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Abstract—In this paper, we introduce the FOCAL (Ford-
OLIVES Collaboration on Active Learning) dataset which en-
ables the study of the impact of annotation-cost within a video
active learning setting. Annotation-cost refers to the time it takes
an annotator to label and quality-assure a given video sequence.
A practical motivation for active learning research is to minimize
annotation-cost by selectively labeling informative samples that
will maximize performance within a given budget constraint.
However, previous work in video active learning lacks real-time
annotation labels for accurately assessing cost minimization and
instead operates under the assumption that annotation-cost scales
linearly with the amount of data to annotate. This assumption
does not take into account a variety of real-world confounding
factors that contribute to a nonlinear cost such as the effect
of an assistive labeling tool and the variety of interactions
within a scene such as occluded objects, weather, and motion
of objects. FOCAL addresses this discrepancy by providing real
annotation-cost labels for 126 video sequences across 69 unique
city scenes with a variety of weather, lighting, and seasonal
conditions. These videos have a wide range of interactions that
are at the intersection of infrastructure-assisted autonomy and
autonomous vehicle communities. We show through a statistical
analysis of the FOCAL dataset that cost is more correlated with
a variety of factors beyond just the length of a video sequence.
We also introduce a set of conformal active learning algorithms
that take advantage of the sequential structure of video data
in order to achieve a better trade-off between annotation-cost
and performance while also reducing floating point operations
(FLOPS) overhead by at least 77.67%. We show how these
approaches better reflect how annotations on videos are done
in practice through a sequence selection framework. We further
demonstrate the advantage of these approaches by introducing
two performance-cost metrics and show that the best conformal
active learning method is cheaper than the best traditional
active learning method by 113 hours. The code associated with
this paper can be found at this repository. The data can be
downloaded at this location.

Index Terms—active learning, labeling cost, sequential, video

I. INTRODUCTION

Machine learning has demonstrated the capability to have a
major impact in a variety of application areas such as health-
care [1], seismology [2], and autonomous driving [3]. Despite
the potential that machine learning presents, the efficacy of
these algorithms is dependent on access to an abundance

⋄ = equal contribution

Fig. 1. This shows a plot of the cost vs. sequence length and cost vs.
box counts for every video in the FOCAL dataset. The pearson correlation
coeffcient between these variables is .21 and .31 respectively.

of high quality labeled data related to the application of
interest. This dependence introduces a host of issues because
annotating data is an expensive and time-consuming process
[4]. This problem is especially prevalent in domains that
involve videos [5] where long sequences of spatio-temporally
correlated frames complicate labeling from both a cost and
complexity point of view. In practice, annotators address these
issues by making use of assistive labeling technology [6]
that reduces annotator burden by interpolating labels across
correlated frames in a video sequence to produce a fully
labeled sequence in an efficient manner. Due to the advantages
these tools provide, labeling is typically done across sequential
blocks, rather than on single frames at a time [7]. Alongside
the tools utilized, another practical concern of annotators
is how to decide which video sequences to label. Ideally,
annotators will choose the sequences that result in the least
annotation-cost while maintaining high downstream perfor-
mance in the video task of interest. We define annotation-
cost as the amount of time it takes an annotator to label and
quality-assure their assigned labeling task.

The study of this interaction between annotation-cost and
downstream performance is known as active learning [8]. The
motivation behind active learning is to design query selection
strategies that select informative samples for annotators to
label. These selected samples ideally maximize performance
within a given budget constraint. Despite this motivation
related to reducing cost, traditional active learning algorithms
do not have access to the exact annotation-cost when bench-
marking their algorithms and make the assumption that cost
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Fig. 2. 1) This shows how traditional active learning algorithms processes sequences. All frames of a sequence are equally likely to be selected and labels can
be extracted from an Oracle. 2) This shows how in a real world context, annotators are assigned sequences to select to label and then use assistive labeling
tools to interpolate between fully labeled frames. This results in both a fully labeled sequence and an associated cost for the work done.

shares a linear relationship with the number of samples labeled
[9]. However, this assumption of a linear relationship between
cost and samples is not valid across application domains
such as video. A variety of other factors beyond just the
amount of data can affect annotation-cost. This includes time-
saved from using an assistive labeling tool and the complexity
of interactions within the data itself such as motion, object
density, occlusion severity, and lighting conditions. We show
in Figure 1 a plot between annotation-cost of a video and its
associated number of frames and bounding box counts. This
figure demonstrates only a minor correlation with a Pearson
correlation coefficient of .21 for frames and .31 for box counts
which is far from the linear correlation suggested by active
learning literature.

