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Abstract—Heterogeneous unsupervised domain adaptation
(HUDA) is the most challenging domain adaptation setting
where the feature spaces of source and target domains are
heterogeneous, and the target domain has only unlabeled data.
Existing HUDA methods assume that both positive and negative
examples are available in the source domain, which may not be
satisfied in some real applications. This paper addresses a new
challenging setting called positive and unlabeled heterogeneous
unsupervised domain adaptation (PU-HUDA), a HUDA setting
where the source domain only has positives. PU-HUDA can also
be viewed as an extension of PU learning where the positive
and unlabeled examples are sampled from different domains. A
naive combination of existing HUDA and PU learning methods
is ineffective in PU-HUDA due to the gap in label distribution
between the source and target domains. To overcome this issue,
we propose a novel method, predictive adversarial domain adapta-
tion (PADA), which can predict likely positive examples from the
unlabeled target data and simultaneously align the feature spaces
to reduce the distribution divergence between the whole source
data and the likely positive target data. PADA achieves this by a
unified adversarial training framework for learning a classifier to
predict positive examples and a feature transformer to transform
the target feature space to that of the source. Specifically, they
are both trained to fool a common discriminator that determines
whether the likely positive examples are from the target or source
domain. We experimentally show that PADA outperforms several
baseline methods, such as the naive combination of HUDA and
PU learning.

Index Terms—heterogeneous domain adaptation, PU learning,
adversarial training

I. INTRODUCTION

Applying machine learning models trained with a domain
to different domains may lead to performance degradation
[1]. This motivates researchers to study unsupervised domain
adaptation (UDA) [2], [3], which transfers knowledge from a
known domain (source) where a sufficiently large number of
labeled samples are available to an unknown domain (target)
where only unlabeled samples are available. The UDA setting
supposes that the data distributions in the source and target
domains are different, but the feature space is common.
However, when the data is sampled from different domains, the
feature space itself often differs in real-world problems (e.g.,
different attributes are observed), as we show examples later.
Heterogeneous unsupervised domain adaptation (HUDA) [4]
is a new UDA task that addresses different feature spaces. Ex-
isting HUDA studies [5]–[10] only consider situations where

(a) Conventional HUDA setting.

(b) New PU-HUDA setting.

Fig. 1. View of the data structure in two HUDA settings, (a) conventional
one and (b) new one where the source domain has only positive data. Here,
both of them assume that the two domains share some features.

both positive and negative examples in a binary classification
task are available in the source domain, as illustrated in Fig. 1
(a). However, in some real-world applications, such as the
example below, the source domain may have access to only
positive examples.

Estimation of potential customers in different industries.
Consider a business alliance of a bank and a jewelry store.
The goal of them is to find potential customers for the
jewelry store among the bank’s large customer base. This
task can be considered a simple classification problem of
predicting whether a given customer in the bank’s database
will purchase jewelry or not. To address this task, they use
their own customer data represented by the following features.
First, they both might possess basic demographics such as
age and gender. On the other hand, each industry has their
own features. The bank has detailed economic conditions
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Fig. 2. Comparison of adaptation mechanisms in existing HUDA methods
(top) and our proposed PU-HUDA method (bottom).

represented by deposit balances, and the jewelry store has
past purchase histories. Hence, this task can be considered a
HUDA task with the jewelry store as the source and the bank
as the target (see Fig. 1). However, while the bank (target) do
not have information on purchases of jewelry, i.e., only has
unlabeled customers, unlike a conventional HUDA setting, the
jewelry store (source) has only customers who have already
purchased or visited the jewelry store, i.e., positive labeled
customers.

Motivated by the above application, this paper addresses
a new challenging HUDA task called positive and unlabeled
heterogeneous unsupervised domain adaptation (PU-HUDA),
which consists of a source domain with positive data a and
target domain with unlabeled data in the different feature
spaces as described in Fig. 1 (b). PU-HUDA can be viewed as
a hybrid setup of positive unlabeled (PU) learning [11], which
trains binary classifiers from positive and unlabeled data only,
and HUDA. It appears that simply combining existing HUDA
and PU learning methods can properly solve PU-HUDA, but
it does not work well, as we demonstrate later in our ex-
periments. This is because applying existing HUDA methods
directly to PU-HUDA minimizes the divergence between the
distributions of the whole source data with positive labels
only and the whole target data with positive and negative
labels on the transformed feature space, resulting in a less
label-discriminative feature space on the target domain as
shown in Fig. 2 (top). To solve PU-HUDA properly, we need
to minimize the distribution divergence between the whole
source data and the target data with only positive labels on
the transformed feature space as described in Fig. 2 (bottom).

