the original set. We then merged these augmented prompted LFs

10

with the original set, resulting in a larger and intentionally highly redundant set of prompted LFs.
The results of our experiments are shown in Table 8, which demonstrates that Structure Refining
Module achieved a significant improvement of 11.7 points over the PromptedWS baselines. This
result indicates the effectiveness of Structure Refining Module in high redundancy scenarios.

4.5 EFFECT ON LABEL MODEL EFFICIENCY

In this subsection, we specifically exam how the computational time of the label model can change
with Structure Refining Module. In Figure 4, we plot the label model run time for both removing
the LFs and feeding dependency structures into label model. A zero value on the horizontal axis
represents PromptedWS without LaRe and CosGen, with negative values indicating the number of
LFs removed and positive values indicating the number of edges. The vertical axis represents the
run time of the label model. We use blue color to represent number of LFs removed while and use
orange color to represent number of edges in the structures. We observe that pass in the structure
generally harms the efficiency of the label model. Even passing a simple structure with just one edge
can increase the computational time of the label model greatly. For example, for the SMS dataset,
passing a structure with only one edge leads to a surge in the running time from less than 1 second
to around 1700 seconds, while for the SMS dataset with augmented LFs, it surges from 5 seconds
to around 116 × 103 seconds. Similarly, as the number of edges increases, the computational time
of the label model also increases, as seen in the YouTube and Spouse datasets. This tendency has
been shown in both the YouTube and Spouse dataset, where when the number of edges increases,
the running time of the label model tends to increase. As for removing LFs, the running time saved
on label model is not so remarkable unless the number of LFs are large. Since for dataset with a few
LFs, the label model is already fast enough even without removing any LFs. (Less than 1s for all
the three dataset even with augmented LFs except for SMS dataset). In Figure 4, we zoom in on the
running time for LF removal to see how running time changes when removing different number of
LFs. Overall, our analysis suggests that both removing LFs and increasing sparsity in structures can
improve the efficiency of the label model. The choice should depend on the specific characteristics
of the dataset and the trade-off between accuracy and efficiency.

4.6 SELECTING HYPERPARAMETERS

In this subsection, we provide some intuition on how to select mr and me for Structure Refining
Module. When selecting the hyperparameters for Structure Refining Module, it is crucial to con-
sider the balance between performance and computational costs. In scenarios with only a few LFs,
occurrences of heavy redundancies among LFs also became rarer. So removing too many labeling
functions could harm performance. In this case, the number to be removed mr should be relatively
small. Since there are not many LFs to remove, there is not much to gain in computational time
and resources. Here, performance should be the primary consideration. When the total number of
LFs is small, a relatively sparser dependency structure among LFs may boost performance without
significantly increasing run time. Thus, in this case, me can be set to a non-zero value.

In contrast, if the number of LFs are large, there might be more substantial redundancies among
LFs and thus removing some of them can improve the performance. In this case, We set mr to be
relatively large. Moreover, since LFs removal saves computational time on the label model as well
as computational cost for LLM inferences (such as costs on prompting), we can trade some perfor-
mance for efficiency by selecting a large mr. We also prefer small me, the parameter controlling
the number of edges of structure to relieve the computation cost.

5 CONCLUSION AND DISCUSSION

In this paper, we propose Structure Refining Module, a novel approach for efficient structure discov-
ery and management in Prompted Weak Supervision. Our approach asks large language models for
information beyond the inference output, leveraging similarities in the embedding space to detect
redundant LFs and learn the dependency structures among prompted LFs. We demonstrated the
effectiveness of our approach through extensive experiments and provide comprehensive ablation
analysis for Structure Refining Module. We believe that the Structure Refining Module is a valuable
tool for weak supervision practitioners who wish to optimize their workflow for both efficiency and

11

performance. In future work, we plan to further investigate scalable and robust integration of LLMs
into programmatic weak supervision workflows.

Ethical Considerations One major concern for our method is unfair labeling due to spurious and
sensitive feedback from LLMs. As a result, supervised model using the data labeled by the proposed
system may be subject to biased treatment in downstream applications. Therefore it is essential to
consider the potential biased output from LLMs and subject matter experts should also conduct care-
ful moderation with the development dataset to better identify and contain the biases from LLMs.
Our proposed method aims to improve both the accuracy of probabilistic labeling and efficiency in
structure estimation. However, our methods may be unfairly used in applications that are subject
to data privacy violations and the consequent labels or supervised-trained models. It is crucial to
apply careful scrutiny towards the detailed applications of our method. While our method has the
potentially to decrease the bias from LLMs, it is important to consider and carefully address these
ethical challenges to ensure fair and responsible use.