Another issue with traditional active learning strategies is
that they do not reflect how video data is annotated in prac-
tice. Many query strategies such as [10]–[12] were designed
on classification tasks that do not take into account spatio-
temporal relationships that exist in video data. This is shown in
part 1) of Figure 2 where the sequence pool S is decomposed
to a set of frames fi ∈ F from which an acquisition function
a takes as input the current model M and the pool of frames
F to sample from. The chosen frames are then labeled by an
oracle that provides the labels for the selected data. However,
as discussed previously, the presence of assistive labeling
technology enables annotating in a sequence-wise manner.
This real-world sequential labeling process is demonstrated in
part 2) of Figure 2 which results in a labeled sequence with an
associated annotation-cost from the time spent by the worker.
Additionally, it should be noted that the acquisition of new
sequences is dependent on a variety of factors not accounted
for in the active learning literature. This includes the model
M , potential cost of the sequence C, the impact of factors in
a video sequence that effect the assistive labeling tool T , and
the usage of the tool by the annotator A. This discrepancy

between real-world practice and standard frameworks suggest
that active learning algorithms should be tested in settings
that reflect actual annotator practice and that query strategies
should be designed that reflect characteristics of the sequential
structure of the video domain.

In this paper, we address both of these issues of conventional
active learning through the introduction of the FOCAL dataset.
This is the first video active learning dataset with associated
annotation-cost labels for each sequence that was recorded dur-
ing the labeling of the dataset. These videos took place in prac-
tical settings that are of interest to both the autonomous vehicle
and infrastructure-assisted autonomy communities. Through
this dataset, we benchmark active learning algorithms with
respect to performance and the cost associated with the queried
sequences of each algorithm. Additionally, through an analysis
of the dataset we identify factors that contribute to annotation-
cost and use these factors to design conformal query strategies.
Conformal refers to algorithms that “conform” or make use of
the data structure to devise importance scores for sampling.
These strategies take advantage of temporal and spatial statis-
tics of video to minimize cost while maximizing performance.
We also introduce two new metrics that reflect the interaction
between cost and performance. This is done within an active
learning experimental setting that reflects real world annotation
workflows where entire sequences are selected rather than
individual frames. In summary, the contributions of this paper
are as follows:

• We introduce the first public video active learning dataset
accompanied by detailed annotations and annotation time,
that provides a rigorous basis for accurate quantitative
evaluation of annotation cost reduction in active learning
research.

• We conduct a detailed analysis of multiple factors that
affect the annotation cost of video sequences.

• We provide a new benchmark for object detection and



TABLE I
A COMPARISONS OF DATASETS USED IN COST-AWARE ACTIVE LEARNING.

Domain Dataset Cost Cost Unit Cost Added Method Size

NLP

Wall Street Journal Corpus [13] Approx. # Brackets Prospectively Sequences 2350 SentencesReal Time Retrospectively Sequences
Hotel Reviews [14] Approx. Samples - Sequences 10000 Reviews
IMDB [15] Approx. Samples - Sequences 50000 Reviews
Review Polarity [16] Approx. Samples - Sequences 2000 Reviews
Sentence Polarity [17] Approx. Samples - Sequences 10662 Reviews
Wikipedia Movie Plots [18] Approx. Samples - Sequences 33869 Descriptions
CKB News Corpus [9] Real Time Retrospectively Sequences 1984 Articles
Speculative Text Corpus [9] Real Time Retrospectively Sequences 850 Sentences
SigIE Email Corpus [9] Real Time Retrospectively Sequences 250 Signatures
Urdu-English Language Pack [19] Real Time Money Retrospectively Sequences 88000 Sentences

Image SIVAL Image Repository [20] Real Time Retrospectively Frames 1500 Images
Minimum Required Viewing Time [21] Real Time Retrospectively Frames 4771 Images

Video VIRAT [22] Approx. Samples - Frames 16 videos (2700000 frames)
FOCAL Real Time Prospectively Sequences 126 Videos (103518 frames)

cost-conscious video active learning on FOCAL.
• We compare adaptions of traditional inferential sampling

to conformal sampling on video sequences.
• We introduce two new performance-cost metrics for val-

idating the effectiveness of query strategies minimizing
cost while maximizing performance.

