
Towards Unified Data Ingestion and Transfer for the
Computing Continuum

Muhammad Arslan Tariq∗, Ovidiu-Cristian Marcu∗, Grégoire Danoy†∗, Pascal Bouvry†∗
∗SnT, University of Luxembourg

†FSTM/DCS, University of Luxembourg
{arslan.tariq, ovidiu-cristian.marcu, gregoire.danoy, pascal.bouvry}@uni.lu

Abstract—The computing continuum can enable new, novel big
data use cases across the edge-cloud-supercomputer spectrum.
Fast and high-volume data movement workflows rely on state-
of-the-art architectures built on top of stream ingestion and
file transfer open-source tools. Unfortunately, users struggle
when faced with dealing with such diverse architectures: stream
ingestion was designed for small-size datasets and low latency,
while file transfer was designed for large-size datasets and high
throughput. In this paper, we propose to unify ingestion and
transfer, while introducing architectural design principles and
discussing future implementation challenges.

Index Terms—Data ingestion, file transfer, unified architecture,
fast data, computing continuum

I. INTRODUCTION

Big data applications are becoming more complex due to
larger datasets and the role of AI in accelerating scientific and
industrial knowledge. This complexity necessitates the avail-
ability of high-performance computing (HPC) infrastructure.
Consequently, there is a pressing need for research into new
architectural approaches and optimizations that enable HPC
and cloud centers to benefit from each other. Additionally,
users require advanced support for efficient deployment across
both cloud and HPC environments. This support should facil-
itate fast dataset orchestration between the two, optimizing
performance and reducing costs at various application stages.
Therefore, the computing continuum can enable new, novel big
data use cases across the edge-cloud-supercomputer spectrum
[1]–[3].

Several industries (e.g., finance, retail, smart cities, health-
care) can significantly benefit from integrating real-time data
with historical data using a unified data ingestion and transfer
architecture. This approach is vital across sectors for making
informed decisions, improving efficiency, and innovating ser-
vices. The research and industry communities are looking to
derive knowledge and improve business outcomes faster by
processing datasets at a rapid pace. To realize this urgency,
users rely extensively on low-latency stream data ingestion
and high-throughput file-based data transfer (as illustrated in
Figure 1). However, it is difficult to handle such different,
complex architectures, and no open-source fast data movement
tool exists to efficiently reconcile both aspects.

Amazon’s approach to data processing involves using dis-
tinct services for handling different types of data. For real-time
data streaming, particularly for small records up to 1 MB,
they recommend using Amazon Kinesis Data Streams. For

Fig. 1. To efficiently orchestrate both small stream record ingestion and large
file data transfers, users have to manage two different deployments and APIs
for stream ingestion (top) and file data transfer (bottom).

larger datasets, Amazon proposes using Amazon S3, a storage
service that can handle large amounts of data efficiently [4].
However, this approach, while effective in cloud environments,
presents challenges when applied to HPC/edge computing
scenarios, may not be easily or feasibly replicated in HPC
or edge contexts due to their unique computational and data
handling requirements and resource constraints.

Our challenge is then how to design and implement
an optimized and unified architecture for data ingestion
and file transfer while keeping the advantages of fast data
ingestion (e.g., low latency for small-size datasets, i.e., KBs
to MBs) and high-volume data transfer (e.g., high-throughput
for large datasets, GBs to TBs). Towards this goal and
for efficiently optimizing data movement (low latency, high
throughput, common storage layer, and unified read APIs), this
paper aims to engage the research community and discuss our
proposal: a novel architecture for efficient data movement that
will efficiently and easily integrate new computing continuum
use cases (e.g., such as those envisioned by sky computing
[5]). We make the following contributions:

• Stream ingestion and file transfer traditionally respond
to different data movement use cases and performance
targets. To understand such divergent architectures, we
choose to benchmark (two open-source relevant tools)
Apache Kafka (for data ingestion) and Rucio (for file
transfer) while considering small (KBs) to medium (MBs)
dataset record sizes. Then, we comment on performance



64 KB 128 KB 256 KB 512 KB 1 MB
100

101

102

103

104

File Size

N
um

be
r

of
fil

es

Apache Kafka Rucio SFTP

Fig. 2. Small file-size data write (KBs to MB). Measuring the number of
files per minute.

64 KB 128 KB 256 KB 512 KB 1 MB

101

103

105

File Size

N
um

be
r

of
fil

es

Apache Kafka Rucio SFTP

Fig. 3. Small file-size data read (KBs to MB). Measuring the number of files
per minute.

differences that motivate our unified architecture (Section
II).

• We survey recent data ingestion and transfer tools and
discuss their performance and API usage differences
(Section III).

• We introduce and discuss a set of design principles to
simplify a novel data movement architecture by mini-
mizing storage copies and unifying read data access API
(Section IV).