To address the above issue, we regard PU-HUDA as a task
to identify likely positive examples from target data and reduce
the distribution divergence between the whole source examples
and the target examples likely to be positive. To solve this
task, we propose a new method using adversarial training as in

Generative Neural Network (GAN) [12]. Our proposed method
mainly consists of three models, (1) a feature transformer
to transform the target feature space to that of the source,
(2) a classifier to predict likely positive examples from the
unlabeled target data transformed by the feature transformer,
and (3) a discriminator to determine whether the likely positive
examples transformed by the feature transformer are from the
target or source domain. The classifier is trained to identify the
likely positive examples indistinguishable from the source ex-
amples by the discriminator. The feature transformer is trained
to transform the target examples predicted as positive by the
classifier into the indistinguishable examples from the source
examples by the discriminator. To achieve these training, we
adopt an objective function based on Kullback-Leibler (KL)
divergence inspired by Predictive Adversarial Networks (PAN)
[13], a recently proposed PU learning method. We call this
approach predictive adversarial domain adaptation (PADA).
PADA can make the positive target and the whole source data
closer while keeping the negative target and the whole source
data away, as shown in Fig. 2 (bottom). As a result, PADA
obtains a classifier that provides good classification accuracy
on the feature space transformed by a feature transformer.

Our contributions can be summarized as follows:
• We define a new domain adaptation task, positive and un-

labeled heterogeneous unsupervised domain adaptation
(PU-HUDA). To the best of our knowledge, this paper is
the first study to address PU-HUDA.

• We propose a novel method using adversarial train-
ing, positive-adversarial domain adaptation (PADA). The
PADA’s objective is based on KL divergence inspired by
PAN [13].

• We experimentally show that PADA outperforms several
baseline methods to solve PU-HUDA.

II. RELATED WORKS

We review previous studies related to the topic of this paper
and discuss how different our work is from them.

A. Heterogeneous Unsupervised Domain Adaptation

The common idea of existing HUDA techniques is to learn
feature transformers to transform the source and target data
into a homogeneous feature space to minimize the distribution
distance of the two domains on that feature space. Due
to this difficulty of dealing with two heterogeneous feature
spaces, most HUDA techniques require some supplementary
information to bridge the two domains. For example, KCCA
[5] and HHTL [6] require paired (common) samples between
the two domains, which are often difficult to obtain in real
cases. DSFT [7] and OT(optimal transport)-based method [8]
require common features between the two domains as in
this paper1. CL-SCL [14] and FSR [15] require semantically
equivalent word pairs and meta-features, respectively. There
are some studies that do not explicitly require supplementary

1While DSFT and this paper consider the situation where the source and
target each have domain-specific features, OT-based method considers the
situation where only the target has domain-specific features.



TABLE I
SETTING COMPARISON OF THIS PAPER WITH EXISTING HUDA METHODS.

Method Some common samples Some common features Source negative examples
are necessary? are necessary? are necessary?

KCCA [5] Yes No Yes
HHTL [6] Yes No Yes
DSFT [7] No Yes Yes

OT-based [8] No Yes Yes
SFER [9] No No Yes
GLG [10] No No Yes

PADA(this paper) No Yes No

information, such as GLG [10] and SFER [9] although they
implicitly assume that the two domains have sufficiently simi-
lar features. All of the methods listed here require both positive
and negative examples in the source domain. A comparison of
this paper with these methods is summarized in Table I.

B. PU learning

PU learning trains a binary classification from positive and
unlabeled examples without labeled negative examples [11].
Early PU learning methods adopt the two-step technique that
first identifies reliable negative examples and then conducts
supervised learning [16], [17]. Some studies propose PU learn-
ing methods by considering unlabeled data as negative data
having label noise [18], [19]. Another promising branch of
PU learning employs the framework of cost-sensitive learning,
such as uPU [20] and nnPU [21]. Recently, Hu et al. [13]
proposed the state-of-the-art PU learning method, Predictive
Adversarial Networks (PAN) based on the revised architecture
of GAN. Besides performance, PAN has the advantage of not
requiring class prior probability.

C. Domain Adaptation in PU learning setting

As in our study, there are several recent studies that address
domain adaptation in the context of PU learning. For example,
Sonntag et al. [22] considers the domain adaptation scenario
where the source domain has labeled data of all classes, and
the target domain has unlabeled data and a few positive labeled
data in the homogeneous feature space. The setting differs
from ours which is more difficult, in that the target domain has
positive labeled data and the source domain has both positive
and negative data, and in the homogeneity of the feature
space. The scenario where both target and source domains
have unlabeled and positive labeled data is also treated for
a link prediction task in the homogeneous setting [23] and
heterogeneous setting [24], respectively. Their settings are also
different from ours where the source domain has only positive
labeled data and the target domain has only unlabeled data.
In addition, there are studies that address open set domain
adaptation (OSDA) by considering it as PU learning [25],
[26]. OSDA performs domain adaptation while also rejects
target classes that are not present in the source domain as
unknown. In their settings, the source domain has a positive
(known) labeled data and the target domain has unlabeled data
including positive and negative (unknown) data. However, they
consider the homogeneous feature space unlike our study. Thus

far, no study has examined the PU learning task in the HUDA
setting.