• The presence of video statistics allows us to front-load
ranking of the unlabeled pool, thus reducing overhead
cost by greater than 8 million GFLOPS.

II. RELATED WORKS

A. Cost Measurement

Cost is defined and measured differently across several
domains of cost-conscious active learning. In the domain of
natural language processing, [23] propose to measure cost
using the number of brackets within sentences. Other works
use the number of sentences and the number of decisions
needed to select a sentence parse as metrics to measure cost
in active learning [24]. [25] measures cost by the number
of tokens for parts of sentences while [26] simulates cost to
be a linear function of the length of a voicemail message.
These are examples of approximate costs being used for active
learning. In contrast, [27] measured actual annotation time to
compare the efficacy of rule writing versus annotation with
active learning. Overall, [28] considered actual annotation
time to be the best metric for cost measurement due to
the variation that results from the practices employed by
annotators in real labeling settings. We are the first to provide
these measurements for the video domain by defining cost as
the time to annotate and quality assure bounding box labels
in a full sequence.

B. Cost-Available Datasets

We summarize several key characteristics of our FOCAL
dataset and other datasets used for cost-conscious active
learning in Table I. These works demonstrate how active
learning strategies differ based on practical considerations
surrounding relevant application settings. The works where
approximate cost is reduced by querying fewer samples do not

actually represent or reason about cost in practical settings.
The studies that use real costs attempt to provide insight
on the role of annotation cost in real-world active learning.
However, those studies used datasets that did not originally
come with annotation cost labels. The authors retrospectively
used tools such as Amazon Mechanical Turk to gather the
annotations. Retrospective annotations are known to have
more sources of confounding error and bias [29]. FOCAL
dataset bridges this gap between simulated and real-world
active learning considerations and serves to provide a more
robust means of benchmarking active learning algorithms. To
the best of our knowledge, FOCAL is the first video dataset
intentionally designed for sequential active learning with real
time prospective cost annotations.

C. Cost-Conscious Sampling

Cost-conscious sampling refers to previous work that at-
tempted to integrate cost into query strategies. For example,
[30] designed a query strategy that uses partial labels to
reduce cost. [31] developed queries with clustering algorithms
to remove the need to annotate samples belonging to an
already annotated cluster. [32] developed a similarity-based
query that rank the importance of a sample’s neighbors such
that less time is needed to label each sample. [33] used a
video active learning strategy based on selecting identified
frames for a video tracking task. However, sampling a subset
of frames in this manner does not match the human annotation
workflow for video data and imposes an impractical method
of annotating video data. Also, like many other studies, this
method considers cost as constant between samples and only
reduces it by querying less frames.

D. Active Learning

Traditional active learning methods typically involve a
model iteratively selecting informative samples for annotation
from an unlabeled data pool until an annotation budget is
reached. Approaches for selecting samples differ in their
definition of information content. For example, several ap-
proaches define sample importance using softmax probabilities



Fig. 3. Examples of Spatial and Temporal Diversity throughout the FOCAL dataset.

[10], [34] where information content is related to the output
logits of the network. Other works focus on constructing the
core-set of the unlabeled data pool [35], [36]. Furthermore,
there are several approaches that consider the combination of
both data representation and generalization difficulty within
their definition of information content [11], [37], [38]. [39]
integrates both generalization difficulty and data representation
by extending [40] to diverse batch acquisitions. Recent work
[12] defined sample importance in relation to the number
of times a sample changes its output prediction. There is
also a large body of active learning work that studies data
collection within specific application domains. [41] and [42]
analyze how clinical information can be incorporated into
active learning query strategies. [43] utilizes auto-encoder
reconstruction information to better select samples from seis-
mic volumes. [44] introduces the idea of analyzing how out
of distribution scenarios manifest in active learning. Active
learning has also been applied within the video domain. [45]
made use of temporal coherence information as a means
for querying samples. [46] identified specific frames to label
within a video action detection task. Although these works
are motivated by the practical goal of active learning - reduce
labeling costs, while maintaining a high performance - they
each operate on the assumption that annotation costs are
constant between instances. The authors in [9] state that most
publicly available datasets are not created with the intention
of reducing annotation cost via active learning research. This
means that annotation time, or any other form of cost, was not
logged for each instance. Our work bridges the gap through
the introduction of a dataset with explicit cost labels within a
video setting. Additionally, we use a novel experimental setup
that utilizes the realistic sequence-wise acquisition paradigm.

