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Abstract— Electronic patient records (EPRs) produce a 

wealth of data but contain significant missing information. 

Understanding and handling this missing data is an important 

part of clinical data analysis and if left unaddressed could result 

in bias in analysis and distortion in critical conclusions. Missing 

data may be linked to health care professional practice patterns 

and imputation of missing data can increase the validity of 

clinical decisions. This study focuses on statistical approaches 

for understanding and interpreting the missing data and 

machine learning based clinical data imputation using a single 

centre’s paediatric emergency data and the data from UK’s 

largest clinical audit for traumatic injury database (TARN). In 

the study of 56,961 data points related to initial vital signs and 

observations taken on children presenting to an Emergency 

Department, we have shown that missing data are likely to be 

non-random and how these are linked to health care 

professional practice patterns. We have then examined 79 

TARN fields with missing values for 5,791 trauma cases.  

Singular Value Decomposition (SVD) and k-Nearest Neighbour 

(kNN) based missing data imputation methods are used and 

imputation results against the original dataset are compared 

and statistically tested. We have concluded that the 1NN 

imputer is the best imputation which indicates a usual pattern 

of clinical decision making: find the most similar patients and 

take their attributes as imputation. 

Keywords—missing data, big data, data imputation, data pre-

processing 

I. INTRODUCTION 

The World Health Organisation (WHO) reported that as of 
June 2023, the mortality due to COVID-19 was over 6.9 
million with over 768 million confirmed cases since the 
beginning of the pandemic [1]. This statistic comes from 
official cases that have been reported globally, however, it was 
also noted that the reported cases are not representative of 
inflection rates due to the reductions in testing and complete 
reported data or inconsistent certification of COVID-19 as 
cause of death [2]. It was reported in [3, pp. 130–137] that 
during 2020 and 2021 the excess mortality was estimated as 
2.7 times greater than the official toll. Unfortunately, excess 
mortality is not collected or published by many countries due 
to the absence of electronic surveillance systems and death 
reporting in some locations. This did not mean that these areas 
were less severely affected. The data available only provided 

an underestimate of the true number of COVID cases and 
deaths in countries that required detailed reporting. 

The data were needed to conduct analysis on 
pharmaceutical interventions and policies and strategies that 
governments had to develop to mitigate the situation in this 
uncertain time. With these extensive data gaps, mortality 
figures were suggested to be estimated relying on the data 
exists and other relevant factors collected from countries at 
regional and country level in the light of the missing data. In 
fact, a set of analytical methods are being developed to 
produce estimation of access deaths. In February 2021, 
Technical Advisory Group (TAG) was formed in 
collaboration with the WHO and the United Nations 
Department of Economic and Social Affair for mortality 
assessment [3, pp. 130–137]. The experts of TAG have 
studied the impact of the pandemic and how to quantify the 
impact using the existing surveys and consensus to fill in data 
gaps and in the absence of nationally representative data, 
methods that use subnational data were suggested for 
imputing the missing values. 

The preceding example is an example of ‘Dark Data’: the 
data we don’t have, they haven’t been recorded, yet they have 
a major effect on critical decisions and actions [4]. Unless an 
awareness of dark data types and why/how the missing data 
arise and techniques to render some experiences visible, we 
may face disastrous global consequences. 

Let’s take another example of how missing data can have 
fatal effect in public health. 

In April 2020, Centres for Disease Control and Prevention 
(CDC) team published a preliminary analysis of U.S. 
paediatric COVID cases [5]. Although the data from China 
suggested that paediatric cases might be less severe than cases 
in adults, serious characteristics among paediatric cases in 
U.S. could not be described due to absence of the data. The 
centre reported that at the time of the analysis, for the majority 
of paediatric cases (children age <18) in U.S., important 
characteristics such as disease symptoms, severity or 
underlying conditions were unknown due to high workload of 
health personnel involved in response activities. It was noted 
that the missing values for many variables are unlikely to be 
at random. Two crucial questions to be asked were: how did 
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the clinical severity of COVID in children differ from adults 
and how the information could be extracted in the light of both 
known and unknown data. It was suggested that the results of 
the analysis must be cautiously interpreted as statistical 
comparison between age groups were not performed because 
of the high percentage of the missing information on important 
variables including hospitalisation status [5]. These 
information gaps made it much harder to marshal action for 
this age group. 

The lack of information limited not only the 
generalisability of results but also the potential impact of 
treatment. Suppose that those paediatric cases with unknown 
characteristics are assumed to have same characteristics as 
adults. Any analysis of patients with known variables might 
be misleading relative to the overall population of paediatric 
COVID patients and thus the actions taken based on such 
analysis might be the wrong actions leading to incorrect 
prescriptions and treatment. Imagine the potential impact of 
incorrect treatment on the child mortality or development.  