III. POSITIVE AND UNLABELED HETEROGENEOUS
DOMAIN ADAPTATION

A. Problem Definition

We define a problem addressed in this paper, PU-HUDA.
We suppose that the source domain and target domain share
some common features as in DSFT [7] (although our exper-
imental results show that our proposed method works even
when the number of common features is sufficiently small).
Let Xs = [Sc;Ss] ∈ Rns×c × Rns×s and Xt = [Tc;Tt] ∈
Rnt×c×Rnt×t be the source data matrix with ns data samples
and target data matrix with nt data samples, respectively. Here,
Sc and Tc are the data matrices in the common feature space
with c dimension in the source and target domain, respectively.
Ss and Tt are the data matrices in the source and target specific
feature spaces with s and t dimensions, respectively. We
suppose that all data in the source domain is labeled as positive
while all data in the target domain is unlabeled (including both
positive and negative examples). We remark that this setting
is different from the conventional HUDA setting where the
source domain has both positive and negative labeled data.
The main tasks of the conventional HUDA and PU-HUDA
are the same, i.e., to predict the binary labels of the target
data. These settings are visualized in Fig. 1.

The simplest baseline for solving PU-HUDA is to use only
common features Sc and Tc. Existing PU learning methods can
be directly applied to the common features. However, since
existing PU learning methods cannot use domain-specific fea-
tures, this baseline method provides only limited performance.
In solving PU-HUDA, PU learning that can take advantage
of domain specific features in the heterogeneous setting is
essential.

B. Difficulty of PU-HUDA

One naive solution to tackle PU-HUDA is to directly
combine the existing HUDA and PU learning methods. In this
naive combination approach, we first train feature transformers
that transform Xs and Xt into X̂s and X̂t in a new homoge-
neous feature space by using HUDA methods, such as DSFT,
GLG, and SFER. Then, we can apply an existing PU learning
method to the unlabeled data X̂t and the positive labeled data
X̂s.



Fig. 3. Overview of the proposed method, PADA using soft-labeling mechanism.

However, this naive combination approach can be ineffective
due to the following the reason. HUDA methods learn feature
transformers that reduce the distribution divergence between
X̂s and X̂t under some metric, such as MMD. However,
recall that X̂s includes only positive data while X̂t includes
both positive and negative data. Due to this gap, the mapping
that reduces the distribution divergence between X̂s and X̂t

does not necessarily generate a feature space that gives high
discriminative performance on the target data, as described in
Fig. 2 (top). Indeed, we experimentally confirmed that this
naive combination of HUDA and PU learning did not work
in Sec. V. In the next section, we propose a new method to
overcome this difficulty.

IV. PROPOSED APPROACH

To overcome the difficulty described in the previous section,
we need to make only the positive target data close to the
source data while keeping the negative target data away from
the source data in the transformed feature space.

A. Basic Idea

Specifically, we regard PU-HUDA as a task to identify
likely positive examples from the target data and reduce the
distribution divergence between the whole source examples
and the likely positive target examples. To solve this task, we
exploit adversarial training and thus introduce a discriminator.
Hence, our proposed method mainly consists of the following
three models as described in Fig. 3 (Details of Fig. 3 are
explained in Sec. IV-C).

(1) Feature Transformer F : Rc+t → Rs transforms the
target feature space to that of the source. The target data Xt is
transformed into the data T̂s = F (Xt) in the source-specific
feature space via F . Thus, we get X̂t = [Tc; T̂s] and Xs

in the same feature space (see Fig. 3). Here, we employed
an asymmetric transformation [4] (i.e., only target data is

transformed) because it is difficult to train feature transformers
for each of the source and target data, which have different
label distributions and feature spaces, and therefore it is easy
to fall into non-optimal solutions.

(2) Classifier C : Rc+s → R2 identifies positive examples
in the transformed unlabeled target data (classifies positive and
negative target examples). We represent the output confidence
scores of C as C(·) = (C(·)0, C(·)1), where C(·)1 and C(·)0
represent the probabilities that the input samples are predicted
to be positive and negative, respectively.

(3) Discriminator D : Rc+s → R2 determines whether the
likely positive examples are from the target or source domain
(negative examples are predicted as target). The same notation
as C applies to D although positive and negative mean source
and target for D, respectively.

Since D is trained to discriminate the source and target
examples, F and C are trained as follows:

• F is trained so that the source data and the transformed
target data predicted by C to be positive cannot be
distinguished by D.