III. FOCAL DATASET

A. Dataset Construction

The FOCAL dataset is composed of 126 video sequences
across 69 unique scenes. These scenes were collected from
a variety of urban locations across Ann Arbor and De-
troit Michigan from January 2021 to August 2021. Videos
are taken at diverse points in the year as well as times
of day to increase spatial diversity. This includes variation
with respect to weather conditions, lighting conditions, object
density, objects within scenes, and objects between scenes.
The data collection locations of these video sequences were
also selected based on the intent to obtain a wide range
of interactions that are at the intersection of infrastructure-
assisted autonomy and autonomous vehicle communities. This
includes a variety of interactions between pedestrians and
vehicles in traffic settings. Additionally, the collected scenes
exhibit a wide range of temporal diversity which includes
variation in sequence length, object size, number of moving
objects, number of hidden objects, and velocity of moving
objects. These desirable characteristics are visually displayed
in Figure 3.

During the labeling process, annotators are assigned video
sequences within an assistive labeling tool platform. They
assigned bounding box labels to objects with respect to 23
possible fine-grained classes. The distribution of these classes
as a function of object counts is shown in Figure 4. We
note that there is a relatively uniform distribution across the
majority of object categories. In addition to bounding boxes,
annotators also label objects with respect to a variety of
different types of metadata. This includes tracking identities
and category specific attributes. These attributes include the



TABLE II
THIS TABLE SHOWS COMPUTED CORRELATION COEFFICIENT SCORES BETWEEN THE COST AND EACH OF THE LISTED STATISTICS BELOW. MOST COSTLY
REFERS TO THE 20 SEQUENCES THAT TOOK THE MOST TIME TO LABEL. LEAST COSTLY REFERS TO THE 20 SEQUENCES THAT TOOK THE LEAST TIME TO

LABEL. P,K, AND S REFER TO THE PEARSON, KENDALL, AND SPEARMAN CORRELATION COEFFICIENTS.

FOCAL Dataset Statistical Correlation with Cost

Statistic Total Dataset Most Costly Least Costly
P K S P K S P K S

Sequence Length 0.21 0.22 0.31 -0.27 -0.10 -0.17 0.26 0.25 0.34
Number of Objects 0.31 0.34 0.46 -0.37 -0.03 -0.05 0.25 0.26 0.35
Occlusion Severity 0.25 0.26 0.37 0.05 0.021 0.12 0.14 0.18 0.23

Motion 0.21 0.17 0.24 -0.14 0.00 -0.04 0.14 0.06 0.12
Season 0.07 0.07 0.09 0.24 0.20 0.25 0.17 0.08 0.12

Time of Day 0.11 0.07 0.10 0.17 0.15 0.21 0.15 0.15 0.26
Number of Cars 0.17 0.21 0.30 -0.48 -0.04 -0.02 0.12 0.26 0.36

Number of Pedestrians 0.26 0.28 0.39 -0.15 -0.17 -0.23 0.03 0.08 0.16

TABLE III
GENERAL STATISTICS FROM FOCAL DATASET.

Focal Dataset Statistics

Number of Classes 23
Number of SuperClasses 4

Seasonal Distribution 10.3% Winter / 26.2% Summer / 63.5% Spring
Label Density 47.11± 26.96

Sequence Lengths 812± 368
Train/Test/Val Split 51 Scenes / 13 Scenes / 5 Scenes

occlusion status of an object, whether car doors are open or
closed, the parking status of cars, and whether pedestrians
are walking or standing still. We also show other statistics of
interest in Table III. Namely, we show a representative spread
with respect to different seasons, the number of objects/frame
(label density), and the lengths of different sequences. We
choose sequences with a relatively even number of frames
in order to avoid potential bias related to sequence length
disproportionately influencing results. Sequences were also
chosen to have a wide variation in label density to allow active
learning strategies to query from a diverse sequence pool.

B. Cost Analysis

During the labeling process, annotators were timed by their
assistive labeling platform to arrive at a final annotation-cost
label for each sequence. It consists of the time spent in the
platform annotating bounding boxes and attributes, the time
spent for the sequence to undergo customer quality assurance,
and the time to perform final quality assurance. This is all
computed with respect to hours. We show the distribution of
annotation-cost across all sequences in the dataset in Figure 4.
We note that there are a relatively equal number of sequences
for different ranges of annotation-cost. This presents a wide
pool of different cost sequences for active learning algorithms
to select from.

