
Ego-Network Transformer for Subsequence
Classification in Time Series Data
Chin-Chia Michael Yeh, Huiyuan Chen, Yujie Fan, Xin Dai, Yan Zheng,

Vivian Lai, Junpeng Wang, Zhongfang Zhuang, Liang Wang, Wei Zhang, Eamonn Keogh†
Visa Research, University of California, Riverside†

{miyeh,hchen,yufan,xidai,yazheng,viv.lai,junpenwa,zzhuang,liawang,wzhan}@visa.com

Abstract—Time series classification is a widely studied problem
in the field of time series data mining. Previous research has
predominantly focused on scenarios where relevant or foreground
subsequences have already been extracted, with each subsequence
corresponding to a single label. However, real-world time series
data often contain foreground subsequences that are intertwined
with background subsequences. Successfully classifying these
relevant subsequences requires not only distinguishing between
different classes but also accurately identifying the foreground
subsequences amidst the background. To address this challenge,
we propose a novel subsequence classification method that
represents each subsequence as an ego-network, providing crucial
nearest neighbor information to the model. The ego-networks
of all subsequences collectively form a time series subsequence
graph, and we introduce an algorithm to efficiently construct
this graph. Furthermore, we have demonstrated the significance
of enforcing temporal consistency in the prediction of adjacent
subsequences for the subsequence classification problem. To eval-
uate the effectiveness of our approach, we conducted experiments
using 128 univariate and 30 multivariate time series datasets.
The experimental results demonstrate the superior performance
of our method compared to alternative approaches. Specifically,
our method outperforms the baseline on 104 out of 158 datasets.

Index Terms—time series, graph, subsequence classification

I. INTRODUCTION

The time series classification problem is widely studied
in the data mining community, with numerous approaches
proposed to classify segmented time series into their respective
classes [1]. However, in many real-world scenarios, time series
can contain multiple relevant foreground classes mixed with
irrelevant background segments. For example, consider a time
series obtained by monitoring highway traffic, which predom-
inantly consists of regular traffic but occasionally includes
more interesting events such as baseball games, road works,
or car crashes. The traffic events caused by baseball games
are highlighted in Fig. 1.

baseball games

4/12 4/13 4/14 4/15 4/16 4/17 4/18 4/19 4/20 4/21 4/22 4/23 4/24 4/25

Fig. 1: The traffic time series data is from highway around
Dodger Stadium in Los Angeles, California [2].

One approach to address this problem is to build a classifier
that focuses on classifying subsequences into foreground or

background classes based on the training data. During testing,
the model continuously classifies incoming subsequences. As
we perform classification on subsequences, we refer to this
problem as the subsequence classification problem, which is
the main focus of this paper.

However, when applying conventional time series classifi-
cation models to this problem, we have observed cases where
even sophisticated neural network models are outperformed
by simple k-nearest neighbor classifiers using z-normalized
Euclidean distance. To address this challenge, we propose an
ego-network Transformer model that combines the strengths of
both approaches. The model learns representations of different
subsequences using neural network models and integrates them
with a Transformer model based on ego-networks extracted
from k-nearest neighbor graphs. Furthermore, constructing
k-nearest neighbor graphs can be computationally intensive
when considering every subsequence in the target time series.
To overcome this, we introduce an efficient k-nearest neighbor
graph algorithm for both training and test cases.

An additional benefit of our ego-network Transformer de-
sign is its improved efficiency over a naive subsequence-based
Transformer. A simple implementation of the Transformer
for time series subsequence would involve each subsequence
attending to every other subsequence in the time series.
However, this approach is inefficient in terms of both time and
space complexity. For instance, if there are n subsequences
in the time series, it would require O(n2) for training the
model and O(n) for inference. In contrast, our ego-network
Transformer model only attends to its k nearest neighbors
(k ≪ n), resulting in training and testing complexities of
O(k2) and O(k), respectively.

Another crucial aspect of subsequence classification is tem-
poral consistency. Due to the significant overlap between these
subsequences, it is essential to ensure that the predictions for
each subsequence are consistent and aligned with their tempo-
ral context. To leverage the benefits of temporal consistency,
we have developed a simple yet effective post-processing
technique. This technique involves comparing the predicted
labels of adjacent subsequences within their temporal context,
with the aim of reducing false positives and false negatives. By
incorporating this post-processing step, we are able to enhance
the overall performance of the classification method.

The contributions of this paper are:
• We propose an ego-network Transformer model that com-

ar
X

iv
:2

31
1.

02
56

1v
1

 [
cs

.L
G

]
 5

 N
ov

 2
02

3

bines the strengths of conventional time series classification
models and k-nearest neighbor classifiers. The model in-
tegrates representations learned by neural network models
with a Transformer model based on ego-networks extracted
from k-nearest neighbor graphs.

• We introduce an efficient algorithm for constructing k-
nearest neighbor graphs, alleviating the computational bur-
den associated with considering every subsequence in the
target time series.

• We develop a post-processing technique to enforce temporal
consistency in the predictions of adjacent subsequences.

• Through extensive experiments on 128 univariate time series
datasets and 30 multivariate time series datasets, we demon-
strate the superior performance of our proposed ego-network
Transformer model compared to baseline models.

• We conduct a case study to validate the importance of
the nearest neighbor graph in subsequence classification,
particularly in datasets with data scarcity issues.

II. BACKGROUND

In this section, we will begin by presenting the problem
statement for the subsequence classification task by highlight-
ing its distinctions from other types of time series classification
problems. Following that, we will conduct a review of related
works, exploring the existing approaches in the field.

A. Problem Statement

Extensive research has been conducted on various classifi-
cation problems involving time series [3–6]. One commonly
studied variant is known as time series classification [4, 5].
An example of such problem is shown in Fig. 2.

training

testing

walking running walking walking running

Q: walking or running?

Fig. 2: The time series classification problem.

During the training phase, a machine learning model is
trained using a set of training time series, along with their
corresponding ground truth labels. In this particular example,
the time series data consists of human activity recordings
obtained from accelerometers. Each time series is assigned
a label indicating whether the activity is classified as walking
or running. Once a test time series X is obtained, the model
predicts the most likely class label for X .

Another closely related time series problem is known as
semantic segmentation [6]. An example of a time series
semantic segmentation problem involving human activity time
series is depicted in Fig. 3.

Unlike the time series classification problem, in semantic
segmentation, we no longer have a dataset consisting of
multiple time series. Instead, we have a single training time
series Ttrain and a separate testing time series Ttest. The training
time series Ttrain can be segmented into multiple regimes,
and for the ground truth labels, we have the locations of the

training

testing

walking running

Q1: where are the boundaries?

Q2: for each regime, walking or running?

Fig. 3: The semantic segmentation problem.

boundaries between the regimes and the corresponding “class”
of each regime. During testing, the trained model needs to
perform two tasks: 1) identify the segmentation boundaries
and 2) classify each regime into the appropriate class.