• C is trained to identify likely positive examples from
the target data transformed by F so that they cannot be
distinguished from the source data that are all positive
by D. Therefore, C can classify positive and negative
examples.

C and F provide feedback to each other. That is, if C
can predict the correct positive examples, F can reduce the
distribution divergence between the truly positive target data
and the source data, and conversely if F can transform the
target positive data into the data close to the source data, C
can predict the likely positive examples more indistinguishable
from the source data. Therefore, by alternately training them
with D, we can obtain good C and F , which are used for
binary classification inference on the target data.



We next consider the optimization ways to train C, D, and
F .

B. Naive Optimization Approach

We first consider focusing on only positive target data while
ignoring negative target data and reducing the distribution
divergence between the target positive data and the source
data in the transformed feature space.

The standard objective function used in domain adaptation
methods using adversarial learning [27]–[29] to optimize D
and F is the following cross-entropy loss:

min
F

max
D

V (D,F ) =Exs∼Ps(xs)[logD(xs)1]

+ Ext∼Pt(xt)[logD(x̂t)0], (1)

where Ps and Pt are data distributions of the source and target
data, x̂t = [tc;F (xt)], and xt = [tc; tt]. By maximizing Eq. 1,
D is trained to recognize source and target domains, and by
minimizing Eq. 1, F is trained to fool D, i.e., to reduce the
divergence between the source and target data.

Since optimizing only Eq. 1 causes the label-gap problem
described in Sec.III-B, we incorporate the outputs of C into
the second term to focus on the positive target data and train C
simultaneously. That is, we optimize the following objective
function to train C, F , and D:

min
C,F

max
D

Vwada(D,F,C) = Exs∼Ps(xs)[logD(xs)1]

+
Ext∼Pt(xt)[C(x̂t)1 logD(x̂t)0]

Ext∼Pt(xt)[C(x̂t)1]
.

(2)

By weighting the second term with C(·)1, the training of D
and F focuses on the target data that C predicts are likely
positive. The denominator of the second term prevents C
from outputting 0 for any input. Therefore, by the weighted
second term, C, F , and D are expected to be trained as
described in Sec. IV-A. We call this naive optimization ap-
proach weighted adversarial domain adaptation (WADA). At
first glance, WADA seems to work. However, WADA has the
following two problems.

• Since WADA places no restrictions on C incorrectly pre-
dicting positive examples to be negative, C will predict
as positive only those samples that are sufficiently likely
to be positive.

• Since the second term in Eq. 2 tends to be smaller for
negative examples, F will overfit on positive examples,
failing to transform negative target data into the features
that C can easily classify.

C. Predictive Adversarial Domain Adaptation

To address the problems in WADA, we propose predictive
adversarial domain adaptation (PADA). PADA treats positive
and negative examples equally by using an objective function
based on KL divergence for confidence scores inspired by PAN

[13], thus solving the two problems of WADA. The objective
function of PADA is as follows:

min
C,F

max
D

Vpada(D,F,C|Xs, Xt)

=

ns∑
i=1

logD(xi
s)1 +

nt∑
i=1

logD(x̂i
t)0

+ λ

( nt∑
i=1

KL(D(x̂i
t)||C(x̂i

t))−
nt∑
i=1

KL(D(x̂i
t)||C̃(x̂i

t))

)
,

(3)

where x̂i
t = [tic;F (xi

t)] and xi
t = [tic; t

i
t]. Each xi

∗ is a data
sample from X∗. C̃(·) denotes the opposite output of C(·),
i.e., C̃(·) = (C(·)1, C(·)0).

The first and second terms: cross-entropy for D, corre-
sponding to the empirical version of Eq. 2. Optimizing these
terms has the following effects on D and F .

• D can identify the source and target data to some extent.
Here, all the target data is regarded as negative for D to
give D the ability to recognize the target data.

• Since F is trained adversarial to D, F can transform the
whole target data into the data close to the source data
to some extent.

The third and fourth terms: KL divergence between
the outputs of C and D. These terms help to alleviate the
label-gap problem caused by using only the first and second
terms and the problems in WADA. Since the fourth term
only symmetrizes the gradient by the third term and improves
performance [13], only the effects of the third term are
discussed below.

• C is trained to output similar scores to those of D for
the transformed target data. That is, C tries to give a
high score of positivity to the target example that D
has difficulty distinguishing from source examples, i.e.,
the positive target example. C also gives a low score of
positivity to the target example that is easy to distinguish
from source examples by D, i.e., the negative target
example. Therefore, C obtains an ability to classify target
positive and negative examples.

• D aims to discriminate source examples and positive
target examples. D is trained to output the opposite scores
from those of C by the third term. If C identifies the
likely positive target example, D tries to predict it as
target (negative). Conversely, if C identifies the likely
negative target example, D tries to predict it as source
(positive). The latter effect is not desirable but is canceled
with the effect of the second term.