We also analyze what factors cause certain sequences to take
longer to label than others. Intuitively the length of a sequence
should be proportional to the annotation cost. However, Figure
1 shows a minor correlation between cost and sequence length

in the FOCAL dataset. A long sequence may or may not
contain many relevant objects to be annotated and the same is
true for a short sequence. We explore potential other factors
that can effect cost in Table II. We compute the pearson,
kendall, and spearman correlation coeffcients between the
annotation-cost and a variety of different statistics in the
dataset. Additionally, we compute these metrics over different
subsets of the dataset which includes the total dataset, the 20
most costly sequences, and the 20 least costly sequences. The
first point that stands out is that a variety of other factors have
a positive correlation with cost. The most intuitive correlations
are the number of boxes and the number of occluded objects
in a scene. More boxes indicates more time spent labeling and
occluded objects are more difficult to label because a portion
of the object is hidden behind part of the scene. The presence
of more cars and pedestrians can also complicates labeling
by having more moving objects with diverse interactions.
Additionally, object motion as computed by optical flow on
[47], the season, and the time of day also influence how
easily different objects can be identified during the annotation
process and exhibit some correlation with cost. However, it
is interesting to note the discrepancy when we restrict the
metric computation to the most and least costly sequences. The
least costly sequences are the easiest to label and have more
straightforward patterns that are easily identified by annotators.
For this reason, they exhibit positive correlations with all the
statistics of interest. This trend does not hold for the most
costly sequences. Intuitive metrics such as number of frames
and objects now either have negligible or negative correlation
with cost. This suggests that higher cost sequences take longer
to label not because of our traditional understanding of cost,
but as a result of more complex interactions in the scene.
As a result, it only exhibits a positive cost correlation with
the season, time of day, and the occlusion severity which are
statistics that are more reflective of the kinds of interactions
happening in the scene. We make use of insights from this
analysis in the design of our conformal sampling strategies.



Fig. 4. FOCAL dataset class distribution and variation of cost annotations. Left: Log-scaled class distribution. The y-axis shows the number of object instances
for each class in the FOCAL dataset. Right: Variation of cost within frames in sequence. The variation is beneficial for distinguishing active learning algorithms
to identify optimal strategies that simultaneously select sequences with less time to annotate and optimize for performance.

Fig. 5. We compare annotation cost, in hours, of all sampling algorithms to
the theoretical upper and lower cost bounds of the FOCAL dataset. Shaded
curves show the average cost and standard error for algorithms with stochastic
cost.

IV. EXPERIMENTAL SETUP

A. Active learning Experimental Setup

All experiments are conducted with a YOLOv5n [48] ar-
chitecture. All object detection experiments took place with
an ADAM optimizer, a learning rate of .01, a weight decay of
.00005, momentum of .937, and a step scheduler that decreases
by a factor of 10 after every 3 epochs. The batch size is set at
16, the iou threshold is .6, and the confidence threshold for non
maximum suppression is set at .65. All images are resized to
640×640×3 and the training augmentations include horizontal
flipping, translations, scaling, color jitter, and mosaic grids.
Within each active learning round, the model is trained for 10
epochs. After each epoch, the best model with respect to the
validation set is saved to evaluate the test set for that round.
This is repeated with three different random seeds and mean
average precision(mAP) was computed.

During the first round, all models select two random
sequences to constitute their initial training set. After the
completion of training on the initial training set, the algorithm
selects a single sequence from the pool of available unlabeled
sequences si ∈ Spool. This is repeated for 13 rounds and
associated performance and annotation-costs are recorded for

each round. During training, we group the 23 fine-grained
classes in FOCAL into 4 superclasses which include pedestrian,
bicycle, car, and cart. Additionally, we formed the train, test,
and validation based on a rough 70%/20%/10% split of the
data. Furthermore, it was ensured that every unique scene
belonged to a separate split and that each split contained
a variety of weather and lighting conditions. This entire
training process varies slightly depending on whether the query
strategy is an inferential or conformal sampling algorithm.