Finally, the problem addressed in this paper is referred to
as the subsequence classification problem, and an example of
such a problem is illustrated in Fig. 4.

training

testing
Q: for each subsequence, walking, running or background?

walkingrunning runningwalking walking

Fig. 4: The subsequence classification problem.

Similar to semantic segmentation, the subsequence classi-
fication problem involves a single training time series Ttrain
and a separate testing time series Ttest. However, both Ttrain
and Ttest may contain background segments that are unrelated
to the classes of interest. In Fig. 4, the relevant subsequences
correspond to walking and running patterns, while the other
subsequences are considered as background segments (e.g.,
standing still). During testing, predictions are made at the
subsequence level, where the subsequences are generated
using a sliding window approach. The machine learning model
needs to determine whether a subsequence belongs to one of
the relevant classes (e.g., walking or running) or if it is a
background subsequence.

It is important to note that the example problems presented
in this section focus on univariate time series. However, each
of these problems can also be formulated and extended to
handle multivariate time series data.

B. Related Work

We focus our related works section on two topics: 1)
k-nearest neighbor subsequence graph and 2) time series
classification.

The notion of a k-nearest neighbor subsequence graph may
not have been explicitly explored in the time series data mining
community. However, a similar concept has been implicitly
adopted in the form of the Matrix Profile [7, 8]. The Matrix
Profile algorithm involves computing two meta time series for
a given time series T : the Matrix Profile and the Matrix Profile
Index. The Matrix Profile stores the distance (typically z-
normalized Euclidean distance) between each subsequence and
its nearest neighbor, while the Matrix Profile Index stores the
identity of the nearest neighbor. Together, these two meta time
series form a 1-nearest neighbor graph for all subsequences

in T . This 1-nearest neighbor subsequence graph has been
utilized in various time series data mining tasks, including
motif discovery, anomaly detection, and segmentation [9–13].

The initial Matrix Profile algorithms, such as STOMP [14],
have already demonstrated sufficient efficiency for large-scale
time series. However, subsequent research has made signifi-
cant progress in further reducing the computational time of
the Matrix Profile. Approaches such as utilizing specialized
hardware, approximation techniques, and improved anytime
convergence have been adopted to enhance its efficiency [15–
19]. Many of these techniques can be incorporated into our k-
nearest neighbor construction algorithm. Nevertheless, as the
first work in adopting the k-nearest neighbor graph for the
subsequence classification problem, our primary focus is to
demonstrate the benefits of using this graph in our proposed
approach. Therefore, we have chosen to extend a more basic
version of the Matrix Profile algorithm, such as STOMP [14],
to avoid the additional complexity associated with these more
advanced methods. Exploring the integration of these advanced
techniques into our algorithm is an avenue for future work.

Over the years, numerous time series classification meth-
ods have been proposed [1, 20]. Recent benchmark pa-
pers [1, 20] have identified methods such as HIVE-COTE [21],
ROCKET [22], and ResNet [23] to achieve state-of-the-art
performance in time series classification. In our work, we
have chosen to extend neural network-based methods, e.g.,
ResNet [23], due to their modular nature, which facilitates easy
modification and integration into our approach as backbone
models. The designs of our backbone time series representa-
tion learning models are inspired by various popular neural
network architectures for modeling sequential data [23–27],
as introduced in Section IV-B.

III. TIME SERIES SUBSEQUENCE GRAPH

The time series subsequence graph captures relationships
between subsequences of a given time series. Specifically, the
graph aims to capture nearest neighbor relationships between
subsequences based on similarity in shape. In Fig. 5, the time
series contains three pairs of embedded patterns: , , and

. By analyzing the most similar pairs of subsequences in
the 1-nearest neighbor graph, these highly preserved patterns
can be quickly identified.

nearest neighbor

nearest neighbornearest neighbor

Fig. 5: Users can identify highly preserved patterns using the
1-nearest neighbor graph.

One notable example of utilizing the time series sub-
sequence graph in time series data mining is the Matrix
Profile [8, 28]. It proves to be effective in accomplishing
various tasks, including motif discovery, anomaly detection,

and semantic segmentation, by leveraging the power of 1-
nearest neighbor subsequence graphs [8, 18, 28]. In this paper,
we capitalize on this versatile representation of subsequence
relationships to address the subsequence classification prob-
lem. The proposed method leverages ego-networks for each
subsequence extracted from the k-nearest neighbor subse-
quence graphs to enhance the performance of subsequence
classification models.

The problem of constructing the k-nearest neighbor subse-
quence graph can be naively solved by extracting all subse-
quences and computing the pairwise distances between them.
However, this approach would result in a time complexity
of O(n2m), where n is the length of the time series and
m is the subsequence length. To construct the k-nearest
neighbor subsequence graph more efficiently, we leverage an
extension of the STOMP algorithm [8, 14], originally designed
for computing the Matrix Profile. This extension is possible
because one interpretation of the Matrix Profile is that it
represents the 1-nearest neighbor graph for all subsequences
in the time series [7, 8]. In other words, we are expanding
the STOMP algorithm from a 1-nearest neighbor graph to a
k-nearest neighbor graph. The pseudo code for the extended
STOMP algorithm is presented in Algorithm 1.

Algorithm 1 k-Nearest Neighbor STOMP Algorithm
Input: time series T ∈ Rn, subsequence length m ∈ N, number of
neighbors k ∈ N
Output: k-nearest neighbor index I ∈ N(n−m+1)×k

1 function kNNSTOMP(T,m, k)
2 I← zero matrix with size (n−m+ 1)× k
3 for i ∈ [0, · · · , n−m+ 1] do
4 Q← T [i : i+m]
5 D ← GETDISTANCEPROFILE(Q,T)
6 D ← MASKINGWITHINF(D, i)
7 for j ∈ [0, · · · , k] do
8 I[i, j]←FINDMININDEX(D)
9 D ← MASKINGWITHINF(D, I[i, j])

10 return I

Algorithm 1 demonstrates the construction process of the
k-nearest neighbor graph for the training data. In the later
paragraph, we will discuss the necessary modifications to adapt
Algorithm 1 for the testing scenario. Algorithm 1 takes the
training time series T ∈ Rn, the subsequence length m ∈ N,
and the number of neighbors k ∈ N as input. The length of T
is denoted by n. The algorithm outputs a matrix that stores the
index of the k-nearest neighbor for each subsequence in T .

In line 2, we initialize a matrix I to store the indices of
the k-nearest neighbors. The number of subsequences in T is
n−m+1. The for loop from line 3 to line 10 iterates through
each subsequence to find its k-nearest neighbors. In line 4,
we extract the query subsequence Q. In line 5, we compute
the distance profile between Q and T . The distance profile
D ∈ Rn−m+1 stores the z-normalized Euclidean distance
between Q and each subsequence in T . For instance, D[i]
stores the distance between Q and T [i : i + m]. The naive
implementation of this step has a time complexity of O(nm).
However, utilizing the technique presented in [8, 14], the time
complexity can be reduced to O(n).