• We propose a novel unified ingestion and transfer ar-
chitecture and discuss future implementation challenges
(Section V), and then conclude (Section VI).

II. BACKGROUND: STREAM INGESTION VERSUS FILE
TRANSFER

To understand the performance (e.g., write and read
throughput for various datasets) of stream ingestion and file
transfer, we select two state-of-the-art tools. Apache Kafka
[6] is a partitioned and replicated stream ingestion system
providing low-latency access to small records (KBs to MBs).
Rucio [7] is a file-based transfer solution used for scientific
data, offering high-throughput access to large files (GBs to

1 MB 2 MB 4 MB 6 MB 8 MB 10 MB
100

101

102

103

File Size

Ti
m

e
(m

)

Apache Kafka Rucio SFTP Rucio XRootD

Fig. 4. Medium file-size data write (MBs). Runtime to ingest or transfer a
10GB dataset.

1 MB 2 MB 4 MB 6 MB 8 MB 10 MB

100

101

102

File Size

Ti
m

e
(m

)

Apache Kafka Rucio SFTP Rucio XRootD

Fig. 5. Medium file-size data read (MBs). Runtime to ingest or transfer a
10GB dataset.

TBs). For example, machine learning workloads are built on
transferred datasets with similar sizes, up to 1 TB [8]. We
choose two configurations for Rucio: the first is based on
the Secure File Transfer Protocol (SFTP), and the second
leverages XRootD, providing POSIX-like access to files and
their namespace directories.

Experimental setup and results. We configure the latest
versions of Kafka and Rucio on a Linux server with 8 Intel
Xeon processors and 128 GB RAM, deploying them in Docker
containers. We implement write and read clients that transfer
data from memory to memory, with the total dataset size
ingested/transferred being 10 GB. Kafka is configured with
one broker and one partition, while Rucio deploys one file
transfer server. We measure the time taken to write and read a
10 GB dataset composed of files with various record sizes. As
expected, Kafka outperforms Rucio by orders of magnitude
when dealing with smaller record files (less than 1 MB) for
both read (Figure 3) and write (Figure 2). Increasing the record
size from 1 MB to 10 MB, we observe that Rucio gets more
competitive with Kafka (Figures 4 and 5).

We also compared Rucio SFTP and Rucio XRootD across
file sizes of 10-100 MB to evaluate their read/write throughput



performance. While Rucio SFTP focuses on secure file trans-
fers, Rucio XRootD excels in handling large datasets. Our tests
showed that Rucio XRootD outperformed Rucio SFTP in write
operations for files larger than 90 MB and in read operations
for files over 45 MB. These results suggest that Rucio XRootD
offers superior throughput as file sizes increase.

These experiments contrasting stream ingestion (using
Apache Kafka) with file transfer (using Rucio) underscore
the need for a unified approach in managing diverse data
requirements in big data applications.

III. RELATED WORK

Ingestion systems [9] efficiently acquire, buffer, and tem-
porarily store in-memory small record sizes and provide low
latency and high throughput access to data streams. Confluent
[10] is a commercial event-streaming platform that builds
upon Apache Kafka’s core functionalities for real-time data
processing. It operates on a subscription model and offers
several frameworks for data streaming, along with horizon-
tal scalability through additional brokers. However, it has
limitations in customization and is not suited for extensive
file-based data transfers. Moreover, Apache Kafka relies on
static stream partitioning and offset-based record access, trad-
ing performance for design simplicity. KerA [11], a data
ingestion framework that alleviates these limitations, employs
a dynamic partitioning scheme and lightweight indexing to
improve throughput, latency, and scalability. Apache Pulsar
[12] provides a cloud-based alternative to Kafka.

Rucio is a data management system designed for handling
scientific data, particularly in distributed computing environ-
ments. It is often used in large-scale scientific experiments and
collaborations to manage petabytes of data stored in billions
of files distributed over 120 data centres globally. Rucio offers
high-throughput data transfer and provides functionalities for
data distribution, replication, monitoring, and metadata man-
agement. It is highly scalable and customizable, making it a
preferred choice for complex scientific data workflows.

Skyplane [13] is designed for high-performance and bulk
data transfers of large objects between inter-cloud object
stores. The tool comprises two main components: a planner
and a data plane. The planner formulates the job based on user
requirements, while the data plane executes the transfer plan,
handling data movement between clouds and interactions with
object stores. The data plane also efficiently provisions virtual
machines within the cloud infrastructure, all orchestrated via
cloud-aware overlay networks. However, it’s important to note
that Skyplane does not support event-based streaming or local
storage transfers.