ACKNOWLEDGEMENTS

We would like to thank Jiayou Zhang for his helpful suggestions and comments. This material
is based on research sponsored by Defense Advanced Research Projects Agency (DARPA) and Air
Force Research Laboratory (AFRL) under agreement number FA8750-19-2-1006. The U.S. Govern-
ment is authorized to reproduce and distribute reprints for Governmental purposes notwithstanding
any copyright notation thereon. The views and conclusions contained herein are those of the authors
and should not be interpreted as necessarily representing the official policies or endorsements, ei-
ther expressed or implied, of Defense Advanced Research Projects Agency (DARPA) and Air Force
Research Laboratory (AFRL) or the U.S. Government. We gratefully acknowledge support from
Google and Cisco. Disclosure: Stephen Bach is an advisor to Snorkel AI, a company that provides
software and services for data-centric artificial intelligence.

Authors’ Note. The first two authors contributed equally. Co-first authors can prioritize their names
when adding this paper’s reference to their resumes.

REFERENCES

Alexander J Ratner, Christopher M De Sa, Sen Wu, Daniel Selsam, and Christopher Ré. Data
programming: Creating large training sets, quickly. Advances in neural information processing
systems, 29, 2016.

Alexander Ratner, Stephen H Bach, Henry Ehrenberg, Jason Fries, Sen Wu, and Christopher Ré.
Snorkel: Rapid training data creation with weak supervision. In Proceedings of the VLDB En-
dowment. International Conference on Very Large Data Bases, volume 11, page 269. NIH Public
Access, 2017.

Jieyu Zhang, Cheng-Yu Hsieh, Yue Yu, Chao Zhang, and Alexander Ratner. A survey on program-
matic weak supervision. arXiv preprint arXiv:2202.05433, 2022a.

Ryan Smith, Jason A Fries, Braden Hancock, and Stephen H Bach. Language models in the loop:
Incorporating prompting into weak supervision. arXiv preprint arXiv:2205.02318, 2022.

Peilin Yu and Stephen Bach. Alfred: A system for prompted weak supervision. In Proceedings
of the 61st Annual Meeting of the Association for Computational Linguistics, pages 479–488,
Toronto, Canada, July 2023. Association for Computational Linguistics. doi: 10.18653/v1/2023.
acl-demo.46. URL https://aclanthology.org/2023.acl-demo.46.

Stephen H Bach, Daniel Rodriguez, Yintao Liu, Chong Luo, Haidong Shao, Cassandra Xia, Souvik
Sen, Alex Ratner, Braden Hancock, Houman Alborzi, et al. Snorkel drybell: A case study in de-
ploying weak supervision at industrial scale. In Proceedings of the 2019 International Conference
on Management of Data, pages 362–375, 2019.

Sahaana Suri, Raghuveer Chanda, Neslihan Bulut, Pradyumna Narayana, Yemao Zeng, Peter Bailis,
Sugato Basu, Girija Narlikar, Christopher Ré, and Abishek Sethi. Leveraging organizational
resources to adapt models to new data modalities. arXiv preprint arXiv:2008.09983, 2020.

12

https://aclanthology.org/2023.acl-demo.46

Christopher Ré, Feng Niu, Pallavi Gudipati, and Charles Srisuwananukorn. Overton: A data system
for monitoring and improving machine-learned products. arXiv preprint arXiv:1909.05372, 2019.

Zhaobin Kuang, Chidubem G Arachie, Bangyong Liang, Pradyumna Narayana, Giulia DeSalvo,
Michael S Quinn, Bert Huang, Geoffrey Downs, and Yang Yang. Firebolt: Weak supervision
under weaker assumptions. In International Conference on Artificial Intelligence and Statistics,
pages 8214–8259. PMLR, 2022.

Esteban Safranchik, Shiying Luo, and Stephen H. Bach. Weakly supervised sequence tagging from
noisy rules. In AAAI, 2020.

Simran Arora, Avanika Narayan, Mayee F Chen, Laurel J Orr, Neel Guha, Kush Bhatia, Ines Chami,
Frederic Sala, and Christopher Ré. Ask me anything: A simple strategy for prompting language
models. arXiv preprint arXiv:2210.02441, 2022.

Rongzhi Zhang, Yue Yu, Pranav Shetty, Le Song, and Chao Zhang. Prboost: Prompt-based rule dis-
covery and boosting for interactive weakly-supervised learning. arXiv preprint arXiv:2203.09735,
2022b.

Nicolai Meinshausen and Peter Bühlmann. High-dimensional graphs and variable selection with the
lasso. 2006.

Jun Zhu, Ni Lao, and Eric P Xing. Grafting-light: fast, incremental feature selection and struc-
ture learning of markov random fields. In Proceedings of the 16th ACM SIGKDD international
conference on Knowledge discovery and data mining, pages 303–312, 2010.

Stephen H Bach, Bryan He, Alexander Ratner, and Christopher Ré. Learning the structure of gen-
erative models without labeled data. In International Conference on Machine Learning, pages
273–282. PMLR, 2017.

