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Abstract—Automated detection of contraband items in X-ray
images can significantly increase public safety, by enhancing the
productivity and alleviating the mental load of security officers in
airports, subways, customs/post offices, etc. The large volume and
high throughput of passengers, mailed parcels, etc., during rush
hours practically make it a Big Data problem. Modern computer
vision algorithms relying on Deep Neural Networks (DNNs) have
proven capable of undertaking this task even under resource-
constrained and embedded execution scenarios, e.g., as is the case
with fast, single-stage object detectors. However, no comparative
experimental assessment of the various relevant DNN compo-
nents/methods has been performed under a common evaluation
protocol, which means that reliable cross-method comparisons
are missing. This paper presents exactly such a comparative
assessment, utilizing a public relevant dataset and a well-defined
methodology for selecting the specific DNN components/modules
that are being evaluated. The results indicate the superiority of
Transformer detectors, the obsolete nature of auxiliary neural
modules that have been developed in the past few years for
security applications and the efficiency of the CSP-DarkNet
backbone CNN.

Index Terms—Deep Neural Networks, Object Detection, X-
rays, Security, Convolutional Neural Networks, Transformers

I. INTRODUCTION

Detecting contraband items using X-ray scanning of lug-
gage, parcels, etc. is a crucial requirement for ensuring public
security (e.g. preventing terrorist attacks, fighting smuggling of
illegal goods, etc.) [1] [2]. X-rays are electromagnetic waves
with wavelengths shorter than that of visible light, able to
penetrate most materials; X-ray scanners exploit this funda-
mental property to screen items, such as luggage or packages
(e.g., in airports, post/customs offices, etc.). Human operators
are able to detect a wide range of potential threats, such as
explosives, weapons, or sharp objects, using high-resolution
images generated by scanning machines [3]. However, fully

The research leading to these results has received funding from the
European Union’s Horizon Europe research and innovation programme under
grant agreement No 101073876 (Ceasefire).

manual screening has important shortcomings: the quality of
the scan image can be influenced by several factors, such
as occluded objects, cluttered environment or certain material
properties of the scanned items [4], while heavy traffic during
rush hours may mentally overload human security officers.
Thus, illicit items may be missed, due to the need for “the line
to keep moving” or because of perceptual limitations. The high
volume and high throughput of X-ray scans in such scenarios
render manual screening ineffective and demand automated
Big Data analysis solutions.

Efficient automated X-ray image analysis/screening for
illicit item detection is nowadays possible thanks to the
advances of computer vision and machine learning. Such
methods are ideal for large-scale information processing and,
therefore, hold the potential to facilitate the detection of
illicit item trafficking activities, suspected terrorist attacks, etc.
Deep Neural Networks (DNNs) have proven to be remarkably
capable in supporting human operators for similar tasks, thus
greatly increasing their productivity and reducing the possi-
bility of mistakes. Both whole-image recognition and object
detection methods have been proposed for illicit/contraband
item detection in X-ray images. While the former ones simply
classify an entire image and assign it an overall class label, al-
gorithms of the latter type identify Regions-of-Interest (RoIs),
i.e., bounding boxes that localize (in 2D pixel coordinates)
specific objects visible in an input image. While there have
been significant advancements in object detection algorithms
through the use of DNNs, achieving sufficient performance in
real-world scenarios continues to be a challenge [5] [6] [7]
[8].

The typical goal is for a deployed DNN to automatically
detect illicit goods, such as drugs or weapons, in passengers,
luggage or mailed parcels. The dominant trends are similar
to those of the RGB image analysis, but obviously different
training datasets are utilized. Additionally, special/auxiliary
neural modules are commonly employed as part of the overall
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DNN architecture, so that accuracy is improved in the face
of typically encountered issues such as high occlusions, very
cluttered backgrounds and large class imbalance. These mech-
anisms are designed to handle similar application domain-
specific aspects.