Fivetran [14] offers a secure, SSL-encrypted connection to
various supported data sources for applications, events, and
data files, facilitating end-to-end data encryption. It uses data
pull connectors to load data from multiple sources into a
single destination. However, Fivetran’s primary focus is on
data replication, not complex data transformations, and it
has limited customization options for unique data integration
requirements. Multiple connectors can be set up to run as

Fig. 6. Our proposal: leverage a common storage layer for a unified ingestion
and transfer architecture for fast data movement.

independent processes, each responsible for loading data from
one or more supported data sources into one or multiple
destinations. These connectors persist for the duration of each
update cycle.

SciStream [15] is a middlebox-based architecture designed
to enable efficient and secure memory-to-memory data stream-
ing in scientific applications, particularly when direct network
connectivity is lacking. Using control protocols, SciStream
establishes authenticated and transparent connections between
data producers and consumers in HPC environments.

In summary, unifying data ingestion and transfer systems
presents architectural challenges due to their distinct focus
areas. Ingestion systems like Kafka excel in streaming and
real-time data processing but are not designed for large file
transfers. KerA attempts to mitigate some limitations with
dynamic partitioning but remains focused on ingestion. Data
transfer/movement tools do not support stream ingestion. No
one-size-fits-all solution exists, making the unification a chal-
lenging endeavor.

IV. FAST DATA MOVEMENT DESIGN PRINCIPLES

Remember that our goal is to design an efficient, fast
data movement architecture that allows users to benefit from
both stream ingestion and file transfer. This can be possible
by relying on existing tools, e.g., Kafka/KerA for ingestion
and Rucio for transfer. Therefore, users will leverage their
standard open-source write APIs. However, data should be
stored efficiently, whether small or large. Therefore, a unified
approach should rely on a common storage layer shared by
both ingestion and transfer services. Moreover, users should
be able to access the acquired data with a unified read API. To
simplify user access, a common metadata indexing layer (e.g.,
implemented by a key-value store) should also be considered
as a first design principle. A unified, fast, and high-volume data
movement architecture will rely on these two design principles
while leveraging existing open-source ingestion and transfer
tools. Our challenge is to realize a transparent integration
of these tools while optimizing storage and simplifying user
access.



V. FAST DATA MOVEMENT ARCHITECTURE AND
IMPLEMENTATION: OUR PROPOSAL

A. Proposed unified architecture.

Our goal is to design and implement a unified storage
architecture integrating file-based transfer and stream ingestion
to manage small to large record sizes. Our main challenge is
how to minimize data copies and improve users’ productivity
for managing the movement of data through a unified ingestion
and storage architecture based on open-source components.
One approach is presented in Figure 1: we can leverage two
separate deployments for handling stream ingestion and file
transfer. However, forcing users to rely on two read APIs and
writing small data through stream ingestion while writing large
data through file transfer will also increase the complexity of
the whole data movement workflow. Therefore, our second
approach is a novel architecture that is presented in Figure
6: both transfer and ingestion will rely (as needed) on the
common storage and indexing layers while presenting a unified
read API to users. This new approach presents a set of
challenges related to:

• The common storage layer requires both in-memory
(streaming) and on-disk (file transfer) support. We have
to decide at runtime which storage path to use.

• Read and write access consistency semantics have to be
properly managed by the unified architecture considering
application availability requirements [16].

• Reconcile aspects related to low latency and high
throughput data access for such heterogeneous data sets.

Next design and implementation steps. We plan to use
Apache Kafka as the frontend for cloud data access, com-
plemented by KerA for in-memory dynamic ingestion. For
implementation, we aim to enhance Skyplane’s capabilities
by integrating it with Apache Kafka to additionally support
stream ingestion while creating an integrated cloud-HPC solu-
tion. To offer real-time metadata access for billions of files and
records, we are considering a unified approach that combines
in-memory storage KerA with a low-latency key-value store
like RAMCloud [17]. In future work, we plan to scale our
experimental setup by considering TB datasets with records
in the KB-GB range.

VI. CONCLUSION

This abstract discusses the timely need to unify stream
ingestion and file transfer in an optimized, open-source, fast
data movement architecture. In particular, we evaluate Kafka
and Rucio for small to medium dataset sizes and show
their different read and write performance. We introduce and
discuss the common storage layer and indexing principles
and propose a novel unified architecture for stream ingestion
and data transfer to minimize storage costs and simplify user
experience through a unified read API. Finally, we identify
future implementation challenges. We hope our proposal can
pique the interest of the research and industry communities
to help us further refine our assumptions and the architectural
design proposal. Our architectural proposal, while maintaining

existing write APIs (e.g., Kafka, Rucio) and implementing a
unified read API, should benefit users by simplifying complex
data workflows, optimizing infrastructure deployment, and
reducing operational costs.