The pandemic has rethought us one important lesson: the 
data that we do not have can be crucial as the data we have in 
critical decision making. In fact, such situations arise quite 
often, especially, in clinical studies [4], [6, pp. 203–216]. The 
missing data arise in many different forms and there might be 
several reasons of missingness resulting from unavailability of 
the data or both human and/or machine errors. In the first 
place, the awareness of possibility that there might be 
something missing helps us avoid the risk of drawing incorrect 
conclusions. Second, examination of the types of missing 
data, patterns in hidden information and methods for filling 
the missing data can equip us to identify the problem and 
protect us from making poor decisions.  

The recent explosion in the use of Electronic Patient 
Records (EPR) has opened new opportunities for research in 
improving data quality in healthcare studies. Data about 
patients and outcomes will be widely available and no longer 
the domain of analytics specialists. All Emergency Physicians 
will soon have access to large patient datasets on their 
desktops with powerful data analytical and modelling 
software packages. This has the potential to transform the way 
in which clinicians and managers can understand and change 
healthcare systems and practice. However, like the pitfalls that 
await the non-specialist when using a powerful statistical 
package, this new combination of big data, computer power 
and machine learning analytics/modelling packages also has 
the potential to give misleading results if critical information 
is ignored or missed [7, No. 3], [8].  

‘Big data’ is often ‘dirty data’, and so medical data is. Even 
the largest clinical, trauma and care routine datasets contain 
large numbers of blank cells (missing data), but in the past the 
need for missing data expertise was confined to academic 
researchers. However as local EPR derived datasets become 
available all emergency physicians need a better 
understanding of missing data to critically appraise both local 
information and research papers. Simple methods of dealing 
with missing data such as complete case analysis (only 
analysing the cases with complete data) or simple imputation 
(using widely available software to ‘fill in the blanks’), are 
easy to do with recent analytics packages. However, they are 
highly prone to introduce bias if used without the awareness 
of how to analyse missing data and how to minimise potential 
distortion of conclusions. 

Emergency medicine has been in the forefront of training 
in critical appraisal and the use of evidence-based medicine. 
However, our skills in these areas are negated if the analysis 
that we have positively appraised is based on a dataset with a 
hidden bias due to missing data. Therefore, it is important to 
understand the types of missing data presented in EPRs and 
the methodologies to address the missing data. The aim of this 
paper is to discuss how to recognise missing data, identify its 
potential impact on the analysis results, suggest methods to 
compensate and methods to test the quality of data imputation.  

In this paper, we start with examining unique aspects of 
missing data in EPRs. We then presented a case study of 
quantifying the missingness in children’s vital signs. In [9, pp. 
16–21], our analysis of missingness in paediatric practice has 
demonstrated how the missing data collected from e-
observations are linked to healthcare professional practice 
patterns. The randomness of missing data was statistically 
tested. We identified the dependency between variables. It 
was concluded that in clinical practices missing data are likely 
to be non-random. This must be accounted in clinical data 
management systems with appropriate labelling of blank 
fields. Otherwise, the available data may not be representative 
of the cohort being studied and analytics (whether statistical, 
artificial intelligence or machine learning) may lead to bias in 
the analysis and incorrect conclusions. 

Our findings trigged our curiosity to take a step further: 
investigation whether we can fill in or impute missing data 
using the existing variables with a certain degree of accuracy 
and include all information in decision making process. 
Therefore, our curiosity turns into research on missing data 
imputation for the largest trauma data set.  

In the second part of this paper, we have analysed data 
from UK’s largest clinical audit for traumatic injury database 
(TARN) and suggested methodologies for interpretation and 
imputation of missing data in medical practices. First, we have 
highlighted the various forms of missing data, methods to test 
randomness and data imputation methods. Second, we have 
examined 79 TARN fields with missing values for 5,791 
trauma cases [18].   This is a common form of dark data: the 
data we know are missing, we know that patients have inputs, 
but we do not know what the values are. For 79 fields, we have 
applied SVD and kNN based missing data imputation 
methods and compared imputation results against the original 
dataset. The quality of the imputations is statistically tested 
using three statistical tests. 

II. DATA SETS 

A. POPS data set 

The Paediatric Observation Priority Score (POPS) has 
been developed to assess the acuity of children presenting to 
urgent and emergency care environments [10, pp. 38–44]. It 
has been utilised in the Emergency Department at the 
Leicester Royal Infirmary since 2012. Both paper and digital 
forms are available. The total score (0-16) is generated as the 
combination of 8 physiological, behavioural and known-risk 
parameters: oxygen saturations (Sats), level of alertness 
(AVPU), extent of breathing difficulty (Breathing), 
background history (Other), nurse gut feeling (Gut Feeling), 
heart rate (Pulse), respiratory rate (RR) and temperature 
(Temp). A score 0, 1, or 2 is assigned to each response for 
variables, so the maximum possible total score is 16.  



In our work of missing data analysis [9, pp. 16–21], 56,042 
POPS e-observations with score variables were collected from 
a web-based application. Initial assessments of children’s vital 
signs were completed by nurses in electronic format when 
children arrived at the emergency department. Not all POPS 
records were completed due to short-term computer errors or 
child being referred to immediate treatment without initial 
assessment. 