Given the practical importance of the task, recent literature
surveys have overviewed detection of illicit items in X-ray
scans for security applications [9] [10]. Yet, none of them has
assessed the various state-of-the-art methods using a common
experimental evaluation protocol, thus rendering cross-method
performance comparisons difficult. In an attempt to remedy
the situation, this paper contributes a thorough quantitative
assessment, using the most common relevant public dataset
(SIXray [11]) and comparing various combinations of DNN
backbones, auxiliary modules and detection heads. The results
indicate:

• the superiority of Transformer detectors,
• the obsolete nature of auxiliary neural modules that

have been developed in the past few years for security
applications,

• the high efficiency of the CSP-DarkNet backbone CNN.
The remainder of the paper is organized as follows. Section

II overviews the recent literature on illicit item detection in
X-ray scan images using DNNs. Section III briefly presents
the specific DNN backbones, auxiliary modules and detec-
tion heads that are being quantitatively assessed. Section
IV outlines the experimental evaluation process, which was
conducted on a well-known public dataset, and discusses the
obtained results. Section V concludes the preceding discussion
by identifying the implications of these findings and directions
for future research.

II. RELATED WORK

Various approaches have been employed over the years for
illicit items detection in X-ray scan images. The method of
[12] addressed the issue of limited training data by employing
a pretrained CNN and fine-tuning it in the X-ray domain.
This is an important issue in automated X-ray screening,
since negative images (where no illicit item is present) are
typically significantly more than the positive ones, with this
fact reflected in the relevant available datasets.

Common DNNs for object detection have also been evalu-
ated with regard to their discrimination capacity and trans-
ferability between different X-ray scanners [13]; examples
include Faster R-CNN [14], Mask R-CNN [15] and Reti-
naNet [16]. However, modifying fast, anchor-based, single-
stage object detectors such as Single Shot MultiBox Detector
(SSD) [17] or You Only Look Once (YOLO) [18] is the most
common approach, due to their ability to operate in real-time
even in embedded computer hardware. Such modifications
may have various forms. For instance, a Cascaded Structure
Tensor (CST) is proposed in [19] which takes advantage
of contour-based information to extract object proposals; the
latter ones are then classified using a CNN. An alternative
lightweight object detector, called LightRay, is introduced in
[20] as a modified version of the YOLOv4 model for small

illicit item detection in complex backgrounds. It consists of a
fast MobileNetV3 [21] backbone CNN and a feature enhance-
ment network that includes a Lightweight Feature Pyramid
Network (LFPN) [22], to obtain information of objects at
different scales, and a Convolutional Block Attention Module
(CBAM) [23], for refining feature maps through a spatial
attention mechanism.

A different approach is followed in [24], where a novel
mechanism called Foreground and Background Separation
(FBS) is proposed for separating illicit items from com-
plex/cluttered backgrounds. This is achieved by using a fea-
ture extraction DNN combined with Spatial Pyramid Pooling
(SPP) and a Path Aggregation Network, which extracts high-
level features. These feature maps serve as an input to two
neural decoders, which reconstruct the background and the
foreground simultaneously. Then, an attention module directs
the overall model’s focus on the foreground objects.

Focusing on real-time performance, YOLOv5 is modified in
[25] using the Stem [26] and CGhost [27] modules, resulting in
a model with reduced number of parameters that still achieves
competitive results in comparison with the baseline method.

III. EMPLOYED METHODS FOR ILLICIT ITEM DETECTION
IN X-RAY SCAN IMAGES

This section briefly illustrates the different deep neural
modules/architectures that have been selected for comparative
experimental assessment. First, the relevant one-stage object
detection heads are described. Then, the various backbone
networks and the auxiliary modules that have been included
are being presented. Finally, the specific combinations of the
above-mentioned components that are experimentally com-
pared in Section IV are discussed and justified.

A. Detection Heads

Most single-stage object detectors utilize reference anchor
boxes of different sizes and aspect ratios, which are placed
at various positions across the input image. The goal of these
anchor boxes is to capture the variation in object shapes and
sizes present in the dataset. Typically, they are predefined (e.g.,
calculated based on prior knowledge of the sizes, aspect ratios,
and distributions of ground-truth objects in the COCO dataset
[28]). In many implementations the match between these
predefined anchor boxes and the training dataset is verified
before training commences, by computing the achievable recall
rate if the object detector using these anchors has access to
the ground-truth for all objects in the dataset. If this recall
rate is too low, the predefined anchors are assumed to be unfit
and a new set of dataset-specific anchor boxes is estimated
(e.g., via clustering). The detection head essentially outputs
the offset (in pixel space) of each predicted bounding box
from a known anchor box. After a set of raw detections has
been generated, a typically handcrafted Non-Maximum Sup-
pression (NMS) algorithm refines them by merging/filtering
any spatially overlapping detected RoIs which correspond to
a single visible object [1] [29] [30].