Paroma Varma, Bryan D He, Payal Bajaj, Nishith Khandwala, Imon Banerjee, Daniel Rubin, and
Christopher Ré. Inferring generative model structure with static analysis. Advances in neural
information processing systems, 30, 2017.

Victor Sanh, Albert Webson, Colin Raffel, Stephen H Bach, Lintang Sutawika, Zaid Alyafeai, An-
toine Chaffin, Arnaud Stiegler, Teven Le Scao, Arun Raja, et al. Multitask prompted training
enables zero-shot task generalization. arXiv preprint arXiv:2110.08207, 2021.

Daniel Fu, Mayee Chen, Frederic Sala, Sarah Hooper, Kayvon Fatahalian, and Christopher Ré. Fast
and three-rious: Speeding up weak supervision with triplet methods. In International Conference
on Machine Learning, pages 3280–3291. PMLR, 2020.

Nilesh Dalvi, Anirban Dasgupta, Ravi Kumar, and Vibhor Rastogi. Aggregating crowdsourced
binary ratings. In Proceedings of the 22nd international conference on World Wide Web, pages
285–294, 2013.

Manas Joglekar, Hector Garcia-Molina, and Aditya Parameswaran. Comprehensive and reliable
crowd assessment algorithms. In 2015 IEEE 31st International Conference on Data Engineering,
pages 195–206. IEEE, 2015.

Robert E Schapire and Yoav Freund. Boosting: Foundations and algorithms. Kybernetes, 42(1):
164–166, 2013.

Akshay Balsubramani and Yoav Freund. Scalable semi-supervised aggregation of classifiers. Ad-
vances in Neural Information Processing Systems, 28, 2015.

Yuchen Zhang, Xi Chen, Dengyong Zhou, and Michael I Jordan. Spectral methods meet em: A
provably optimal algorithm for crowdsourcing. The Journal of Machine Learning Research, 17
(1):3537–3580, 2016.

Avrim Blum and Tom Mitchell. Combining labeled and unlabeled data with co-training. In Pro-
ceedings of the eleventh annual conference on Computational learning theory, pages 92–100,
1998.

13

Yu Meng, Jiaming Shen, Chao Zhang, and Jiawei Han. Weakly-supervised neural text classifica-
tion. In proceedings of the 27th ACM International Conference on information and knowledge
management, pages 983–992, 2018.

Abhijeet Awasthi, Sabyasachi Ghosh, Rasna Goyal, and Sunita Sarawagi. Learning from rules
generalizing labeled exemplars. arXiv preprint arXiv:2004.06025, 2020.

Chen Liang, Yue Yu, Haoming Jiang, Siawpeng Er, Ruijia Wang, Tuo Zhao, and Chao Zhang. Bond:
Bert-assisted open-domain named entity recognition with distant supervision. In Proceedings of
the 26th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining, pages
1054–1064, 2020.

Raphael Hoffmann, Congle Zhang, Xiao Ling, Luke Zettlemoyer, and Daniel S Weld. Knowledge-
based weak supervision for information extraction of overlapping relations. In Proceedings of the
49th annual meeting of the association for computational linguistics: human language technolo-
gies, pages 541–550, 2011.

Jieyu Zhang, Bohan Wang, Xiangchen Song, Yujing Wang, Yaming Yang, Jing Bai, and Alexander
Ratner. Creating training sets via weak indirect supervision. arXiv preprint arXiv:2110.03484,
2021a.

Peilin Yu, Tiffany Ding, and Stephen H. Bach. Learning from multiple noisy partial labelers. In
Artificial Intelligence and Statistics (AISTATS), 2022.

Pierre Lison, Aliaksandr Hubin, Jeremy Barnes, and Samia Touileb. Named entity recognition
without labelled data: A weak supervision approach. arXiv preprint arXiv:2004.14723, 2020.

Pengfei Liu, Weizhe Yuan, Jinlan Fu, Zhengbao Jiang, Hiroaki Hayashi, and Graham Neubig. Pre-
train, prompt, and predict: A systematic survey of prompting methods in natural language pro-
cessing. arXiv preprint arXiv:2107.13586, 2021.

Timo Schick and Hinrich Schütze. Generating datasets with pretrained language models. In Con-
ference on Empirical Methods in Natural Language Processing (EMNLP), 2021.

Jiacheng Ye, Jiahui Gao, Qintong Li, Hang Xu, Jiangtao Feng, Zhiyong Wu, Tao Yu, and Ling-
peng Kong. ZeroGen: Efficient zero-shot learning via dataset generation. arXiv preprint
arXiv:2202.07922, 2022.

Yew Ken Chia, Lidong Bing, Soujanya Poria, and Luo Si. RelationPrompt: Leveraging prompts to
generate synthetic data for zero-shot relation triplet extraction. In Findings of the Association for
Computational Linguistics, 2022.