• F is trained so that D outputs similar scores to those of
C, i.e., the likely positive (resp. negative) target examples
predicted by C are indistinguishable (resp. distinguish-
able) from the source examples by D. In other words, F
tries to make D predict the likely positive (resp. negative)
target example predicted by C as source (resp. target).
This allows F to transform the positive target data into the
data close to the source data while keeping the negative



Algorithm 1 Learning of PADA by the stochastic gradient
descent.
Input: positive labeled source data Xs = [Sc;Ss] ∈

Rns×(c+s), unlabeled target data Xt = [Tc;Tt] ∈
Rnt×(c+t), number of training steps T , and initial model
parameters θC , θD, θF of C,D, F .

Output: C,D, F
1: for T steps do
2: Sample a mini-batch xs = {x1

s, · · · , xm
s } from Xs and

a mini-batch xt = {x1
t , · · · , xm

t } from Xt. // training
of D

3: θD ← θD +∇θDVpada(D,F,C|xs,xt)
4: Sample a mini-batch xs = {x1

s, · · · , xm
s } from Xs and

a mini-batch xt = {x1
t , · · · , xm

t } from Xt. // training
of F

5: θF ← θF −∇θF Vpada(D,F,C|xs,xt)
6: Sample a mini-batch xt = {x1

t , · · · , xm
t } from Xt. //

training of C
7: θC ← θC −∇θCVpada(D,F,C| · ,xt)
8: end for
9: Return C,D, F .

target data away from the source data. The latter is an
effect not obtained with WADA.

As a result, we obtain a label-discriminative feature space
in the target domain and a good classifier that works on that
feature space. Algorithm 1 describes the learning algorithm of
PADA using stochastic gradient descent.

We finally mention the role of common features in PADA.
Common features prevent PADA falls into a trivial solution
where C predicts all target data to be negative. That is,
common features are useful for finding some examples in
the target data that are difficult for D to distinguish from the
source data, especially in the early stage of learning. It is clear
that PADA will not fall into the other trivial solution where
C predicts all target data to be positive because D is learned
with the target data as negative by the second term of Eq. 3.
See the next subsection for how to use common features more
explicitly to facilitate the learning of C.

D. Soft labeling mechanism to improve PADA

In the early stage of learning PADA, since F is not fully
trained, the features T̂s created by F may make the whole
features X̂t = [Tc; T̂s] useless. As a result, C might fail to
identify likely positive examples from X̂t, which leads to the
unstable learning of C and F . Therefore, in this section, we
consider guiding the learning of C by a base classifier that
can be trained stably using only common features without F .

First, we apply an existing PU learning method to the
common features of the source data and target data, Sc and
Tc. Let C0 be the base classifier obtained from the existing PU
learning method using Sc and Tc as the positive and unlabeled
data, respectively. If the common features contain some useful
information for classification, C0 should attain some degree of
classification accuracy. Therefore, we can use C0 to guide the

learning of C. By using C0, the objective of PADA is modified
as follows:

min
C,F

max
D

V ′
pada(D,F,C|Xs, Xt)

= Vpada(D,F,C|Xs, Xt)

+ η

( nt∑
i=1

KL(C0(t
i
c)||C(x̂i

t))−
nt∑
i=1

KL(C0(t
i
c)||C̃(x̂i

t))

)
,

(4)

where η is a balancing parameter. Note that C0 takes only
common features as inputs. The second and third terms are
added to the original objective of PADA. Since the third term
is a symmetrization term, we discuss only the second term. In
the second term, C0 gives soft labels2 to the unlabeled data
X̂t, and C is trained using them as teacher labels. By this
term, the learning of C will be accelerated when D and F
are not yet learned enough, which also leads to accelerated
learning of D and F as a result.

Once the learning of C is finished, C is expected to perform
better than C0. Therefore, it is also expected that training
PADA again using this C as a base classifier C0 will yield
a better classifier. With this insight, we adopt repeating this
soft-labeling process until the accuracy of the finally produced
classifier saturates. We note that, in the second and later
rounds, C0 can take both common and target-specific features
as inputs.

V. EXPERIMENTS

A. Experimental Setup

1) Datasets: We reorganized three datasets and used them
to evaluate our proposed methods since no public dataset was
directly related to the PU-HUDA setting. Detailed information
about the datasets is presented in Table II.