You Only Look Once (YOLO) [18] is a series of fast anchor-
based, single-stage object detectors, where object localization
and classification are performed using a single CNN. This
architecture can, however, be divided into a backbone net-
work, a succeeding neck network and a final prediction head.
YOLOv5 [31], which is an update of YOLOv4 [32], is inspired
by EfficientNet [33] and, thus, can be easily reconfigured for
different network complexity profiles. Out of the common
variants (YOLOv5s, YOLOv5m, YOLOv5l, YOLOv5x) the
one employed in this paper is YOLOv5l. The overall YOLOv5
architecture is presented in Fig. 1.

Fig. 1. YOLOv5 overall architecture.

While all detectors of the YOLO family rely on pre-
set anchors, Fully Convolutional One-stage Object Detection
(FCOS) [34] is one of the first successful anchor-free one-
stage CNN detectors that outputs per-pixel predictions. Thus,
it avoids the initial computational load for setting-up the
anchors before the main training process, as well as all relevant
hyperparameters that are difficult to tune. FCOS requires a
neck network based on Feature Pyramid Network (FPN) [22],
which aggregates different backbone-derived feature maps
corresponding to different image scales. Features from the
downsampling path are fed to the upsampling one through
lateral synapses. Thus, objects of different sizes can be de-
tected at different levels of the feature pyramid. Detection is
conducted by the shared head, which analyzes the outputs of
the FPN levels and is composed of three branches: one for
classification, one for centerness and one for regression. All
three of them output per-pixel predictions: the first one predicts
the object’s class, the second one how far a pixel deviates from
the center of its associated bounding box, while the third one
outputs the dinstance (in pixels) of the pixel in question and the
corners of its bounding box. One disadvantage of FCOS is that
it requires higher input image resolutions to operate correctly,
due to the per-pixel nature of its predictions; this creates
an execution time overhead during both the training and the
inference stage. A high-level diagram of its architecture is
depicted in Fig. 2.

The anchor-free direction is also followed by YOLOv8 [35],
a recent successor to YOLOv5 that directly predicts the centers
of bounding boxes. Along with various minor improvements
in the CNN architecture and an enhanced data augmentation
strategy during training, YOLOv8 achieves an outstanding
balance between inference speed and prediction accuracy. The
YOLOv8 variant that is utilized in this paper is YOLOv8l.

Despite the early dominance of CNNs as detection heads,
top-performing Vision Transformer DNNs have emerged dur-
ing the past few years. One of the first such approaches was
Detection Transformer (DETR) [36]: it is an Encoder-Decoder
Transformer DNN [37], placed after a CNN backbone, which
treats image blocks as tokens. DETR handles object detec-
tion as a set prediction task and assigns labels by bipartite
graph matching. Learned positional encodings, the so-called
“object queries”, essentially look for a particular object in the
image. The method is not only anchor-free, but also NMS-
free; DETR does not need any handcrafted algorithmic com-
ponents. A state-of-the-art improvement of DETR is DINO
[38], which accumulates various minor enhancements over
baseline DETR and reinstates the use of anchor boxes in
a Transformer-compatible manner. Moreover, it exploits an
additional contrastive loss term during training [39], by adding
two different types of noise to the same ground-truth RoI; the
resulting bounding box with a smaller/larger amount of noise
is considered a positive/negative sample, respectively. The goal
is to push the DNN towards avoiding duplicate bounding box
outputs that correspond to a single ground-truth object. A high-
level diagram of the DINO architecture is depicted in Fig. 3.