a) Inferential Sampling: We define traditional active
learning algorithms that compute posterior probabilities to
rank samples in the unlabeled pool as inferential approaches.
We adapt these algorithms, defined on single frames, to entire
video sequences. We evaluate the acquisition function on entire
sequences of video data in the form of si = {xi,1, ..., xi,Nsi

}.
Here xi,k represent the individual frames within sequence si
and Nsi represents sequence length. The acquisition function
a is defined as:

S∗ = argmax
s1,...,sb∈Spool

a(s1, ..., sb|g(fw, Spool)) (1)

where g represents a scoring function that takes in the
trained network parameters fw and the entire pool of unlabeled
sequences Spool and produces scores for each sequence. The
acquisition function a then selects an optimal S∗ based on the
associated scores and their corresponding sequences. g and a
vary depending on the active learning algorithm of interest. In
our implementations (and FOCAL benchmarks), g computes
a score for the sequence as a whole by averaging the scores
acquired for each frame in the associated sequence.

To generate the discussed scores, we adapt existing algo-
rithms from a classification to an object detection setting. For
entropy, which is based on softmax probabilities [10], we use
the object probability of each YOLOv5 grid in the output
prediction and derive a single acquisition function score for
each grid. Each frame score is then reduced to averaging the
grid scores within a single frame. Following this intuition,
we produce an overall sequence score by averaging all frame
scores within a sequence. This process is repeated across all
methods that make use of logit probability outputs which



includes least confidence, margin, badge, and coreset. For
FALSE [44] and GauSS [12] we define the switching score
as the difference between the predicted number of objects
in between rounds for each frame and produce a sequence
score by calculating the arithmetic mean across all frames.
We sample the highest switching scores for FALSE while
GauSS approximates the switching score distribution with a
two component Gaussian mixture model and samples from
the component with a higher switch mean. We also perform
random sampling where we randomly select the next batch of
video sequences from the unlabeled pool.

b) Conformal Sampling: Inferential strategies are typi-
cally model dependent. However, conformal sampling does
not require posterior probabilities from a trained model to
select samples from the unlabeled pool. Rather, each algorithm
selects its initial samples according to its unique criteria.
The following are descriptions of the conformal sampling
algorithms proposed in this study:

• Least Frame: This approach selects the sequence with the
shortest length in Spool. This utilizes a function l(Spool)
that outputs the length of each sequence. It has the form
S∗ = argminsi(l(Spool))

• Most Frame: This approach selects the sequence with
the longest length in Spool. It has the form S∗ =
argmaxsi(l(Spool))

• Motion: This is a motion-based approach that uses optical
flow [49] as a metric to rank sequences according to
its temporal information. Optical flow maps for each
sequence are generated using a PWC-Net [47] model
trained on the KITTI 2015 dataset [50]. Motion scores,
Σ

Nsj

i=0mi(xi,sj ), are generated by summing the pixel val-
ues of each flow map generated for every frame xi,sj

within a sequence sj . Low motion sequences have smaller
pixel values in their flow maps and the opposite is true
for high motion sequences. Nsj is the number of frames
in sequence sj ∈ Spool.
– Min Motion: This selects the next sequence with the

lowest motion scores

S∗ = argmin
sj

Σ
Nsj

i=0mi(xi,sj ) (2)

– Min Max Motion: This selects k sequences having
either the lowest or highest motion scores at alternating
rounds r.

k∗ =

{
argminsj Σ

Nsj

i=0mi(xi,sj ) r ∈ E

argmaxsj Σ
Nsj

i=0mi(xi,sj ) r ∈ O

E and O are the set of even and odd rounds respec-
tively.

• Min Boxes: This is a sampling approach that uses the
spatial distribution of pixels in optical flow maps to
estimate the number of boxes Σ

Nsj

i=0 bi(xi,sj ) in a sequence
where bi(xi,sj ) is the estimated number of boxes in a

frame. This strategy selects the sequence with the lowest
estimated number of boxes and has the form:

S∗ = argmin
sj

Σ
Nsj

i=0 bi(xi,sj ) (3)

In Figure 5, we perform an analysis of the annotation-
cost of sequences selected by these conformal strategies.
We show where annotation cost of each sampling method
lies with respect to the theoretical bounds (dashed lines) of
FOCAL. Theoretical upper and lower bounds are computed by
selecting sequences in descending and ascending cost order,
respectively, and then summing cumulatively. For ease of
visualization, we show the first seven active learning rounds.
Using the estimates of motion in conformal sampling, the red
and green curves are closer to the theoretical minimum (dashed
light blue). Since cost is less correlated to sequence length, it
is not surprising that least and most frame sampling (blue and
orange curves) have cumulative costs closer to the upper bound
(dashed dark blue). Inferential methods are associated with a
stochastic annotation cost and the average and standard error
of each is shown as a shaded curve.