In line 6, an exclusion zone is applied to the distance profile
D to avoid trivial matches with the query subsequence Q. A
trivial match occurs when the nearest neighbor of Q in T is
Q itself [29]. This situation arises when Q is a subsequence
of T . By definition, if Q is the ith subsequence of T , D[i] is
zero, and the values around the ith position in D would be
very close to zero. To prevent these subsequences from being
considered as nearest neighbors, we replace the values around
the ith position in D with infinity. In our implementation, if
the input index to the MASKINGWITHINF() function is i, we
set D[i− m

2 : i+ m
2] to infinity.

From line 7 to line 9, the k neighbors of Q in T are iden-
tified using D. In line 8, the nearest neighbor is determined
by finding the index of the minimal value in D. In line 9, the
same MASKINGWITHINF() function is applied to prevent the
same nearest neighbor from being found in the next iteration.
The output is returned in line 10. The time complexity of the
algorithm is O(n2), as it involves computing n−m+1 distance
profiles, and the space complexity is O(kn) for storing the
output matrix I.

Table I presents the runtime of various k-nearest neighbor
graph construction algorithms for different input time series
lengths. The Naive algorithm refers to the brute force imple-
mentation, while STAMP-based is an extension of the STAMP
algorithm [7]. The algorithm adopted in this paper is referred
to as STOMP-based. Both the STAMP-based and STOMP-
based algorithms exhibit significantly improved efficiency
compared to the naive implementation, with the STOMP-based
algorithm being the most efficient among them.

TABLE I: Runtime of different graph construction algorithms
in seconds. The first row contains the length of input time
series.

runtime (↓) 500 1,000 1,500 2,000 2,500 3,000
Naive 16.24 89.02 208.22 386.49 612.32 907.03
STAMP-based 0.0653 0.2102 0.4278 0.7082 1.0878 1.5323
STOMP-based 0.0357 0.0921 0.1559 0.2356 0.3147 0.4393

In the testing scenario, we have two time series: the training
time series Ttrain ∈ Rntrain and the test time series Ttest ∈ Rntest .
Since the objective is to construct the ego-network for each
subsequence in Ttest with respect to the subsequences in Ttrain,
the output matrix I will have a size of (ntest−m+1)× k. To
accommodate this change, line 2 in Algorithm 1 needs to be
modified accordingly. In line 3, the range of i is adjusted to
[0, · · · , ntest−m+1]. Line 4 and line 5 are modified as Q←
Ttest[i : i + m] and D ← GETDISTANCEPROFILE(Q,Ttrain)
respectively. Since Q is not a subsequence of Ttrain, there is
no trivial match problem, and thus line 6 is removed. Lines 7
to 10 remain unchanged for the testing scenario. The modified
version of the algorithm has a time complexity of O(ntrainntest)
and a space complexity of O(MAX(ntrain, kntest)).

Although the SCAMP algorithm [17] offers the potential for
achieving even higher efficiency, we decided against adopting
it. The reason is that the algorithm constructs an approximated
k-nearest neighbor subsequence graph, and the impact of this

approximation on the final classification accuracy remains
unknown. While incorporating the SCAMP algorithm for
improved efficiency would be an intriguing extension to our
current system, we have left it for future exploration.

When working with multidimensional time series, we calcu-
late the z-normalized Euclidean distance using all dimensions.
Following a similar approach as in [30], for a given pair of
multidimensional subsequences, we compute the z-normalized
Euclidean distance between them for each dimension and
then aggregate the distances across different dimensions by
summing them. In essence, each dimension contributes equally
to the distance between the subsequences. It would be inter-
esting to investigate the concept of sub-dimensional nearest
neighbors, as presented in [30], as we anticipate that sub-
dimensional nearest neighbors would likely hold more mean-
ingful comparisons than all-dimensional nearest neighbors.
However, since the primary goal of this paper is to demonstrate
the efficacy of the k-nearest neighbor graph in addressing
the subsequence classification problem, we have deferred this
extension for future research.

IV. MODELS AND METHODOLOGY

In this section, we begin by introducing the proposed
method for classifying an input subsequence using ego-
network. Next, we present the backbone models utilized to ex-
tract representations from the input time series data. Then, we
describe the training and inference algorithm associated with
the proposed model. Lastly, we discuss a simple yet effective
post-processing technique designed to enhance the temporal
consistency in the prediction of adjacent subsequences.

A. Ego-Network Transformer Model

The proposed Transformer model is presented in Fig. 6. The
input to the model consists of a focal subsequence denoted
as Xfocal, along with its nearest neighbor subsequences from
the training time series X0, · · · , Xk−1, and the corresponding
labels of the neighbors y0, · · · , yk−1. Essentially, the inputs
consist of the subsequences associated with the ego-network
of the focal subsequence, where the ego-network is extracted
from the k-nearest neighbor subsequence graph. The initial
step involves extracting the intermediate representation of
each subsequence using one of the backbone models dis-
cussed in Section IV-B. These representations are denoted
as Hfocal, H0, H1, · · · , Hk−1, where Hfocal corresponds to the
representation of Xfocal, and H0, H1, · · · , Hk−1 correspond to
the representations of X0, X1, · · · , Xk−1, respectively.

Next, we incorporate the corresponding label for each
neighbor subsequence by adding a learnable label embedding
to its representation. Let Yi represent the label embedding
for yi, the label of the ith neighbor. The final subsequence
representation for the neighbor is computed as Ĥi ← Yi+Hi.
With the node representations of each subsequence prepared,
we concatenate them together to form a set that includes
all the node representations: [Hfocal, Ĥ0, · · · , Ĥk−1]. Subse-
quently, we employ two layers of Transformer blocks (refer
to Fig. 9) to aggregate information from each node in the set.

backbone
nin->128

TBlock,8
128->128

linear
128->nclass

…

…

…neighbor 0
subsequence

and label

neighbor k-1
subsequence

and label

focal
subsequence

output

128 x 1

128 x 1

128 x 1focal node
representation

neighbor k-1 node
representation

add label
embedding
backbone
nin->128

add label
embedding
backbone
nin->128

get focal
repr.

TBlock,8
128->128

focal

neighbor 0

neighbor 1

neighbor k-1

…

…

Fig. 6: The proposed ego-network Transformer subsequence
classification model.

After the Transformer blocks, we extract the representation
corresponding to the focal subsequence. Finally, a linear layer
is used to compute the logit for each class. We choose to use a
Transformer-based model design to capture the ego-network,
as opposed to other graph neural networks like GCN [31] or
GAT [32], because it has been shown in [33] that Transformers
are more effective compared to the alternatives.