B. Backbone Networks

ResNet-101 [40] is a well-known CNN backbone, very
commonly employed for almost any image analysis task. It
is one of the first CNNs that was able to be trained with
large network depth without being negatively impacted by the
gradient vanishing problem, mainly thanks to its introduction
of the “skip synapses”. The continuing popularity of ResNet
for almost a decade showcases its value for the wider computer
vision community.

The default backbone CNN of YOLOv5 is CSP-Darknet53
[32], a modified version of Darknet53 [41] combined with a
Cross Stage Partial Network (CSPNet) strategy [42], which
is specifically designed for assisting object detection. As
presented in Fig. 4, the main convolutional block of CSP-
Darknet53 consists of convolutional layers, residuals and the
SiLU activation function, while the final feature maps are
refined using a Spatial Pyramid Pooling-Fast (SPPF) module
[43]. The neck network consists of a Feature Pyramid Network
(FPN) and a Path Aggregation Network (PAN) [44]. These
modules repeatedly fuse feature maps from different scales
and depth levels, thus leading to final image representations,
which are simultaneously characterized by accurate spatial
localization details, rich semantics and high invariance re-
garding object detection. Finally, the prediction head outputs
the candidate detected RoIs through a set of convolutional
operations.



Fig. 2. The architecture of FCOS [34].

Fig. 3. The architecture of DINO [38].

Due to the rather low inference speed of very deep ResNet
variants, fast generic CNN backbones appeared over the
years, targeting execution on embedded computers with lim-
ited processing power. One of the most important relevant
architectures is MobileNet, which accelerates inference by
incorporating “separable convolutions” [45]. Additionally, the
widespread use of 1 × 1 convolutional kernels allows their
optimized implementation through generalized matrix multi-
plication, while test accuracy and training are aided by the
utilization of batch normalization and ReLU activation func-
tions. MobileNetV2 improves this architecture by periodically
decimating the number of convolutional channels along the
depth dimension (similarly to SqueezeNet [46]), adding skip
synapses and reducing the need for greater number of channels
per convolutional layer in later layers. The next iteration,
i.e., MobileNetV3 [21], further enhances the architecture by
introducing a channel-wise attention module within each sep-

arable convolution and optimizing architectural details at the
network design phase, through the use of Neural Architecture
Search (NAS). Overall, MobileNets achieve a very good
balance between speed and accuracy: in most applications,
they lag only slightly compared to non-lightweight deep CNN
backbones, while being significantly faster.

An alternative lightweight fast CNN backbone is Efficient-
Net [33]. As in the case of MobileNetV3, it is designed by
employing NAS based on reinforcement learning; however,
the reward function prefers a low total number of compu-
tational operations during the forward pass instead of a low
required inference runtime. In general, however, the individual
neural layers/modules are similar to the ones utilized by Mo-
bileNetV3. EfficientNet variants of various complexities are
available, so that the speed-accuracy trade-off can be adjusted
based on the desired application and the computational power
which is available at the inference stage. More complex vari-



ants are typically deeper (more convolutional layers), wider
(more channels per layer) and process input images of higher
resolution. The architecture family has been improved with
EfficientNetV2 [47], which makes NAS to also reward higher
training efficiency and incorporates enhancements in the reg-
ularization scheme utilized during training. The EfficientNet
variant utilized in this paper is EfficientNetV2-S.

C. Auxiliary Modules

Due to the peculiarities of illicit item detection in X-
ray scan images of luggage, parcels, etc., various additional
domain-specific, plug-in neural modules have been proposed
over the years. For instance, the method of [11] introduces a
module called Class-balanced Hierarchical Refinement (CHR),
to enhance the prediction capacity of the CNN under extreme
class imbalance. CHR can be placed as a neck module on top
of any CNN backbone.

In an orthogonal direction, the De-occlusion Attention Mod-
ule (DOAM) [48] is a neural module designed to overcome
occlusions in X-ray images; this is important because occlu-
sions are common, due to the absorption of X-rays by certain
materials, such as metals, and the visual overlap of multiple
objects within densely packed parcels. The latter phenomenon
implies that a single pixel may correspond to multiple semantic
classes, of objects located at different vertical distances from
the sensor, due to the penetrative nature of X-rays. Thus,
the overall X-ray image can be considered a superposition
of various sub-images. DOAM consists of two sub-modules,
named Edge Guidance (EG) and Material Awareness (MA),
which identify edge and material cues for all visible objects.
An alternative domain-specific module is Lateral Inhibition
Module (LIM) [49], which includes two components: Bidirec-
tional Propagation (BP) and Boundary Activation (BA). The
former one minimizes the impact of neighboring regions, by
isolating irrelevant information and the latter one captures ob-
ject boundaries. Both DOAM and LIM have shown promising
results in overcoming object occlusion issues in X-ray scan
images.