B. TARN data set 

The Trauma Audit and Research Network (TARN) 
database is UK’s national clinical audit for traumatic injury 
and recognised as the largest trauma registry in Europe [11]. 
The network of hospitals which send information to TARN 
across the Europe is gradually increasing.  

A total of 5,791 trauma cases with significant traumatic 
injuries were examined using data from the UK TARN 
registry for England and Wales from January 1, 2015 to 2020. 
We have analysed 79 TARN input fields with missing values 
[18] . The data includes records from patients of age between 
0 and 101-year-old who sustain injury resulting in hospital 
admission for between 1 day to 365 days, including critical 
care admissions. Fields of identifiers and output fields were 
excluded from missing data analysis. 

The database includes TARN core fields containing 
severity indicators for trauma cases (e.g. Injury Severity 
Score), rehabilitation prescription fields, questionnaire 1 
fields (questionary completed at the date of discharge), 
questionnaire 2 fields (questionary completed 6 month after 
injury) and some calculated fields. In the database, data 
completeness in fields varies with a range between 0% to 43%. 

III. METHODOLOGY 

In this section, we present types of missing data, methods 
for missing data imputation and methods to test the quality of 
imputation.  

A. Types of Missingness 

There are different patterns of missingness with different 
potentials for bias and different implications for the way in 
which the data can be analysed [12, pp. 1–37]. Missingness 
may be associated with either observed factors (things that are 
recorded in the dataset) or unobserved factors (things that are 
not recorded in the dataset). It is easier to find and compensate 
for patterns of missingness when they are related to observed 
factors. Missingness can be described as having one of the 
following patterns: 

1) Missing completely at random (MCAR):  
Here the missing data is completely independent of both 

observed and unobserved patient characteristics. In other 
words, the probability of missing is independent of the 
missing value (of this variable) and values of any other 
variables.  An example is when staff sometimes just forget to 
record a patient’s GCS. MCAR data has a low potential to bias 
the analysis as those with and without the GCS are otherwise 
similar. 

2) Missing at random (MAR):  
This category can be confusing because the word ‘random’ 

is used. The data is in fact missing for a reason – but that 
reason is not related to the data itself (for example, when the 
Emergency Department (ED) is very busy staff may not have 
time to enter a GCS into the EPR). In technical terms the 
property ‘missing’ is not related to the missing value (and so 

appears to be random when you look at the data field that you 
are interested in). The probability of missing is independent of 
the missing value (of this variable), but can depend on other 
variables. MAR data can be difficult to identify and can bias 
the analysis. However, if information has been collected about 
the factor that caused the data to be missing (for example if 
the ‘busyness’ of the ED was recorded in the GCS example) 
then this can be identified and adjusted for in the analysis. 

3) Missing not at randon (MNAR): 
In this case missing data is related to the missing value 

itself. In other words, the probability of missing depends on 
the missing value of this variable. For example, if a 'minors' 
patient is walking and talking ED staff may not record a GCS, 
as the patient is obviously well. The reason why the data was 
not recorded (cause of the missingness) is related to the 
missing variable itself (the GCS was normal). MNAR data is 
important to recognise as it causes bias and is difficult to 
adjust for in the analysis. For example, if all the high GCS 
patients are missing from a dataset, any imputation of GCS 
will cause bias, as the imputation algorithm has no data about 
high GCS patients. 

4) Obligatory absent data:  
For example, variable “Time to operation” must be absent 

for all patients who did not have an operation. This type of 
absent data is also called “Data which do not exist” or “Data 
which must be missing”. This type is important as any 
attempts to impute these missing values will distort the input 
dataset and must not be done (for example imputing the 
pregnancy test results for men will make the dataset 
nonsense). In one sense this type of data is not missing (as it 
cannot exist) – but the blank cell created in the dataset presents 
the same issues for big data analytics as a blank cell due to 
missing data. 

5) Dark data: 
Dark data [4] are data you do not have. D. Hand introduced 

15 types of dark data. One of the most interesting is type 2 
data: this is data which is not known to be missing (for 
example the patients who have used the NHS data opt-out will 
not be present in the dataset). This type of missing data cannot 
be seen and cannot be assessed, so any impact cannot be 
known and no adjustment to the analysis can be made. The 
NHS data opt-out is about 5%, but varies widely across the 
country, giving the potential to create misleading results for 
both service analysis or research, without any indication that 
this has happened [13, No. 1]. This bias could occur even if 
the very best methods are used in the analysis within a 
publication that seems of the highest quality on critical 
appraisal. 