The proposed method leverages the versatile and power-
ful k-nearest neighbor subsequence graph, as discussed in
Section III, for the subsequence classification problem. This
approach offers notable advantages over attending to all sub-
sequences in the training data. By focusing only on the top
k nearest neighbors, the method achieves improved efficiency.
This is particularly significant considering the space complex-
ity of the Transformer block, which grows quadratically with
the number of input items. For instance, if the training data
consists of one million subsequences, storing the attention
matrix alone would require over seven terabytes of memory.

B. Backbone Temporal Model

We have explored four different neural network architec-
tures as backbone models for extracting global representations
from time series data. A global representation captures the in-
formation from the entire input time series. The four backbone
models are:
• The Long Short-Term Memory Network (LSTM) is a

widely used type of Recurrent Neural Network (RNN) for
modeling sequential data [24, 27, 34]. In our work, we
adopt the design depicted in Fig. 7.a. The figure employs
specific notations to describe different layers. For instance,
1D conv,7/2,nin→64 represents a 1D convolutional
layer with a filter size of 7, a stride size of 2, an input
dimension of nin, and an output dimension of 64. Similarly,
bi-RNN,64→64 denotes a bidirectional RNN layer with
an input dimension of 64 and an output dimension of 64. In
our case, the two bi-RNN layers are implemented as bidi-
rectional LSTM layers. Additionally, linear,64→64

denotes a linear layer with an input dimension of 64 and
an output dimension of 64.

The input time series is first processed by the 1D convo-
lutional layer to extract local patterns. The decision to select
only the last time step is based on the understanding that
it encapsulates the information from the entire input time
series. However, it is worth noting that the first time step
could also be chosen since the RNN layers are bidirectional.
In the end, the output of the LSTM backbone model consists
of a size 128 vector for each input time series.

• The Gated Recurrent Unit Network (GRU) is another
popular type of RNN architecture for modeling sequential
data [25, 27, 34]. We employ an identical design to the
LSTM backbone model (see Fig. 7.a), with the only differ-
ence being that the two bi-RNN layers are implemented as
GRU layers instead of LSTM layers.

• The Residual Network (ResNet) is a time series classifica-
tion model inspired by the success of ResNet in computer
vision [23, 35]. Extensive evaluations reported in [36] have
demonstrated that ResNet is one of the most effective
models for time series classification. Our design, depicted
in Fig. 7.b, is based on the architecture proposed in [23]. In
our notation, RBlock,64→64 represents a residual block
(refer to Fig. 8) with an input dimension of 64 and an output
dimension of 64.

The length of the output sequence from the residual
blocks depends on the length of the input time series. When
the sequence length is greater than one, we employ a global
average pooling function to generate a global intermediate
representation of the input time series. The output of this
backbone model is a size 128 vector that represents each
input time series.

• The Transformer is a widely adopted alternative to RNNs
for sequence modeling [26, 27, 34, 37, 38]. In our work, we
adopt the architecture depicted in Fig. 7.c. Like the previ-
ously discussed backbone models, the initial layer comprises
a 1D convolutional layer designed to capture local patterns.
To incorporate positional information, we follow [26] and
apply fixed positional encoding. This encoding is added to
the output of the 1D convolutional layer. Furthermore, to
enable effective learning of global representations for the
input time series, we prepend a special token [start] to
the beginning of the sequence.

Next, the input sequence passes through four consecutive
Transformer blocks, denoted as TBlock,8,64→64 . In
this notation, the number 8 refers to the attention heads,
and the two 64 values represent the input and output di-
mensions, respectively. The design of the Transformer block
is shown in Fig. 9. From the output sequence generated
by the Transformer blocks, we extract the intermediate
representation associated with the [start] token. This
extracted representation serves as the global representation
of the input time series, capturing the essential information
from the entire sequence. This mechanism shares similarities
with the [CLS] token used in prior Transformer models like
BERT [39], highlighting its significance in capturing global

context. Finally, the output of this backbone model is a size
128 vector that represents each input time series.

linear
128->256

relu

relu

linear
256->128

output

x 4TBlock,8
64->64

linear
64->128

input

positional
encoding

get [start]
time step

1D conv,
7/2,nin->64

append
[start] token

linear
128->256

relu

relu

linear
256->128

output

linear
128->128

input

RBlock
64->64

RBlock
64->128

RBlock
128->128

global avg
pooling

1D conv,
7/2,nin->64

linear
128->256

relu

relu

linear
256->128

output

x 2

1D conv,
7/2,nin->64

bi-RNN,
64->64

linear
128->128
get last

time step

input

(c) Transformer(b) ResNet(a) RNN

Fig. 7: The designs of the backbone models are based on RNN,
ResNet, and Transformer. Please refer to Fig. 8 for details
about the RBlock and Fig. 9 for details about the TBlock .

The detailed design of the residual block can be found in
Fig. 8. This block consists of two passages: the main passage
and the skip connection passage. The main passage processes
the input sequence using three pairs of 1D convolutional-
ReLU layers. The convolutional layers have filter sizes of
seven, five, and three, sequentially, progressing from the input
to the output. On the other hand, the skip connection passage
may include an optional 1D convolutional layer with a filter
size of one. This convolutional layer is only introduced to
the skip connection when the input dimension and the output
dimension of the residual block differ. The output of the main
passage and the skip connection passage are combined through
element-wise addition to form the final output of the block.

RBlock
nin->nout

+

1D conv,
1/1,nin->nout

relu

relu
1D conv,

5/1,nout->nout

1D conv,
3/1,nout->nout

relu

1D conv,
7/1,nin->nout

input

output

input

output

Fig. 8: The designs of the residual block.

The design of the Transformer block is illustrated in Fig. 9,
showcasing its structure and components. The Transformer
block is composed of two stages: a multihead self-attention
stage and a feed-forward stage. In the first stage, a multihead
self-attention module is employed. This module allows the
Transformer block to capture dependencies between different
positions in the input sequence. The second stage involves

a position-wise feed-forward network. This network applies
two linear layers with a ReLU activation function to each
position of the sequence obtained from the multihead self-
attention module. This stage enables the Transformer block
to incorporate non-linear transformations and enhance the
representation of each position. Both stages incorporate skip
connections, ensuring that the input is added to the output at
each stage. This mechanism facilitates the flow of information
from the input to the output, enabling the model to retain
important information throughout the block. The Transformer
block is responsible for modeling complex dependencies and
enhancing the representation of the input sequence through
self-attention and position-wise transformations.

multihead
self-att.,
nhead,ndim

relu

linear
ndim->ndim

linear
ndim->ndim

+

input

output

+

TBlock,nhead
ndim->ndim

input

output

Fig. 9: The designs of the Transformer block.

We adopt layer normalization [40] for all normalization
layers in our model. Layer normalization has proven to be
effective and is commonly used with sequential data [26, 40].
By applying layer normalization, we can ensure stable and
consistent normalization across different layers.