Movielens-Netflix [31], [32]: Movielens and Netflix are two
movie datasets that contain users and their ratings for movies
on a scale of [0,5]. To create a classification dataset using
them, we focus on the movie genre rather than the movie title.
We first calculate each user’s average rating for each genre,
and the differences between those and the user’s average rating
for all movies are used as features. The genres common to
Movielens and Netflix correspond to common features. We
select one feature from common features and label each user
as positive or negative according to whether the value for the
feature is positive or negative, i.e., whether the user likes the
corresponding genre or not. We chose Adventure as the label
because the correlation of Adventure with other features is
high, and the ratios of positive and negative are approximately
equal. Since the default proportion of common genres is large,
we randomly chose 4 genres from the 16 common genres and
used them as common features. Half of the remaining common
genres were used for Movielens-specific features and half for

2Soft labels are usually used in the context of distillation [30], which
transfers the knowledge of large models to small models.



TABLE II
DETAILED INFORMATION ABOUT THE PROCESSED DATASETS, MOVIELENS-NETFLIX, 20-NEWSGROUPS, AND DEFAULT OF CREDIT CARD CLIENTS.

Dataset

Number of samples Number of features
Training Testing Domain-specific

Target Source Pos Neg Common Target SourcePos Neg Pos
Movielens-Netflix 6,836 9,164 8,835 55,725 74,816 4 13 20

20-Newsgroups

CR 1,168 1,197 1,768 397 390

500 5,000 5,000

CS 1,168 1,187 1,768 378 406
CT 1,168 842 1,768 391 278
RS 1,192 1,187 1,197 396 396
RT 1,192 842 1,197 412 266
ST 1,187 842 1,186 380 296

Credit card
0.5 3,763 3,763 2,873 753 753

4 13 130.3 3,763 8,780 2,873 732 1,778
0.1 1,594 14,349 2,873 325 2,865

Netflix-specific features. We assigned Movielens as the target
and Netflix as the source.

20-Newsgroups [33]: a collection of about 20,000 docu-
ments belonging to four top categories: computer (C), record-
ing (R), science (S), and talk (T), each containing four more
subcategories. We create a binary classification task as in
DSFT [7] by selecting two top categories and assigning them
positive and negative labels. Half of the subcategories are used
for source and half for target. Each document is represented
by tf-idf features. We use the top 500 most frequent common
words in the source and target domain as common features
and the top 5000 frequent specific words in each domain as
domain-specific features.

Default of credit card clients [34]: a collection of credit card
records, including user demographics, history of payments,
bill statements, and previous payments, with users’ default
payments as binary labels. We assign male users as source
and female users as target. User demographics are used as
common features, which may often occur in reality. We use
bill statements and half of the history of payments as source-
specific features, and previous payments and half of the history
of payments as target-specific features. We vary the positive
ratio of the target data from 0.5 to 0.1 to see the sensitivity
of PADA to it.

2) Compared methods: We compare the performances of
PADA and PADA with soft-labeling (PADAS) to the three
types of baseline methods in addition to WADA.

The first baseline is to apply existing PU learning methods
to only common features. As existing PU learning methods, we
use NaivePU, which treats the entire target data as negative,
nnPU [21], and PAN [13].

The second type of baseline is DIST, which uses not only
common features but also target-specific features3. DIST only
uses the soft labeling mechanism of PADAS, i.e., first gives
soft labels to the unlabeled target data using the model trained
by the first baseline and trains a classifier using all the target
features and the soft labels as in usual distillation [30]. As the
first baseline, we adopt PAN because of its high performance.

3Note that DIST can not transfer the knowledge of the source-specific
features to the target domain.

The last baseline is a direct combination of existing HUDA
and PU learning methods described in Sec. III-B. This baseline
first constructs a homogeneous feature space by existing
HUDA methods and next applies PU learning methods to the
source and target data on the constructed homogeneous feature
space. As a PU learning method, we adopt PAN for the same
reason as DIST. We use two HUDA methods as baselines,
DSFT [7] and SFER [9]. The linear and non-linear DSFT
are denoted by DSFTl and DSFTnl, respectively. SFER is not
used for 20-Newsgroups because SFER can only be applied
to low dimensional features due to computational cost.

3) Implementation details: The binary classifier trained by
each method was tested on the target domain. We split each
target data into training, validation, and testing datasets. Each
method was tuned by the validation dataset and tested by
the testing dataset. We implemented each method three times
and used average test accuracy as the test metric. For PADA
and WADA, we selected the best learning rate in [0.0001,
0.0005, 0.001, 0.005, 0.01, 0.05, 0.1], λ and η in [0.0001,
0.0005, 0.001, 0.005, 0.01, 0.05, 0.1, 0.5, 1]. We repeated
the soft-labeling of PADA until the convergence of validation
accuracy. The batch size of PADA was set to 128. For a fair
comparison, each method adopted a linear classifier and a
linear discriminator, i.e., logistic regressions. We also used a
linear transformation for a feature transformer.

B. Results and Analysis

1) Performance comparison: The test accuracy results of
all compared methods are reported in Table III, Table IV, and
Table V. We also report AUC for Default of credit card clients
because the positive ratio is changed to small. The best result
among compared methods is written in bold.