The clinical dataset underlying an EPR can be thought of 
as a table with a row for each patient and a column for each 
variable in the EPR (this is an over-simplified, but useful 
description). There are many reasons why data might be 
missing in a routinely collected emergency department EPR 
dataset and depending on the reason the missing data can be 
classified into one of the above categories: 

a. Patient too sick – staff cannot prioritise recording 
data. – Missing not at random 

b. Patient too well – staff think recording data not 
relevant. – Missing not at random 

c. Staff too busy – no time for data recording. – Missing 
at random if the variable doesn’t relate to how busy 



the ED is; however, missing variables related to how 
busy the department is (for example, time of triage or 
administration of a drug) may be subject to bias due 
to MNAR. 

d. Data not available for staff to record – potential for 
bias depends on reason for non-availability e.g., low 
potential from random breakdown of near patient 
testing (MAR), but a higher potential (MAR) if there 
is a pattern to the machine breakdown (such as no 
technician at night). 

e. Data not relevant to the patient – there are many 
thousands of potential tests and interventions within a 
medical dataset, but any one patient will only undergo 
a small subset. This means that the cells in the dataset 
relating to all of the non-performed test or procedures 
will be blank for that patient (anecdotally, hospital 
datasets have more than 90% missing data – because 
the vast majority of data fields are not relevant to a 
particular patient). These data points are absent rather 
than missing (as they were not generated) or 
obligatory missing data but as noted above, the blank 
cell in a dataset presents the same issues for data 
analytics as a blank cell due to other forms of missing 
data. 

f. Staff not engaged - data recording requires additional 
work with no immediate benefit. For example, in the 
Emergency Care Data Set (ECDS) many clinicians 
simply code the main factor (such as main diagnosis 
or main comorbidity) rather than all of the details. 
This means that other information is missing in the 
dataset . 

g. Patients not willing – some groups of patients may be 
less likely to communicate and provide information – 
a complex interaction of social, age related, societal, 
ethnic and gender-based factors. 

h. Temporal change in data structure – patient datasets 
continuously evolve as changes in healthcare create 
changes in the data structure, such as the inclusion of 
a new test or other piece of information (for example, 
a frailty score is a relatively recent addition in the 
ECDS). This means that all cells for this variable in 
the database before the change will be blank. A good 
example of temporal change is a move from one EPR 
to another – which may have a different data structure. 
This is obligatory missing data. Again, it could be 
argued that this data is not missing as it was never 
recorded, but the same issues arise for big data 
analytics. 

i. Withdrawn consent for data use - 5.4% of NHS 
patients in the UK have opted out of some uses of their 
data. This ‘case deletion’ not a random process and so 
may bias the remaining data; it would be considered 
MNAR and also Dark Data. 

j. Deliberate manipulation of data – deletion of data 
through hacking or other malicious intent. This could 
be missing at random if the hack was completely non-
discriminatory or missing not at random if the hacker 
specifically deleted certain information. 

k. Data loss – in the complexity of healthcare data 
systems there is the potential for corruption or loss of 
data during processes such as transfer of data, backup, 

merging legacy systems or moving between EPRs. 
The data lost may relate to a specific time period or 
type of data and would then be considered missing not 
at random and therefore a potential cause of bias. 

To understand the patterns of missingness, a missing data 
analysis needs to be performed before the data is analysed. 
This involves: 

1. Quantifying the missingness for each variable. Also 
understand how missingness is distributed across the 
cases. For example, a dataset with 5% missing data could 
contain many cases with a little missing data or a few 
cases with a lot of missing data. 

2. Developing an understanding of the meaning of the 
missing values. This may involve discussion with 
healthcare staff who understand the data collection 
process and data engineers who understand how the 
dataset was curated and extracted. These people often 
have knowledge that enables you to understand why some 
data is missing, for example a server failure on a 
particular day or the introduction of new data fields due 
to the change in the type of analyser used for near patient 
testing. 

3. Understanding if some of the data should be missing, and 
if so, deciding how to handle this obligatory missingness 
in the analysis/modelling. For example, if pregnancy is an 
important risk factor any modelling (either statistical or 
artificial intelligence) will struggle with the missing data 
for male pregnancy tests. So, the problem can be avoided 
by understanding why this data is missing and deciding if 
some data engineering might be appropriate before 
analysis (such as creating a new field of ‘Yes’ or ‘No’ for 
pregnancy in all patients, which will not have missing 
data). 

4. An exploratory analysis to look for patterns of non-random 
dependences within the missing data: 

a. For each variable divide the patients into those with 
missing and known data and tabulate the 
characteristics each group (all other variables). 
Uneven distribution of other variables between 
groups means that that there is more likely to be 
some systematic missingness (all other variables 
should be evenly distributed between the groups if 
data is missing at random). 

b. Test whether properties that are missing are 
dependent on other variables in the dataset. For 
example, to test the randomness of missing data in 
variable A in relation to variable B two groups of 
patients can be created depending on whether 
variable A is ‘known’ or ‘missing’. If there is a 
random association between the missing data in 
variable A and variable B, the means and 
distribution of variable B will be the same in both 
groups. A t-test of means equality [14] can be used 
to make this comparison (the exact comparison 
depends on the proportion of missing data). A 
Mann-Whitney U test should be used if variable B 
is not normally distributed.  