C. Model Training and Inference

The training procedure for the proposed ego-network Trans-
former model is outlined in Algorithm 2. The algorithm takes
the following inputs: the training time series T , the ground
truth labels Y , the subsequence length m, and the number of
neighbors k.

Algorithm 2 Training Algorithm
Input: time series T ∈ Rn, ground truth label Y ∈ Nn, subsequence
length m ∈ N, number of neighbors k ∈ N
Output: ego-network Transformer model fθ

1 function TRAIN(T, Y,m, k)
2 G ← kNNSTOMP(T,m, k)
3 for each epoch do
4 nsample ← ⌈ n

m
⌉

5 Xsample, Ysample, Isample ← SAMPLESUB(T, Y, nsample)
6 for each iteration do
7 Xbatch, Ybatch, Ibatch ← GETBATCH(Xsample, Ysample, Isample)
8 Ineighbor ← GETNEIGHBORINDEX(G, Ibatch)
9 Xneighbor,Yneighbor ← GETNEIGHBOR(T, Y, Ineighbor)

10 fθ ← UPDATEθ(fθ,Xbatch, Ybatch,Xneighbor,Yneighbor)

11 return fθ

To begin, in line 2, Algorithm 1 is employed to construct
the k-nearest neighbor graph G. Next, in line 4, the number
of samples nsample is calculated. This value corresponds to the
minimal number of subsequences used for training in each
epoch and is determined based on the number of subsequences

required to cover the time series T . Using all subsequences
would lead to redundancy due to overlap between subse-
quences. In line 5, nsample subsequences are randomly sampled
from T without replacement. The sampling process yields the
sampled subsequences Xsample, their associated ground truth
labels Ysample, and the indices of the subsequences Isample.
This random sampling approach enables the model to train on
different shifts of essentially the same subsequences, thereby
enhancing its robustness.

In line 7, the mini-batch for the iteration is prepared, con-
sisting of the subsequence Xbatch, the corresponding ground
truth labels Ybatch, and the indices Ibatch. In line 8, by utilizing
the k-nearest neighbor graph G and the indices Ibatch, we obtain
the indices of the k-neighbors, denoted as Ineighbor, for each
sample in the mini-batch. It is important to note that Ineighbor
is a matrix of size nbatch × k, where Ineighbor[i, j] contains the
index of the jth neighbor for the ith sample in the mini-batch.
In line 9, we extract the subsequences and labels for each
neighbor based on the indices in Ineighbor. Line 10 involves
updating the parameters θ of the ego-network Transformer
model fθ. Finally, in line 11, the trained model fθ is returned
as the output of the algorithm.

The inference procedure for the proposed Transformer
model is presented in Algorithm 3. The algorithm accepts the
following inputs: the test time series Ttest, the training time
series Ttrain, the training labels Ytrain, the subsequence length
m, and the number of neighbors k.

Algorithm 3 Inference Algorithm
Input: test time series Ttest ∈ Rntest , training time series Ttrain ∈ Rntrain ,
training label Ytrain ∈ Nn, subsequence length m ∈ N, number of
neighbors k ∈ N
Output: predicted label Ŷtest

1 function INFERENCE(Ttest, Ttrain, Ytrain,m, k)
2 G ← kNNSTOMP(Ttest, Ttrain,m, k)
3 for each Xi, i← GETSUB(Ttest,m) do
4 Ineighbor ← GETNEIGHBORINDEX(G, i)
5 Xneighbor, Yneighbor ← GETNEIGHBOR(T, Y, Ineighbor)

6 Ŷtest[i]← fθ(Xi,Xneighbor, Yneighbor)

7 return Ŷtest

Similar to Algorithm 2, Algorithm 3 also constructs the k-
nearest neighbor graph G in line 2, but with the difference
that it finds the k-nearest neighbors from Ttrain for each
subsequence in Ttest. From line 3 to line 6, the algorithm
predicts the label for each subsequence Xi ∈ Ttest, where i
denotes the index associated with Xi. In line 4, the index of
the neighbors for the subsequence Xi is extracted from G.
In line 5, the subsequence and label for each neighbor are
extracted from Ttrain and Ytrain. In line 6, the label for Xi is
predicted and stored in Ŷtest[i]. The predicted labels Ŷtest are
returned in line 7.

It’s worth noting that although we introduced both Algo-
rithm 2 and Algorithm 3 with univariate time series, both
algorithms can also handle multivariate time series.

D. Temporal Consistency Post-processing
To ensure temporal consistency, we employ a sliding win-

dow technique to smooth the predicted label series. This post-

processing method is both simple and effective. By following
these steps, we obtain the smoothed label vector Yafter from
the input label vector Ybefore and a sliding window length m:
1) Starting from the left and progressing towards the right, we

identify the next onset for the relevant classes (i.e., non-
background classes) in Ybefore.

2) If an onset is found at index ionset, we determine the
majority class within Ybefore[ionset : ionset +m].

3) If the majority class identified in the previous step is
denoted as c, we assign c to Yafter[ionset : ionset +m].

4) Repeat steps 1–3 until reaching the end.
Fig. 10 provides a visual example illustrating the post-

processing method with m = 3. In this example, three onsets
(onset 0, onset 1, and onset 2) are detected, and there
are three classes (class 0 which represents the background,
class 1, and class 2). For onset 0, the majority class
within the window is class 1, so we set the corresponding
values in Yafter to class 1. Similarly, for onset 1 and
onset 2, we assign the corresponding values in Yafter as
class 2 and class 0, respectively. This post-processing
method improves the temporal consistency of the predicted
labels. In the given example, the likely erroneous classification
of class 1 at onset 2 is corrected. Please note that in our
experiments, we determine the length of the sliding window
using a validation dataset.

onset 0 onset 1 onset 2

onset 1: 2, 2, 0, -> 2, 2, 2,
onset 0: 1, 1, 0, -> 1, 1, 1,

onset 2: 1, 0, 0, -> 0, 0, 0,

[…, 0, 1, 1, 0, 2, 2, 0, 0, 0, 1, 0, 0, …]Ybefore

[…, 0, 1, 1, 1, 2, 2, 2, 0, 0, 0, 0, 0, …]Yafter

locate the onsets and set
all values within the window
to the majority class.

Fig. 10: The post-processing method enhances the temporal
consistency. The size of the sliding window is three.

V. EXPERIMENT

In this section, we present the results on 128 univariate and
30 multivariate time series datasets. We begin by discussing
the dataset preprocessing steps employed in our experiments.
Next, we describe the performance metrics used to evaluate
the models. We then introduce the baseline methods that we
compare against. When presenting the experimental results,
we first assess the effectiveness of the temporal consistency
post-processing step. Next, we demonstrate how the utilization
of ego-networks enhances the overall performance. Finally,
we illustrate the reasons for the superior performance of our
proposed method compared to the baseline approaches. Please
refer to [41] for detailed results and access to the source code.