Movielens-Netflix: Table III shows the results for Movielens-
Netflix and we can see that PADA and PADAS outperform
all the baseline methods in every setting. Specifically, they
improve the first baselines such as PAN using only common
features by about 4% on average and by about 6% in a
particular setting, which is an effect of source-specific and
target-specific features. Note that DIST also improves PAN.
This is because the generalization performance is improved
by using not only common features but also target-specific



TABLE III
PERFORMANCE COMPARISON USING ACCURACY (%) FOR MOVIVLENS-NETFLIX DATASET. FOUR COMMON FEATURES WERE RANDOMLY SELECTED FIVE

TIMES, WHICH MAKES 5 EXPERIMENTAL SETTINGS.

Settings Methods
NaivePU nnPU PAN DIST DSFTl DSFTnl SFER WADA PADA PADAS

A 59.01 57.89 59.93 62.64 62.34 57.33 57.84 64.40 66.29 66.13
B 58.40 57.55 59.99 62.50 57.09 58.55 60.53 61.49 61.90 63.14
C 63.72 63.10 62.64 65.07 68.35 60.94 57.82 67.90 67.82 68.93
D 62.93 63.26 65.49 66.85 69.17 58.71 62.99 65.52 70.26 69.70
E 62.65 63.10 66.61 66.59 66.34 61.54 57.70 64.60 65.44 66.72

Average 61.34 60.98 62.93 64.73 64.66 59.42 59.38 64.78 66.34 66.92

TABLE IV
PERFORMANCE COMPARISON USING ACCURACY (%) FOR 20-NEWSGROUPS DATASET. WE SELECTED TWO TOP CATEGORIES AND ASSIGNED THEM AS

POSITIVE AND NEGATIVE LABELS.

Labels Methods
Pos. Neg. NaivePU nnPU PAN DIST DSFTl DSFTnl SFER WADA PADA PADAS

C R 63.79 73.10 80.14 84.88 84.16 83.02 - 78.37 80.43 86.11
C S 57.82 59.91 64.71 64.75 66.07 69.81 - 57.63 65.48 66.54
C T 57.85 73.84 80.67 79.42 80.17 80.47 - 77.18 80.67 83.76
R S 51.43 50.80 50.93 50.13 55.72 51.35 - 53.75 55.81 56.73
R T 57.18 58.21 66.37 66.52 65.44 67.01 - 60.28 66.96 67.21
S T 52.76 54.19 66.47 67.06 65.78 66.17 - 56.14 66.91 71.40
Average 56.80 61.68 68.21 68.79 69.57 69.64 - 63.89 69.38 71.96

TABLE V
PERFORMANCE COMPARISON USING ACCURACY (%) AND AUC (%) FOR DEFAULT OF CREDIT CARD CLIENTS DATASET. THE POSITIVE RATIO OF

TARGET DATA WAS VARIED FROM 0.5 TO 0.1.

Positive Test Methods
ratio metric NaivePU nnPU PAN DIST DSFTl DSFTnl SFER WADA PADA PADAS

0.5 Accuracy 54.58 55.47 54.60 57.85 44.42 54.07 49.40 59.88 60.09 63.70
AUC 58.03 58.21 58.76 61.72 37.75 55.93 48.94 65.25 63.02 68.42

0.3 Accuracy 61.29 69.63 62.79 66.02 58.91 65.42 70.57 69.63 65.31 68.53
AUC 58.76 60.09 61.68 66.04 49.33 45.88 58.73 67.79 65.55 68.09

0.1 Accuracy 64.03 83.78 63.32 67.64 62.87 82.59 80.61 69.20 70.73 72.20
AUC 59.46 58.24 61.24 66.74 70.52 68.51 36.85 63.03 65.77 61.93

features when performing distillation by the soft labels given
by PAN. Moreover, PADA outperforms DIST, which indicates
that they successfully transfers the source-specific features to
the target domain. Compared to PADA, WADA’s performance
is modest, as expected. We can also observe the positive
effect of the soft-labeling by PADAS over PADA. We also
note that the naive HUDA and PU learning combination
methods, such as DSFTl, DSFTnl, and SFER, provide limited
performances. Unlike DSFT, which does nothing for common
features, SFER, which transforms all features, does not work
at all. This fact is consistent with the difficulty of these
methods described in Sec. III-A. See Sec. V-C for verification
of the effectiveness of PADA by observing the distribution
divergence between the positive (or negative) target and source
data in the transformed feature space.

20-Newsgroups: The results for 20-Newsgroups are pre-
sented in Table IV. In this dataset, we can observe the positive
effect of DSFT. In the setting C-S, for example, DSFTnl

improves PAN by 5%. Overall, however, its improvement over
PAN is modest. Although the improvement of PADA over PAN
is also modest, the soft-labeling of PADAS is considerably
effective in this dataset, outperforming the baseline methods
in almost all settings. We note that at most three iterations of

soft labeling in PADAS were sufficient. We finally mention
that WADA does not work well at all in this dataset.