However, it can still be difficult to find and 
compensate for patterns of missingness when they 
are related to observed factors – for example, if the 
relationship is highly complex (e.g., if the data is 



missing due to an interaction of age, ethnicity, and 
social deprivation). There is also the danger that 
using this approach for very large datasets might 
detect statistically significant but very small 
differences between A and B, which are too small 
to impact on findings. Similarly small datasets may 
fail to detect differences between A and B which are 
meaningful. 

c. Evaluate whether missing data in one variable (A) 
is dependent on missing data in another variable 
(B). To do this, new binary variables ‘MA’ and 
‘MB’ are created depending on the 
presence/absence of missing data for each variable 
and a chi squared test is used to assess the 
interdependence of missingness between the 
variables. 

5.   Evaluate missing outcome data. There is the potential to 
model outcomes [6, pp. 203–216] to substitute for 
missing outcomes, but handling missing outcome data is 
complex and can easily lead to error, for example, if all 
of the dead patients are missing from the dataset any 
attempt to model outcomes for these patients will be 
misleading. Modelling of missing outcomes needs 
specialist advice due to the high chance of introducing 
bias 

B. Machine Learning based missing data imputation 

In the literature, various methods have been proposed to 
handling the missing data including simple methods such as 
complete case analysis, ignoring and discarding the data and 
imputation. Methods like complete case analysis and ignoring 
and discarding the data have some drawbacks and should be 
carefully used as they can introduce bias. 

Imputation methods aim to replace missing values with the 
estimated ones based on information available in datasets. The 
goal of the imputation is to obtain statistically valid inferences 
from the incomplete data. The methods identify the 
relationship in known values of the dataset to estimate the 
missing values of attribute of interest. The cost of imputation 
is usually less than the cost of collecting the data. There are 
various Imputation methods including Case Substitution, 
Mean or Mode Imputation, Regression Imputation and Hot 
Deck and Cold Deck.  

In this work, we propose to employ k-Nearest Neighbour 
(kNN) and Singular Value Decomposition (SVD) based 
imputation to estimate and substitute missing data with 
imputed values.  

1) Nearest Neighbour Imputation 
k-nearest neighbour (kNN) based data imputation is one of 

widely used non-parametric imputation methods where 
missing value is replaced with a single estimated value or 
multiple plausible values that calculated from the k nearest 
observed data. The method is often referred as nearest 
neighbour imputation or kNN imputation.  

In this work, we employ kNN imputation for single value 
imputation. The kNN imputation method selects patients’ 
records with patients’ profiles similar to record of interest to 
impute the missing values. If we consider attribute A has one 
missing value for a patient record, this method finds k other 
patients’ records, which have a value present in other 
attributes. For our analysis, an average of values from k 
closest records is then used as an estimate for the missing 

value in attribute A. For the similarity measurement, 
Euclidean distance was used. We should emphasise that kNN 
imputation can be used even in case where there are no any 
complete records [17]. 

2) SVD-based Imputation 
Singular Value Decomposition (SVD) based imputation is 

a non-parametric method which is free from any distributional 
or structural assumptions [15, pp. 31–39] [16, pp. 77–85]. 
SVD can be applied for data with missing values. In this case 
eigenvalues can be not orthogonal but can be used to calculate 
repaired data matrix. Values from repaired matrix can be used 
for missing values imputation. There is also iterative (or 
expectation -maximisation) method: create repaired data 
matrix, then combine this matrix with original one (take 
known values from original data and unknown from repaired 
one) and recalculate repaired matrix. Iterate until convergence 
(update difference is below the determined threshold).  

C. Testing the quality of imputation  

The next step after imputation of missing values is to 
compare the observed and imputed data, i.e., evaluate the 
quality of the imputation and test the statistical validity of 
procedures. We present three statistical tests to assess the 
difference between the original values in the dataset and the 
estimated values in the simulated incomplete dataset.  

1. Two sample t-test can be performed on datasets to 
estimate the difference in mean with and without 
imputation. P-value is probability of observing by 
chance the same or greater absolute value of 
difference of mean values if both samples are sampled 
from populations with the same mean. 

2. F-test compares two samples’ variances and tests the 
significance of variance changes. P-value is 
probability of observing by chance the same or greater 
absolute value of difference of variances if both 
samples are sampled from populations with the same 
variance. 

3. Two sample Kolmogorov-Smirnov (KS) test can be 
performed to compare the empirical distributions of 
the observed and imputed data. It is used to evaluate 
significance of difference of distributions of two 
samples. P-value is probability of observing by 
chance the same or greater KS statistics if both 
samples are sampled from populations with the same 
distribution. 

IV. RESULTS 

In medicine, the models to predict the population health 
outcomes are limited with an underlying effect of things that 
we cannot observe directly, i.e., dark matter in medicine. In 
this section, we focus on how quantifying the missing data can 
change the way the practitioners learn with the data that we do 
not have. We then propose ways to make ‘invisible’ to 
‘visible’, replacing the missing data with estimated values.  