VII. ACKNOWLEDGMENT

This work is partially funded by the SnT-LuxProvide part-
nership on bridging clouds and supercomputers and by the
Fonds National de la Recherche Luxembourg (FNR) POLLUX
program under the SERENITY Project (ref.C22/IS/17395419).

REFERENCES

[1] D. Park, “Future computing with iot and cloud computing,” the Journal
of Supercomputing, vol. 74, pp. 6401–6407, 2018.

[2] J. Y. Fernández-Rodrı́guez, J. A. Álvarez-Garcı́a, J. A. Fisteus, M. R.
Luaces, and V. C. Magaña, “Benchmarking real-time vehicle data
streaming models for a smart city,” Information Systems, vol. 72, pp.
62–76, 2017.

[3] M. Attaran and J. Woods, “Cloud computing technology: improving
small business performance using the internet,” Journal of Small Busi-
ness & Entrepreneurship, vol. 31, no. 6, pp. 495–519, 2019.

[4] Masudur Rahaman Sayem, “Processing large records with Amazon Ki-
nesis Data Streams,” https://aws.amazon.com/blogs/big-data/processing-
large-records-with-amazon-kinesis-data-streams/, 2023.

[5] S. Chasins, A. Cheung, N. Crooks, A. Ghodsi, K. Goldberg, J. E.
Gonzalez, J. M. Hellerstein, M. I. Jordan, A. D. Joseph, M. W. Mahoney,
A. Parameswaran, D. Patterson, R. A. Popa, K. Sen, S. Shenker, D. Song,
and I. Stoica, “The sky above the clouds,” 2022.

[6] K. M. M. Thein, “Apache kafka: Next generation distributed messaging
system,” International Journal of Scientific Engineering and Technology
Research, vol. 3, no. 47, pp. 9478–9483, 2014.

[7] M. Barisits, T. Beermann, F. Berghaus, B. Bockelman, J. Bogado,
D. Cameron, D. Christidis, D. Ciangottini, G. Dimitrov, M. Elsing et al.,
“Rucio: Scientific data management,” Computing and Software for Big
Science, vol. 3, pp. 1–19, 2019.

[8] K. Park, K. Saur, D. Banda, R. Sen, M. Interlandi, and K. Karanasos,
“End-to-end optimization of machine learning prediction queries,” in
Proceedings of the 2022 International Conference on Management of
Data, 2022, pp. 587–601.

[9] O.-C. Marcu, A. Costan, G. Antoniu, M. S. Pérez-Hernández, R. Tu-
doran, S. Bortoli, and B. Nicolae, “Storage and ingestion systems in
support of stream processing: A survey,” 2018.

[10] Confluent.io, “Apache Kafka vs Confluent,”
https://www.confluent.io/apache-kafka-vs-confluent/, 2023.

[11] O.-C. Marcu, A. Costan, G. Antoniu, M. Pérez-Hernández, B. Nicolae,
R. Tudoran, and S. Bortoli, “Kera: Scalable data ingestion for stream
processing,” in 2018 IEEE 38th International Conference on Distributed
Computing Systems (ICDCS). IEEE, 2018, pp. 1480–1485.

[12] K. Ramasamy, “Unifying messaging, queuing, streaming and light
weight compute for online event processing,” in Proceedings
of the 13th ACM International Conference on Distributed and
Event-Based Systems, ser. DEBS ’19. New York, NY, USA:
Association for Computing Machinery, 2019, p. 5. [Online]. Available:
https://doi.org/10.1145/3328905.3338224

[13] P. Jain, S. Kumar, S. Wooders, S. G. Patil, J. E. Gonzalez, and I. Stoica,
“Skyplane: Optimizing transfer cost and throughput using {Cloud-
Aware} overlays,” in 20th USENIX Symposium on Networked Systems
Design and Implementation (NSDI 23), 2023, pp. 1375–1389.

[14] Fivetran Inc., “Fivetran,” https://www.fivetran.com/, 2023.
[15] J. Chung, W. Zacherek, A. Wisniewski, Z. Liu, T. Bicer, R. Kettimuthu,

and I. Foster, “Scistream: Architecture and toolkit for data streaming
between federated science instruments,” in Proceedings of the 31st
International Symposium on High-Performance Parallel and Distributed
Computing, 2022, pp. 185–198.

[16] E. A. Lee, R. Akella, S. Bateni, S. Lin, M. Lohstroh, and C. Menard,
“Consistency vs. availability in distributed real-time systems,” 2023.

[17] J. Ousterhout, A. Gopalan, A. Gupta, A. Kejriwal, C. Lee,
B. Montazeri, D. Ongaro, S. J. Park, H. Qin, M. Rosenblum,
S. Rumble, R. Stutsman, and S. Yang, “The ramcloud storage system,”
ACM Trans. Comput. Syst., vol. 33, no. 3, aug 2015. [Online].
Available: https://doi.org/10.1145/2806887