In a subsequent attempt to overcome the issues induced by
the typically high visual overlap of objects within a densely
packed luggage/parcel, the method in [50] introduces the so-
called Dense De-overlap Module (DDoM). It operates by
assigning learned weights to each channel of a convolutional
feature tensor, indicating how relevant it is to the object class
in question. This operates under the assumption that different
convolutional channels are responses to different sub-images,
including irrelevant background ones. Finally, the integrated
Prohibited Object Detection (POD) method [51] for X-ray
image analysis combines a learnable Gabor layer for edge
information retrieval, a spatial attention module for directing
focus on low-level features, a Global Context Feature Extrac-
tion (GCFE) module and a Dual Scale Feature Aggregation
(DSFA) module to enhance semantic information from high-
level features.

D. Methodology for comparative assessment

The literature of DNNs for illicit item detection in X-
ray scan images mostly employs common neural architec-
tures/building blocks (detectors, backbones, necks), typically
preferring fast and proven ones. Thus, most of the specific
neural components reviewed in the previous subsections were
chosen to be included in this comparative experimental as-
sessment because they are commonly found in recent relevant
papers (e.g., YOLOv5, FCOS, ResNet-101, EfficientNet, Mo-
bileNet). However, the final selection of individual components
is influenced by other considerations as well, such as state-of-
the-art status (e.g., YOLOv8, DINO). In particular, one the
goals of this work is to identify how relevant domain-specific
neural modules, such as CHR, LIM, DOAM or DDoM, remain
in the face of the advancements offered by modern generic
detectors.

Thus, given that it would be very impractical to quantita-
tively evaluate all potential combinations of the selected neural
building blocks, the following process has been followed:

• First, commonly employed CNN detectors are evaluated
in combination with the selected CNN backbones.

• Second, the state-of-the-art one-stage CNN detector, i.e.,
YOLOv8, is evaluated in combination with the best-
performing CNN backbone.

• Third, the various auxiliary modules (serving as neck sub-
networks) are evaluated in combination with the overall
best CNN detection head.

• Four, the best performing CNN backbone is evaluated in
combination with DINO; a representative of state-of-the-
art Transformer-based detection heads.

The details and the results of this incremental experimental
assessment are presented in Section IV.

IV. EXPERIMENTAL EVALUATION

This section overviews the common experimental setup used
for evaluating and comparing the components presented in
Section III. Subsequently, the assessment results are reviewed
and discussed.

A. Experimental Dataset

SIXray [11] is employed for conducting the experimental
method assessment. It is a well-known publicly available X-
ray security dataset consisting of 1,059,231 X-ray images from
subway stations. The 6 classes of illicit objects contained
in these images are “gun”, “knife”, “wrench”, “pliers” and
“scissors”. Additionally, a “negative” class includes all images
without any illicit item. Three different dataset subsets are
typically utilized in different experimental setups, namely
SIXray10, SIXray100 and SIXray1000, where the number
indicates the ratio of negative against positive samples. SIXray
contains ground-truth whole-image class label annotations
manually set by human security inspectors, while their ground-
truth object RoIs/bounding boxes are available only for the test
set. This paper uses the revised object detection annotations for
the training subset provided by [52]. Despite the fact that only
images containing at least one contraband item were utilized,



Fig. 4. The main CSP-Darknet53 components.

the official training-test set split was adopted. Fig. 5 depicts
examples of detections on SIXray test set images.