A. A case study of quantifying the missingness 

In this section, our attention is to demonstrate how the 
‘invisible’ can be quantified and classified in order to use them 
to understand what missingness tells us about clinical 
practices. We focus analysing the children vital signs in 
ePOPS data and examining whether there were any patterns to 
the missing data [9, pp. 16–21].  



TABLE I.  MISSING DATA IN DATABASE FOR EACH FIELD  
(TOTALLY 56,042 RECORDS) 

Variable 
Missing Data 

Number Fraction 

Age 0 0.00% 
P

O
P

S
 V

ar
ia

b
le

s 

Breathing Score 22,444 40.05% 

AVPU Score 19,120  34.12% 

Gut Feeling Score 19,944 35.59% 

Other Score 20,060 35.79% 

Sats Score 29,452 52.55% 

Pulse Score 28,417 50.71% 

RR Score 28,591 51.02% 

Temp Score 28,540 50.93% 

TABLE II.  EXPECTED AND OBSERVED NUMBER OF RECORDS WITH 

COMPLETE,  PARTIALLY MISSING AND COMPLETELY MISSING POPS 

VARIABLES 

 Expected  

number 

of  

records 

Observed  

number 

of  

records 

Observed  

fraction 

of  

record 

p-value 

Complete 67 25,114 45% < 10−300 

Partially missing 55,461 12,707 23% < 10−300 

Completely 
missing 

514 18,221 32% < 10−300 

 

First, we have tested the hypothesis that missed data in all 
variables are missed independently (observed at random). The 
fraction of missing data (Table 1) was used as the estimates of 
𝑝𝑖: calculated the probabilities of observing (i) Complete (C) 
records (without any missing values in 8 variables), (ii) 
Completely Missing (CM) records (all individual score 
variables are missing), and (iii) Partially Missing records 
(partially missed data only (records with at least one known 
and at least one missed ePOPS variable). Results of 
calculations are presented in Table 2. We conclude that we 
must reject the hypothesis that data are missing independently 
(with p-value<10−300  from the chi-square test). So, it is 
unlikely that data are missing (observed) at random. 

Second, we tested the hypothesis that the distribution of 
missing data for pairs of ePOPS variables are independent. 
Pearson correlation coefficients for each pair of POPS 
variables are presented in Table 3. We can conclude with 99% 
confidence that the intra-correlations (inside each of 2 groups: 
Breathing, AVPU, Gut feeling, Other and Sats, Pulse, RR, 
Temp) are greater than the inter-correlations (between 
groups). This means that the grouping of Breathing, AVPU, 
Gut Feeling and Other behaves in a different way than Sats, 
Pulse, RR and Temp in relation to the extent of missing data. 
The same pattern was also seen when repeating the procedure  

TABLE IV. FRACTION OF MISSING VALUES IN SATS, PULSE, RR, AND  
TEMP WHICH CORRESPONDS TO NORMAL (0) VALUE OF BREATHING, AVPU, 
GUT FEELING AND  OTHER AMONG ALL MISSED VALUES 

Normal Value of Missing values of 

Sats Pulse RR Temp All 

Breathing 65% 61% 62% 64% 61% 

AVPU 94% 94% 94% 96% 96% 

Gut Feeling 84% 83% 83% 84% 85% 

Other 84% 83% 83% 85% 85% 

All 59% 50% 51% 53% 56% 

 

for only partially missing data only. From partially missing 
data analysis, we conclude that there are high correlations 
inside the group of Breathing, AVPU, Gut Feeling and Other 
(minimal PCC is 0.3) and inside the group of Sats, Pulse, RR, 
and Temp, exclude insignificant correlation of Temp with 
Sats.  

Finally, we analyse the relationship between a normal 
value (zero) from initial assessment and missing measured 
values (Table 4). The data show that if the initial assessment 
variables (Breathing, AVPU, Gut Feeling and Other) were 
normal (0) then there was a higher-than-expected chance that 
the measured variables (Sats, Pulse, RR and Temp) would be 
missing. This would fit with the clinical practice model that 
the assessment variables are much quicker to ascertain as they 
are slightly more subject and based on observation alone, 
whereas determination of measured variables requires 
additional work.  

In our analysis of missingness in children’s vital signs, we 
tested and demonstrated how the missing data are linked to 
health care professional practice patterns. We concluded that 
it is unlikely that data are missing at random. We identified 
the dependency of variables between one-another. Therefore, 
using only the available data may result in significant bias and 
misleading results as there is risk to avoid critical information. 

Our findings led us to take a step further to investigate 
methodologies for missing data imputation and test how 
accurately the missing data can be estimated using the existing 
variables. 