B. Performance-Cost Metrics

Within the context of active learning, cost analysis is
especially relevant when considered jointly with generalization
performance. For instance, selecting low cost video sequences
is less relevant when no additional detection performance gain
is expected. For this purpose, we visualize changes in both
via mAP versus cost plots. The x-axis represents the cost, in
hours, of labeling the number of sequences in the training pool
and the y-axis is the mAP the model achieves on the test set.
Based on this, we develop two metrics to study performance-
cost evaluation: cost appreciation rate (CAR) and performance
appreciation rate (PAR).

a) Cost Appreciation Rate: The cost appreciation rate is
the area under the mAP vs cost curve at different cost budgets.
CAR is defined as follows:

CAR =

∫ b

0

AP (c) dc. (4)

where b is the cost budget, c is a cost value less than the
budget, and AP(c) is the corresponding mAP on the y-axis
for cost value c. CAR plots shown in Section V answer the
question, “With cost-focused budgets leading up to b hours
maximum, which algorithm results in the highest performance
at each budget?”. High CAR values are desirable.

b) Performance Appreciation Rate: Similar to CAR, the
performance appreciations rate is the area under the mAP vs
cost curve at different performance budgets. PAR is defined
as follows:

PAR =

∫ b

0

AP (p) dp. (5)

where b is now the performance budget, p is a performance
value less than the budget, and AP (p) is the corresponding
cost on the x-axis for performance value p. PAR plots shown



in Section V answer the question, “With budgets leading up
to b mAP, which algorithm achieves the lowest cost at each
budget?”. Low PAR is indicative of better performance.

c) Overhead Computation Cost: In addition to
annotation-cost, there is also a cost associated with the
querying process for sequences. For inferential sampling
techniques (except random), overhead cost is defined as the
number of floating point operations per second (FLOPS)
YOLOv5n executes to compute the posterior probabilities
of the unlabeled pool for all active learning rounds. The
overhead cost for Min Boxes, Min Motion and Min Max
Motion conformal sampling is the FLOPS of PWC-Net to
compute the optical flow maps for the available data before
beginning active learning. Random, Least Frame and Most
Frame sampling have zero overhead cost.

V. RESULTS

a) Object Detection: We first benchmark the perfor-
mance of standard object detection strategies on FOCAL
and compare it to performance on the COCO [51] dataset.
We show the mean average precision (mAP) metric at IOU
thresholds 0.5 (mAP@50), and mAP between 0.5 and 0.95
(mAP@[50, 95]) on FOCAL in the last two columns of Ta-
ble IV. While YOLOv5n has the lowest number of parameters,
it achieves the highest test mAP@50 of 0.640. We also show
the detection performance of the same architecture on the
COCO dataset as mAP@50 (COCO). Note that all models
are trained and tested on the 4 superclasses of FOCAL, while
the same architectures are trained on the 80 object categories
of the COCO with higher class complexity. Thus, the overall
detection scores of these architectures are lower on the COCO
test-dev [48], [52], [53]. However, FOCAL exhibits various
challenges for object detection, especially in the context of
infrastructure-based autonomous vehicle research. The chal-
lenges include the variation of object size, motion, occlusion,
and location, as shown in Fig 3. Considering the trade-off
between performance and training time, we use YOLOv5n in
the following active learning experiments.

TABLE IV
OBJECT DETECTION BENCHMARKS ON FOCAL.

Architecture mAP@50 (COCO) mAP@50 mAP@[50, 95]

YOLOv5n 0.460 0.640 0.396
YOLOv5m 0.639 0.620 0.388
YOLOv5x 0.689 0.628 0.385
YOLOv3 0.579 0.612 0.402

YOLOv3-tiny 0.331 0.574 0.293
CenterNet 0.416 0.538 0.330

b) Sequence Active Learning: The presence of cost la-
bels in FOCAL allows an exploration of the relation between
mAP and annotation cost which is shown in Figure 6(a, d). We
show changes in mAP and cost for 12 rounds of active learning
on three unique random seeds in Figure 6(a, d). Shading
around each curve represents the standard deviation error and
the colored dashed vertical lines indicate the total cost of
labeling all 13 sampled sequences at the end of 12 rounds.