Default of credit card clients: Table V shows the results
for Default of credit card clients. When the positive ratio is
0.5, we can see that PADAS is the best method in terms
of both accuracy and AUC. When the positive ratio is 0.3,
WADA outperforms PADA although PADAS also shows al-
most equivalent performance to WADA. Note that the accuracy
of SFER is high, its AUC is low, which means it predicts most
of the data as negative. In the case of 0.1 positive ratio, PADA
and PADAS also show the improvements over most of the
baselines. However, DSFTnl is better than them. As a result,
DSFT may be effective in particular datasets and settings, but
its effective range is very limited.

2) Analysis on the number of common features: Using the
Movielens-Netflix dataset, we further investigate the effect of
the number of common features on our proposed methods
and several baseline methods, including PAN, DIST, DSFT,
and SFER. Fig. 4 shows the test accuracy when varying the
number of selected common features from 2 to 16 (all genres
common to Movielens and Netflix). We can see that the per-
formance of each method degrades as the number of common
features decreases, but PADAS shows the least degradation.



Fig. 4. Effect of the number of selected common features for Movielens-
Netflix

Conversely, the greater the number of common features, the
smaller the performance difference between all methods except
SFER. This is because as the number of common features
increases, the number of target-specific features decreases, i.e.,
the target-specific features lose their usefulness. SFER, a naive
combination of HUDA and PU learning is not valid regardless
of the number of common features, which means that the
homogeneous feature spaces obtained by it lose or inhibit the
usefulness of common features.

C. Adaptation analysis of PADA

In this section, we experimentally confirm that PADA trans-
forms the positive target data into data close to the source data
while keeping the negative target data away from the source
data using the Movielens-Netflix dataset.

We compare PADA with three baselines: (1) Common,
which uses only the raw common features of the source and
target data, (2) DSFT, a naive combination of HUDA and
PU learning methods, and (3) WADA. To see the distribution
distance between the source data and the positive (resp.
negative) target data in the resulting feature space, we define
a metric Accd(s, tp) (resp. Accd(s, tn)), the test accuracy of
discrimination by a test discriminator that discriminates the
source data and the positive (resp. negative) target data. The
test discriminator is trained on the resulting feature space after
finishing the learning of each method or only on the common
feature space for Common. Note that the test discriminator
is different from the discriminator trained for PADA and
WADA. The true labels of the target data are used to train
the test discriminator. If Accd(s, tp) (resp. Accd(s, tn)) is
close to 0.5, the distribution divergence between the source
data and the positive (resp. negative) target data is considered
small. Therefore, small Accd(s, tp) and large Accd(s, tn) are
desirable in PU-HUDA.

The results are presented in Table VI. As expected, we can
see that Accd(s, tp) of PADA is smaller than those of the other
methods, while Accd(s, tn) of PADA is larger than it. This
means that the positive target data are transformed into data
close to the source data while keeping the distance between

TABLE VI
THE AVERAGE TEST ACCURACY (%) OF THE TEST DISCRIMINATOR FOR

EACH METHOD USING MEVIELENS-NETFLIX.

Method Accuracy of method Accuracy of discrimination
Accd(s, tp) Accd(s, tn)

Common 62.93 54.79 55.79
DSFT 64.73 72.59 76.58

WADA 64.78 70.73 77.12
PADA 66.34 61.08 66.02

the negative target data and the source data. Accd(s, tp) of
Common is smaller than that of PADA, but Accd(s, tn) of
Common is also small. As a result, the accuracy of the
existing PU learning methods using only common features is
low. Even for DSFT, the difference between Accd(s, tp) and
Accd(s, tn) is small, which is consistent with the problem
of the naive combination approaches described in Sec. III-B.
We also note that although the difference between Accd(s, tp)
and Accd(s, tn) of WADA is large, its Accd(s, tp) is also
large. Thus, if WADA is trained to make Accd(s, tp) smaller,
Accd(s, tn) is expected to be even closer to Accd(s, tp), which
is an undesirable result as described in Sec. IV-B.

VI. CONCLUSION

We defined a new heterogeneous domain adaptation task
where only positive examples are available in the source
domain. To overcome the gap in label distribution between
the source and target data, we proposed a novel method that
integrates the feature alignment and PU learning in a unified
adversarial training framework. Moreover, we experimentally
showed that our proposed method outperformed several base-
line methods.

Finally, it should be mentioned that this paper does not take
into account the divergence between the distributions of the
source common features and target common features. It is
a future work to reduce the divergence between the source
common features and target common features (if there is any
divergence) and increase the performance of our proposed
method.
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