B. Can we shed light on the dark? 

This section presents results of kNN and SVD based 
missing data imputation. Our aim with the missing data 
imputation is to preserve the information in the data and the 
relationship among variables while creating statistically valid 

TABLE III.  PEARSON’S CORRELATION COEFFICIENT FOR EACH PAIR OF POPS VARIABLES, PINK 
 BACKGROUNDS SHOW PAIRS WITH CORRELATION COEFFICIENT >0.8  

 



TABLE  V. - P-VALUE OF T-TEST OF MEAN COMPARISON, F-TEST OF VARIANCE COMPARISON AND KOLMOGOROV-SMIRNOV 
 TEST OF DISTRIBUTION COMPARISON FOR OF SVD-BASED IMPUTATION, 1NN AND 3NN-BASED; GREEN BACKGROUND  

HIGHLIGHT STATISTICALLY INSIGNIFICANTLY DIFFERENCES WITH SIGNIFICANCE LEVEL 99% 

Attribute 
t-test of mean F-test of variance Kolmogorov-Smirnov test 

SVD 1NN 3NN SVD 1NN 3NN SVD 1NN 3NN 

TC-06_GCS 0.1401 0.2908 0.4731 0.8348 0.4143 0.0039 <0.0001 0.9715 0.0668 

TC-08_LOScc 0.9967 0.9835 0.9935 0.9958 0.9792 0.9988 1.0000 1.0000 1.0000 

TC-33_ED_GCS <0.0001 0.2020 0.1465 <0.0001 <0.0001 0.6535 <0.0001 0.9913 0.0004 

TC-34_ED_GCSEye <0.0001 0.1286 0.1040 <0.0001 <0.0001 0.7798 <0.0001 0.9997 <0.0001 

TC-35_ED_GCSMotor <0.0001 0.0239 0.0161 <0.0001 <0.0001 0.0026 <0.0001 0.9997 <0.0001 

TC-36_ED_GCSVerbal <0.0001 0.6440 0.3298 <0.0001 0.0085 0.1037 <0.0001 1.0000 <0.0001 

TC-37_ED_O2Sat 0.4549 0.3497 0.4260 0.0296 0.0071 <0.0001 0.1107 0.4447 0.0004 

TC-38_ED_Pulse 0.0054 0.0491 0.0933 0.4788 0.1240 0.0001 0.0526 0.1228 0.0141 

TC-39_ED_RR 0.6168 0.3228 0.1625 0.3417 0.3086 <0.0001 0.0219 0.1420 0.0008 

TC-40_ED_SBP 0.6755 0.8739 0.9824 0.0441 0.6179 0.0002 0.0964 0.9200 0.1684 

TC-41_PreHosp_GCS 0.1683 0.1747 0.0869 0.0001 0.0006 <0.0001 <0.0001 0.1954 <0.0001 

TC-42_PreHosp_GCSEye <0.0001 0.0326 0.0212 <0.0001 <0.0001 <0.0001 <0.0001 0.9417 0.0080 

TC-43_PreHosp_GCSMotor <0.0001 0.0029 0.0044 <0.0001 <0.0001 <0.0001 <0.0001 0.6876 0.0683 

TC-44_PreHosp_GCSVerbal <0.0001 0.7070 0.1726 0.0073 0.0569 <0.0001 <0.0001 0.9298 <0.0001 

TC-45_PreHosp_O2Sat 0.5251 0.0238 0.0088 <0.0001 <0.0001 <0.0001 <0.0001 0.0406 <0.0001 

TC-46_PreHosp_Pulse 0.0031 0.3159 0.4651 0.0002 0.0002 <0.0001 0.0042 0.0178 <0.0001 

TC-47_PreHosp_RR 0.0015 0.4706 0.2433 <0.0001 0.0617 <0.0001 <0.0001 0.1028 <0.0001 

TC-48_PreHosp_SBP 0.5580 0.1837 0.2639 <0.0001 0.0014 <0.0001 0.0547 0.0231 <0.0001 

NF-06 <0.0001 0.2844 0.2486 <0.0001 0.1385 <0.0001 <0.0001 0.9985 0.0014 

NF-07 0.3260 0.3857 0.4096 0.3144 0.6842 0.1939 0.1720 0.9972 0.1229 

NF=-08 0.0048 <0.0001 <0.0001 0.1077 0.0658 <0.0001 <0.0001 <0.0001 <0.0001 

NF-09 0.0360 0.0684 0.0721 <0.0001 0.0671 <0.0001 <0.0001 0.6166 <0.0001 

NF-10 0.9849 0.8465 0.8194 0.6727 0.7246 0.5511 0.8306 1.0000 1.0000 

NF-11 0.9464 0.3681 0.3608 0.0230 0.2968 0.0264 <0.0001 0.9994 0.4182 

NF=-12 0.0819 0.0001 0.0001 0.0049 0.0023 <0.0001 <0.0001 0.0099 <0.0001 

NF-18 0.9920 0.9191 0.9170 0.8217 0.9638 0.7654 1.0000 1.0000 1.0000 

NF-20 <0.0001 0.3938 0.3480 0.0082 0.0036 0.4130 <0.0001 1.0000 0.2699 

NF-21 <0.0001 0.1834 0.1646 0.0077 <0.0001 0.6324 <0.0001 1.0000 <0.0001 

NF-22 <0.0001 0.6882 0.5321 0.0001 0.1037 0.0921 <0.0001 1.0000 <0.0001 

inferences from the incomplete data. In other words, we aim 
to use all available data across the variables and produce 
estimates maintaining the natural variability in the estimated 
values having the same properties of the distributions as in 
original dataset. 