A. Dataset

The 128 univariate datasets are from the UCR Archive [5],
while the 30 multivariate time series datasets are from the UEA
Archive [4]. Originally designed for time series classification

(as depicted in Fig. 2), we have adapted these datasets to
suit our problem setting (as shown in Fig. 4) by applying the
following pre-processing steps:
1) Splitting all instances in the dataset into training, valida-

tion, and test sets with a ratio of 6:2:2. Each instance is
considered as a foreground segment.

2) Generating the background segment for each foreground
segment using a random walk generator, with its length be-
ing twice that of each foreground segment. For multivariate
time series, the background segment is also multivariate.

3) Splitting the background segment into two parts at a ran-
dom position and concatenating each part to the beginning
and end of the foreground segment. When connecting the
foreground segments with the background segments, we
carefully adjust the offset to avoid any noticeable step-
shape artifacts around the connection points.

4) Connecting all the expanded instances within each set (i.e.,
training, validation, and test sets) into continuous time
series. Again, we adjust the offset of each instance to
prevent the occurrence of step-shape artifacts.

5) Creating the ground truth labels for each time series by
assigning a class label to a subsequence when 60% or more
of the subsequence consists of the foreground segment from
that particular class.

Fig. 11 illustrates the first 1,700 training time series samples
from the Crop dataset in UCR Archive. In Fig. 11.top, the
foreground segments are not highlighted, making it challeng-
ing to visually distinguish them from the background. This
demonstrates the difficulty of the subsequence classification
task in the presence of background segments.

foreground segments highlighted

Fig. 11: The first 1,700 samples from the training time
series for the Crop dataset from UCR Archive. Without the
highlighting, it is not easy to identify the foreground segments
from the background.

B. Performance Measure

Because detecting the onset of an event (i.e., when a
foreground segment has just occurred) is more important, we
use the onset-based F1-score to measure performance. The
difference from the traditional F1-score lies in how precision
and recall are calculated. To calculate precision and recall, we
first identify all the onsets (i.e., the beginning of a foreground
class) in the predicted label Ŷtest and the ground truth label
Ytest. For each onset in Ŷtest, we check if the onset location
contains a “correct” prediction or not. If the total number of
onsets in Ŷtest is denoted as ntotal and the number of correctly
predicted onsets as ncorrect, the precision is computed as ncorrect

ntotal
.

We define a correct prediction as follows: Given an onset
location i in Ŷtest, if there exists a location j in Ytest such that
Ŷtest[i] = Ytest[j] and |i − j| < 0.1m, where m is the length

of the median foreground segment. To compute the recall, we
repeat the above steps by swapping the roles of Ŷtest and Ytest.

The experiments were conducted on multiple datasets, and
in order to compare the overall performance of each method,
it is necessary to summarize the performances across these
datasets. For each compared method, we determined its rank-
ing based on the F1-score achieved on each individual dataset.
By averaging these rankings, we obtained the overall ranking
for each method, which we report in this paper. Please note
that due to space limitations, we only present the summarized
results. For readers interested in the complete results, we refer
them to [41].

C. Baseline Methods

There are two sets of baselines that we compared in this
experiment. The first set of methods consists of k-nearest
neighbor classifiers with different values of k. Specifically,
we have the one-nearest neighbor (1NN), five-nearest neighbor
(5NN), ten-nearest neighbor (10NN), and k-nearest neighbor
where k is determined using each dataset’s validation set. We
use z-normalized Euclidean distance with the k-nearest neigh-
bor classifiers. The second set of baseline methods are neural
network-based methods, where we add a classification layer
on top of each backbone model (i.e., LSTM, GRU, ResNet,
and Transformer). These baselines are used to highlight the
benefits of the proposed ego-network Transformer model.

D. Experiment Result

The experimental results for UCR Archive and UEA
Archive are presented in Table II and Table III, respectively.
In each table, the first four rows contain the performance of
the k-nearest neighbor methods, with and without the post-
processing technique. Rows five to eight display the perfor-
mance of the neural network-based methods. These include
the baseline neural network methods with various backbone
models, with and without the post-processing technique, as
well as the ego-network Transformer with different backbone
models, also with and without the post-processing technique.
For the ego-network Transformer results, we provide the
performance for both the five-nearest neighbor graph and the
ten-nearest neighbor graph. The best method is highlighted in
bold, while the second best is underlined in the tables.

TABLE II: Experiment results1 from UCR Archive.

Avg. rank (↓)
Not post-processed Post-processed

Baseline Ego-Network Baseline Ego-Network
5NN 10NN 5NN 10NN

1NN 28.54 - - 17.43 - -
5NN 26.36 - - 18.79 - -
10NN 27.29 - - 21.10 - -
kNN 26.77 - - 17.74 - -
LSTM 26.66 20.80 21.03 23.32 13.25 13.54
GRU 21.85 20.21 19.77 18.00 12.47 13.02
ResNet 8.31 8.88 9.01 7.00 5.79 5.95
Transformer 16.63 15.08 14.46 12.38 8.21 8.36

TABLE III: Experiment results1 from UEA Archive.

Avg. rank (↓)
Not post-processed Post-processed

Baseline Ego-Network Baseline Ego-Network
5NN 10NN 5NN 10NN

1NN 26.67 - - 22.08 - -
5NN 26.03 - - 21.97 - -
10NN 25.43 - - 22.03 - -
kNN 25.50 - - 21.67 - -
LSTM 21.37 18.88 19.18 17.10 12.82 13.20
GRU 21.15 19.90 19.83 16.67 14.57 13.58
ResNet 12.17 9.02 11.10 9.98 8.85 8.50
Transformer 15.67 14.07 12.87 10.47 8.72 6.97

First, we compare the performance of each method with
and without the post-processing technique. It is evident that
the post-processing technique enhances the performance of all
methods. This implies that the post-processing technique is a
simple yet effective method for improving the performance of
most subsequence classification systems.

Next, let us compare the baseline k-nearest neighbor meth-
ods with the baseline neural network methods. In the UCR
Archive (i.e., Table II), LSTM and GRU exhibit similar perfor-
mance to the k-nearest neighbor baselines, while ResNet and
Transformer outperform the k-nearest neighbor baselines. In
the UEA Archive (i.e., Table III), all neural network methods
surpass the performance of the k-nearest neighbor baselines.
One possible explanation for this observation is that the UEA
Archive comprises multivariate time series data. Even with less
effective architectures (such as LSTM and GRU), the neural
network methods still have an advantage due to their ability
to learn the relative importance of different dimensions.