Overall, performance is comparable between both types of
sampling methods. However, conformal sampling is noticeably
cheaper for some strategies. The Min Max Motion sampling
(red) in Figure 6(a) has the shortest width overall at just
under 500 hours of cost. This indicates that it minimizes cost
the most with a gap of 113 hours compared to the closest
inferential sampling approach (entropy) while maintaining
comparable mAP to all other strategies. Additionally, it is
interesting to observe that sequences with the most and least
frames follow similar trends in terms of performance while
still costing more than the motion based query strategy. These
improvements are more pronounced in plots of CAR and PAR
compared to annotation-cost.

We visualize CAR and PAR metrics in Figures 6(b-c, e-f)
given budgets in cumulative cost or performance. Specifically,
comparing Figures 6(c,f), we see Min Max Motion (red)
has the highest CAR overall. This means it is the best
at maximizing performance on FOCAL given cost-focused
budgets. Conversely, comparing Figures 6(c,f) shows that at
a budget of 0.525 mAP, Min Max Motion sampling (red) is
the cheapest algorithm overall. However, when the budget is
0.6 mAP Entropy (grey) becomes the cheapest. This stems
from the non-linear fashion in which models learn in machine
learning. These kinds of analysis are only possible on FOCAL
dataset because of the availability of cost labels. Additionally,
these results suggest that query strategies that make use of
a factor that influences cost have a better trade-off between
cost and performance compared to previous inferential active
learning strategies. There are a variety of potential reasons for
this behavior. Within an object detection setting, identifying
sequences with a wide variety of motion statistics may be
more useful for downstream detection performance. Another
consideration is that most active learning strategies don’t
reflect the real-world annotation process. In this case, strategies
like min-max motion are enabled by the sequential nature of
our experimental setup and as such are better candidates for
real-world video active learning paradigms.

In Figure 7 we show the overhead cost on all available
FOCAL data during active learning experiments. For inference
on a single FOCAL frame, YOLOv5n executes 4.1 GFLOPS.
Inference with PWC-Net on a pair of frames to generate an
optical flow map utilizes 30.54 GFLOPS. The overhead cost
of inferential sampling at a single round is the product of 4.1
GFLOPS and the frame count of the remaining sequences in
the unlabeled pool at that round. This is computed for each
active learning round and then cumulatively summed to arrive
at the total overhead cost. Conversely, the total overhead for
conformal sampling is the product of 30.54 GFLOPS and
the total frames available for training which results in just
over 2.3 million GFLOPS. Red shading shows how overhead
for inferential sampling cumulatively increases within the
theoretical bounds while it remains constant (blue line) for
conformal sampling methods. The reason for this is conformal
sampling does not perform inference on the unlabeled pool
at the end of every round. Instead, its overhead to compute
the flow maps is front loaded and only performed once. The



Fig. 6. A comparison between cost estimated and probabilistic sampling methods for: (a, d) mAP versus cost. (b, e) cost appreciation rate (CAR) versus
cost. (c, f) performance appreciation rate (PAR) versus performance.

Fig. 7. A comparison of overhead cost in Giga-FLOPS (GFLOPS) between
inferential and conformal sampling

upper and lower theoretical bounds are calculated by selecting
sequences in ascending and descending sequence length order
respectively multiplying by 4.1 GFLOPS per frame and then
cumulatively summing across all frames.

VI. CONCLUSION

In this paper, we introduce FOCAL - the first public cost-
aware video active learning dataset for object detection. We
show that FOCAL acts as a benchmark for both active learn-
ing and object detection tasks. Within the context of active
learning, we conduct a detailed cost analysis to understand
the factors that induce cost during the human annotation of
video sequences. We then exploit these factors to design novel

conformal active learning sampling algorithms that better
balance cost and performance considerations. Additionally,
the prospective real time annotation labels of FOCAL paves
an avenue for accurate, practical, cost-oriented video active
learning approaches. It allows an in depth performance-cost
analysis using mAP versus cost curves along with CAR and
PAR metrics. We see FOCAL as a first step towards integrating
video active learning in practical deployment scenarios.
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