Yuxiang Wu, Matt Gardner, Pontus Stenetorp, and Pradeep Dasigi. Generating data to mitigate
spurious correlations in natural language inference datasets. In Meeting of the Association for
Computational Linguistics (ACL), 2022.

Luiz Bonifacio, Hugo Abonizio, Marzieh Fadaee, and Rodrigo Nogueira. InPars: Data augmentation
for information retrieval. arXiv preprint arXiv:2202.05144, 2022.

Hunter Lang, Monica Agrawal, Yoon Kim, and David Sontag. Co-training improves prompt-based
learning for large language models. arXiv preprint arXiv:2202.00828, 2022.

Yanai Elazar, Nora Kassner, Shauli Ravfogel, Abhilasha Ravichander, Eduard Hovy, Hinrich
Schütze, and Yoav Goldberg. Measuring and improving consistency in pretrained language mod-
els. Transactions of the Association for Computational Linguistics, 9:1012–1031, 2021.

Rongzhi Zhang, Yue Yu, Pranav Shetty, Le Song, and Chao Zhang. PRBoost: Prompt-based rule
discovery and boosting for interactive weakly-supervised learning. In Meeting of the Association
for Computational Linguistics (ACL), 2022c.

Salva Rühling Cachay, Benedikt Boecking, and Artur Dubrawski. Dependency structure misspeci-
fication in multi-source weak supervision models. arXiv preprint arXiv:2106.10302, 2021.

14

Paroma Varma, Frederic Sala, Ann He, Alexander Ratner, and Christopher Ré. Learning dependency
structures for weak supervision models. In International Conference on Machine Learning, pages
6418–6427. PMLR, 2019a.

Changho Shin, Winfred Li, Harit Vishwakarma, Nicholas Roberts, and Frederic Sala. Universalizing
weak supervision. arXiv preprint arXiv:2112.03865, 2021.

Alexander Ratner, Braden Hancock, Jared Dunnmon, Frederic Sala, Shreyash Pandey, and Christo-
pher Ré. Training complex models with multi-task weak supervision. In Proceedings of the AAAI
Conference on Artificial Intelligence, volume 33, pages 4763–4771, 2019.

Paroma Varma, Frederic Sala, Shiori Sagawa, Jason Fries, Daniel Fu, Saelig Khattar, Ashwini Ra-
mamoorthy, Ke Xiao, Kayvon Fatahalian, James Priest, et al. Multi-resolution weak supervision
for sequential data. Advances in Neural Information Processing Systems, 32, 2019b.

Jieyu Zhang, Yue Yu, Yinghao Li, Yujing Wang, Yaming Yang, Mao Yang, and Alexander Ratner.
WRENCH: A comprehensive benchmark for weak supervision. In Thirty-fifth Conference on
Neural Information Processing Systems Datasets and Benchmarks Track, 2021b. URL https:
//openreview.net/forum?id=Q9SKS5k8io.

Túlio C Alberto, Johannes V Lochter, and Tiago A Almeida. Tubespam: Comment spam filtering
on youtube. In 2015 IEEE 14th international conference on machine learning and applications
(ICMLA), pages 138–143. IEEE, 2015.

José María Gómez Hidalgo, Guillermo Cajigas Bringas, Enrique Puertas Sánz, and Francisco Car-
rero García. Content based sms spam filtering. In Proceedings of the 2006 ACM symposium on
Document engineering, pages 107–114, 2006.

David PA Corney, Dyaa Albakour, Miguel Martinez-Alvarez, and Samir Moussa. What do a million
news articles look like? In NewsIR@ ECIR, pages 42–47, 2016.

Colin Raffel, Noam Shazeer, Adam Roberts, Katherine Lee, Sharan Narang, Michael Matena, Yanqi
Zhou, Wei Li, and Peter J Liu. Exploring the limits of transfer learning with a unified text-to-text
transformer. The Journal of Machine Learning Research, 21(1):5485–5551, 2020.

Yinhan Liu, Myle Ott, Naman Goyal, Jingfei Du, Mandar Joshi, Danqi Chen, Omer Levy, Mike
Lewis, Luke Zettlemoyer, and Veselin Stoyanov. Roberta: A robustly optimized bert pretraining
approach. arXiv preprint arXiv:1907.11692, 2019.

15

https://openreview.net/forum?id=Q9SKS5k8io
https://openreview.net/forum?id=Q9SKS5k8io

	Background
	Problem Setup
	Related Work

	Approach
	Experimental Results
	Ablation and Analysis
	Similarities reveal correlations
	Role of Labeling Function Removal
	Effect of CosGen
	Handling high redundancy
	Effect on label model efficiency
	Selecting hyperparameters

	Conclusion and Discussion