Lastly, we compare the ego-network Transformer methods
with their baseline counterparts. The ego-network Transformer
consistently improves performance in almost all cases, whether
it utilizes a five-nearest neighbor graph or a ten-nearest neigh-
bor graph. The only exception is when ResNet is used as the
backbone model without the post-processing step in the UCR
Archive (see Table II, row seven, first three columns). Never-
theless, the best performing method in both tables utilizes the
proposed ego-network Transformer (with either the ResNet or
Transformer backbones) along with the post-processing step.

E. Case study: Traffic Time Series

To gain insights into the performance improvement brought
by the proposed ego-network Transformer model in subse-
quence classification, we conducted a detailed analysis using
the Dodgers Loop Sensor dataset [2]. This dataset consists
of time series data generated by monitoring highway traffic
near the Dodgers Stadium, and the task is to detect whether a
baseball game is being hosted at the stadium or not. It is worth
noting that this is a challenging dataset since the Dodgers
Stadium also hosts other events like concerts [42], which may
result in a similar amount of traffic around the stadium (i.e.,
false positives).

1This table contains 32 methods, each of them will receive a ranking score
between 1-32 for a single dataset. We average the ranking scores for each
method across all datasets and use this average ranking score to evaluate them.
The smaller this average score is, the better performance the corresponding
method has.

The length of the time series is 50,400, and we split it into
training, validation, and test sets with a ratio of 6:2:2. After the
split, there are 46 games in the training time series, 18 games
in the validation time series, and 17 games in the test time
series. We utilize the onset-based F1-score as the performance
metric, and we always apply the post-processing technique
to ensure temporal consistency. The experiment results are
presented in Table IV, where the best performance is indicated
in bold and the second best performance is underlined.

TABLE IV: Utilizing ego-networks improves performance.

F1-score (↑) 1NN 2NN 3NN LSTM GRU ResNet Transformer
Baseline 0.15 0.15 0.00 0.00 0.00 0.00 0.18
Ego-Network - - - 0.32 0.29 0.20 0.37

First, we focus on the performance of the k-nearest neighbor
method with different values of k. We observe that the perfor-
mance for k = 1 and k = 2 is identical (i.e., 0.15), while set-
ting k = 3 reduces the F1-score to zero. This finding indicates
that the top two nearest neighbors play a more important role
in determining the class of each test subsequence. Next, we
examine the performance of different baseline backbone neural
network methods, which mostly exhibit poor performance with
zero F1-score. The only exception is the Transformer baseline,
which outperforms the k-nearest neighbor classifier slightly.
We suspect that their poor performance is due to the limited
number of training examples for the positive class. However,
when we combine each backbone model with the proposed
ego-network Transformer, their performance improves dra-
matically. The incorporation of nearest neighbor information
mitigates the data scarcity issue associated with this dataset
and has the potential to be extended to other types of data.

The overall best model for this dataset is the combina-
tion of the ego-network Transformer with the Transformer
backbone model. Therefore, we further investigate the relative
importance of each nearest neighbor in the ego-network. To
conduct this study, we evaluate the model after removing
the ith nearest neighbor. Removing the first nearest neighbor
results in a 72% reduction in performance, yielding an F1-
score of 0.10. Removing the second nearest neighbor reduces
the performance by 49% to an F1-score of 0.19. Finally,
removing the third nearest neighbor leads to a 32% perfor-
mance reduction, with an F1-score of 0.25. These results
further confirm our assumption regarding the importance of
the nearest neighbor graph when working with subsequences.
Notably, these observations align with previous works in the
Matrix Profile literature [8, 28, 43].

VI. CONCLUSION

In this paper, we present a novel ego-network Transformer
model specifically designed to tackle the subsequence clas-
sification problem. Through extensive experiments on 128
univariate and 30 multivariate time series datasets, we demon-
strate the superior performance of our proposed model com-
pared to the baselines. Furthermore, our in-depth analysis
of the proposed method reveals its remarkable effectiveness

in addressing data scarcity issues commonly encountered in
subsequence classification tasks. This finding underscores the
model’s ability to leverage the nearest neighbor graph and
overcome limited training examples for foreground classes.
Overall, our study not only showcases the superior perfor-
mance of the ego-network Transformer model but also pro-
vides empirical evidence supporting the significance of the
nearest neighbor graph in subsequence analysis. For future
work, we could consider adopting the novel ResNet2D de-
sign [44–46], pretraining methods [47, 48], tackling scalability
issues [49, 50], or addressing data privacy issues [51] for
subsequence classification.

REFERENCES

[1] A. P. Ruiz, M. Flynn, J. Large, M. Middlehurst, and A. Bagnall,
“The great multivariate time series classification bake off: a review and
experimental evaluation of recent algorithmic advances,” Data Mining
and Knowledge Discovery, vol. 35, no. 2, pp. 401–449, 2021.

[2] A. Ihler, J. Hutchins, and P. Smyth, “Adaptive event detection with time-
varying poisson processes,” in Proceedings of the 12th ACM SIGKDD
international conference on Knowledge discovery and data mining,
2006, pp. 207–216.

[3] A. Abdoli, A. C. Murillo, C.-C. M. Yeh, A. C. Gerry, and E. J. Keogh,
“Time series classification to improve poultry welfare,” in 2018 17TH
IEEE International conference on machine learning and applications
(ICMLA). IEEE, 2018, pp. 635–642.

[4] A. Bagnall, H. A. Dau, J. Lines, M. Flynn, J. Large, A. Bostrom,
P. Southam, and E. Keogh, “The UEA multivariate time series clas-
sification archive, 2018,” arXiv preprint arXiv:1811.00075, 2018.

[5] H. A. Dau, A. Bagnall, K. Kamgar, C.-C. M. Yeh, Y. Zhu, S. Gharghabi,
C. A. Ratanamahatana, and E. Keogh, “The UCR time series archive,”
IEEE/CAA Journal of Automatica Sinica, vol. 6, no. 6, pp. 1293–1305,
2019.

[6] J.-H. Li, L. Tian, H. Wang, Y. An, K. Wang, and L. Yu, “Segmenta-
tion and recognition of basic and transitional activities for continuous
physical human activity,” IEEE access, vol. 7, pp. 42 565–42 576, 2019.

[7] C.-C. M. Yeh, Y. Zhu, L. Ulanova, N. Begum, Y. Ding, H. A. Dau, D. F.
Silva, A. Mueen, and E. Keogh, “Matrix Profile I: all pairs similarity
joins for time series: a unifying view that includes motifs, discords and
shapelets,” in 2016 IEEE 16th international conference on data mining
(ICDM). IEEE, 2016, pp. 1317–1322.

[8] C.-C. M. Yeh, Y. Zhu, L. Ulanova, N. Begum, Y. Ding, H. A. Dau,
Z. Zimmerman, D. F. Silva, A. Mueen, and E. Keogh, “Time series
joins, motifs, discords and shapelets: a unifying view that exploits the
matrix profile,” Data Mining and Knowledge Discovery, vol. 32, pp.
83–123, 2018.