The performance of imputation methods was assessed 
through three statistical tests: t-test to estimate the difference 
in mean with and without imputation, F-test to test the change 
in variances and Kolmogorov-Smirnov (KS) to evaluate 
significance of distribution differences of two samples. 

For each of 79 variables, we have applied SVD-based 
imputation (function svdWithGaps.m in [17]) and kNN-based 
imputation (function kNNImpute.m in [17]) for 
k=1,3,5,7,9,11,13,15. Full tables with results are presented in 
[18]. The Table 5 presents part of the results of mean 
comparison of SVD-based and kNN-based imputations for 
SVD, 1NN and 3NN and for 29 attributes. It is necessary to 
emphasise that we are interested to have the same or at least 
insignificantly different distribution in imputed dataset. The 
insignificance of difference between original and imputed 
datasets increasing with increasing k (see supplemented tables 
[18]). This result is not unexpected and the best coincidence 
can be achieved for imputation by mean which completely 
destroyed variance and produce essentially different 
distribution. 

Since the KS test compares the equality of distributions, 
the last three columns in Table 5 gives an idea about best 
imputer – the imputer which minimally change distribution. In 
this sense, the 1NN imputer is the best imputation. This result 
is also expected because it corresponds to usual practice of 
clinicians: find the most similar patients and take their 
attributes as imputation. 

V. CONCLUSION AND DISCUSSION 

Electronic Patient Records (EPR) have expended the 
availability of large data sets to that can be used to improve 
clinical practice, patients’ outcomes and advance clinical 
decision making through research. The EPR data, however, 
often contain substantial missing information that creates 
challenges for interpretation and utilising the data for medical 
conclusions. 

In this paper, we have addressed the problem of missing 
data that can have major effect on critical decisions in 
medicine. This work focused on demonstrating the importance 
of missing data analysis and proposing Machine Learning 
based approaches for missing data imputation based on two 
real world electronic patient records: POPS and TARN. Using 
these datasets, our study (1) improved the understanding of 
types of missing data in health care (2) increased the 
awareness of the challenges and how missingness can be 
interpreted in clinical practices, and (3) proposed 



methodologies for missing data imputation using non-missing 
information. 

The POPS data were collected from e-observations 
completed by nurses on the initial assessment of children vital 
signs when they arrive at the Leicester Royal Infirmary 
children’s emergency department. Our analysis showed that 
the pattern of missingness in POPS variables was not at 
random, i.e. there was a dependence of the distribution of 
missing data on the individual components of POPS. There 
were two groups of variables: heart rate, breathing rate, 
temperature and oxygen saturations forming one group and 
AVPU, Work of Breathing, Gut Feeling and Other forming a 
second grouping. Within each group having missing values 
were highly correlated. This grouping is linked to the usual 
clinical practice of staff taking observation. More subjective 
components are usually determined by looking at the patient 
during initial assessment. The second group of variables are 
needed to be measured and recorded later. Our data also 
showed that if the initial assessment variables are normal (0), 
then measured variables would be missing. This fits with the 
clinical practice model: undertaking full set of observation 
(vital sign measures) in real life is unlikely to occur for minor 
illnesses or injuries when staff feel that there is no need to 
record initial assessment as it is obvious that child is well.  

Understanding of missing data, classification of missing 
data and how this can be linked to clinical practice patterns 
that improve patients’ safety through more accurate 
immediate clinical decision making and managing large 
clinical data. 

In the second part of this work, Trauma Audit and 
Research Network's (TARN) database was analysed. We 
applied Machine learning based data imputation methods and 
results were compared with the original dataset using 
statistical tests. We examined whether and how clinicians’ 
perceptions may differ from ML – based decisions. Our 
findings showed that the 1NN imputer is the best imputation 
when compared with kNN for other k and SVD. This suggests 
that ML – guided decision making was congruent with the 
way clinicians typically made decisions in traumatic injuries, 
i.e., decisions made based on patterns being derived from the 
‘experience’ learnt from patients having similar medical 
records. 

In our study, we did not consider any controversy between 
heuristic decision making and machine generated data 
imputation. Instead, we approach ML-based data imputation 
from its link to heuristics involving pattern recognition where 
the patterns are derived from clinician’s ‘clinical experience’. 
Both essentially make decisions by finding the most similar 
overall patterns for the non-missing characteristics, so the 
imputation based on the same approach is likely to have a high 
‘face validity’ for clinicians. 
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