B. Evaluation Metrics

The effectiveness of the proposed method is measured
using the mean Average Precision (mAP) metric. In object
detection tasks, IoU is commonly used to measure the overlap
between the predicted and the corresponding ground-truth RoI.
In addition, a threshold value is defined in order to decide
whether the prediction is actually correct. True Positives (TP),
False Positives (FP), and False Negatives (FN) depend on the
IoU, the predicted label and the ground-truth label. These
elementary metrics are utilized to calculate Precision and
Recall:

Precision =
TP

TP + FP
. (1)

Recall =
TP

TP + FN
. (2)

The Precision-Recall (PR) curve depicts the trade-off between
precision and recall for different discrimination thresholds.
Average Precision (AP) is the area under the PR curve and
its range is between 0 to 1. AP is defined as:

AP =

∫ 1

0

p(r) dr. (3)

mAP is calculated as the mean of AP over all classes:

mAP =
1

N

N∑
i

APi. (4)

C. Experimental Evaluation

Evaluation of all competing method combinations in the
SIXray dataset was conducted using the mAP metric at a 0.5
IoU threshold.

Table I summarizes the mAP of the evaluated method
combinations, selected under the rationale described in Sub-
section III-D. As it can be seen, the Transformer-based DINO
outperforms all CNN-based detectors, but the CSPDarkNet-
53 CNN backbone, which has been designed specifically for
object detection, surpasses all competing approaches. Finally,
as it can be deduced from the quantitative results, the domain-
specific auxiliary modules that have been evaluated as neck
subnetworks in combination with YOLOv8/CSPDarkNet-53
are essentially useless in combination with such an advanced
CNN detector; they significantly degrade its accuracy. One
potential reason may be that they are not really generic
plug-in modules able to augment any CNN backbone/detector
combination, but can only cooperate effectively with specific
such combinations. Exploring this aspect is a fertile future
research avenue.

It must be noted that the above results contradict those of
the survey in [10], which concludes that Transformer-based
DNNs do not work equally well on X-ray images because
they emphasize contours, while CNNs emphasize texture. In
practice, the comparative assessment results presented in this
paper indicate that this is not in fact an issue, at least when
a CNN backbone is utilized in combination with a state-of-
the-art Transformer detector. This is in-line with the recent
findings of [53], where Transformer-based detection heads are
shown to outperform all competitors.



Detector Backbone Architecture mAP
YOLOv5 CSPDarkNet-53 0.82

ResNet-101 0.81
MobileNetV3 0.76
EfficientNetV2-S 0.81

FCOS ResNet-101 0.78
MobileNetV3 0.73
EfficientNetV2-S 0.73

YOLOv8 CSPDarkNet-53 0.84
DINO CSPDarkNet-53 0.89

Detector Auxiliary Module mAP
YOLOv8 CHR 0.68

LIM 0.82
DOAM 0.78
DDoM 0.81

TABLE I
RESULTS OF THE QUANTITATIVE ASSESSMENT OF THE VARIOUS SELECTED METHOD COMBINATIONS, UNDER THE CHOSEN EXPERIMENTAL PROTOCOL.

MAP@0.5 IS THE EMPLOYED EVALUATION METRIC (HIGHER IS BETTER).

Fig. 5. Predictions on the SIXray test subset.

V. CONCLUSIONS

The automated detection of contraband items in X-ray
images obtained in airports, subways or post/customs offices
is a task critical for public safety. Due to the large volume
and high throughput of passengers, mailed parcels, etc., this
is a Big Data analysis problem that requires fast algorithms.
Existing one-stage DNNs for object detection have indeed
been adapted and trained for this application domain, but so
far they have not been compared under a common evaluation
protocol. This paper presented exactly such a comparative
assessment of various commonly employed or state-of-the-art
deep neural components for object detection (detection heads,
backbones, auxiliary domain-specific necks), using a well-
known, large-scale public relevant dataset. The results indicate
the superiority of Transformer detectors, the obsolete nature of
auxiliary neural modules that have been developed in the past
few years for security applications and the high efficiency of
the CSP-DarkNet backbone CNN. Future research directions
include an investigation of whether domain-specific auxiliary
modules can be effectively utilized in combination with ad-
vanced modern object detectors to further improve accuracy,
as well as how an end-to-end Transformer solution would
perform in comparison to the winning CSP-DarkNet+DINO
combination.
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