[9] A. Athira, D. Dondorp, J. Rudolf, O. Peytral, and M. Chatzigeorgiou,
“Comprehensive analysis of locomotion dynamics in the protochordate
ciona intestinalis reveals how neuromodulators flexibly shape its behav-
ioral repertoire,” PLoS Biology, vol. 20, no. 8, p. e3001744, 2022.

[10] S. D. Anton, L. Ahrens, D. Fraunholz, and H. D. Schotten, “Time is
of the essence: Machine learning-based intrusion detection in industrial
time series data,” in 2018 IEEE International Conference on Data
Mining Workshops (ICDMW). IEEE, 2018, pp. 1–6.

[11] T. Kieu, B. Yang, C. Guo, and C. S. Jensen, “Outlier detection for time
series with recurrent autoencoder ensembles.” in IJCAI, 2019, pp. 2725–
2732.

[12] S. Gharghabi, Y. Ding, C.-C. M. Yeh, K. Kamgar, L. Ulanova, and
E. Keogh, “Matrix profile viii: domain agnostic online semantic segmen-
tation at superhuman performance levels,” in 2017 IEEE international
conference on data mining (ICDM). IEEE, 2017, pp. 117–126.

[13] A. Ermshaus, P. Schäfer, and U. Leser, “ClaSP: parameter-free time
series segmentation,” Data Mining and Knowledge Discovery, vol. 37,
no. 3, pp. 1262–1300, 2023.

[14] Y. Zhu, Z. Zimmerman, N. S. Senobari, C.-C. M. Yeh, G. Funning,
A. Mueen, P. Brisk, and E. Keogh, “Matrix Profile II: Exploiting a novel
algorithm and gpus to break the one hundred million barrier for time
series motifs and joins,” in 2016 IEEE 16th international conference on
data mining (ICDM). IEEE, 2016, pp. 739–748.

[15] I. Fernandez, R. Quislant, S. Gonzalez-Navarro, E. Gutierrez, and
O. Plata, “TraTSA: A transprecision framework for efficient time series
analysis,” Journal of Computational Science, vol. 63, p. 101784, 2022.

[16] I. Fernandez, R. Quislant, E. Gutiérrez, O. Plata, C. Giannoula, M. Alser,
J. Gómez-Luna, and O. Mutlu, “NATSA: a near-data processing ac-
celerator for time series analysis,” in 2020 IEEE 38th International
Conference on Computer Design (ICCD). IEEE, 2020, pp. 120–129.

[17] Z. Zimmerman, K. Kamgar, N. S. Senobari, B. Crites, G. Funning,
P. Brisk, and E. Keogh, “Matrix profile XIV: scaling time series motif
discovery with gpus to break a quintillion pairwise comparisons a
day and beyond,” in Proceedings of the ACM Symposium on Cloud
Computing, 2019, pp. 74–86.

[18] C.-C. M. Yeh, Y. Zheng, J. Wang, H. Chen, Z. Zhuang, W. Zhang, and
E. Keogh, “Error-bounded approximate time series joins using compact
dictionary representations of time series,” in Proceedings of the 2022
SIAM International Conference on Data Mining (SDM). SIAM, 2022,
pp. 181–189.

[19] Y. Zhu, C.-C. M. Yeh, Z. Zimmerman, K. Kamgar, and E. Keogh,
“Matrix profile XI: SCRIMP++: time series motif discovery at inter-
active speeds,” in 2018 IEEE International Conference on Data Mining
(ICDM). IEEE, 2018, pp. 837–846.

[20] A. Bagnall, J. Lines, A. Bostrom, J. Large, and E. Keogh, “The great
time series classification bake off: a review and experimental evaluation
of recent algorithmic advances,” Data mining and knowledge discovery,
vol. 31, pp. 606–660, 2017.

[21] M. Middlehurst, J. Large, M. Flynn, J. Lines, A. Bostrom, and
A. Bagnall, “HIVE-COTE 2.0: a new meta ensemble for time series
classification,” Machine Learning, vol. 110, no. 11-12, pp. 3211–3243,
2021.

[22] A. Dempster, F. Petitjean, and G. I. Webb, “ROCKET: exceptionally
fast and accurate time series classification using random convolutional
kernels,” Data Mining and Knowledge Discovery, vol. 34, no. 5, pp.
1454–1495, 2020.

[23] Z. Wang, W. Yan, and T. Oates, “Time series classification from scratch
with deep neural networks: A strong baseline,” in 2017 International
joint conference on neural networks (IJCNN). IEEE, 2017, pp. 1578–
1585.

[24] S. Hochreiter and J. Schmidhuber, “Long short-term memory,” Neural
computation, vol. 9, no. 8, pp. 1735–1780, 1997.

[25] K. Cho, B. Van Merriënboer, D. Bahdanau, and Y. Bengio, “On the
properties of neural machine translation: Encoder-decoder approaches,”
arXiv preprint arXiv:1409.1259, 2014.

[26] A. Vaswani, N. Shazeer, N. Parmar, J. Uszkoreit, L. Jones, A. N. Gomez,
Ł. Kaiser, and I. Polosukhin, “Attention is all you need,” Advances in
neural information processing systems, vol. 30, 2017.

[27] H. Zhou, S. Zhang, J. Peng, S. Zhang, J. Li, H. Xiong, and W. Zhang,
“Informer: Beyond efficient transformer for long sequence time-series
forecasting,” in Proceedings of the AAAI Conference on Artificial
Intelligence, vol. 35, no. 12, 2021, pp. 11 106–11 115.

[28] Y. Zhu, S. Gharghabi, D. F. Silva, H. A. Dau, C.-C. M. Yeh, N. Shak-
ibay Senobari, A. Almaslukh, K. Kamgar, Z. Zimmerman, G. Funning
et al., “The swiss army knife of time series data mining: ten useful
things you can do with the matrix profile and ten lines of code,” Data
Mining and Knowledge Discovery, vol. 34, pp. 949–979, 2020.

[29] A. Mueen, E. Keogh, Q. Zhu, S. Cash, and B. Westover, “Exact
discovery of time series motifs,” in Proceedings of the 2009 SIAM
international conference on data mining. SIAM, 2009, pp. 473–484.

[30] C.-C. M. Yeh, N. Kavantzas, and E. Keogh, “Matrix Profile VI: Mean-
ingful multidimensional motif discovery,” in 2017 IEEE international
conference on data mining (ICDM). IEEE, 2017, pp. 565–574.

[31] T. N. Kipf and M. Welling, “Semi-supervised classification with graph
convolutional networks,” arXiv preprint arXiv:1609.02907, 2016.

[32] P. Veličković, G. Cucurull, A. Casanova, A. Romero, P. Lio, and Y. Ben-
gio, “Graph attention networks,” arXiv preprint arXiv:1710.10903, 2017.

[33] C. Ying, T. Cai, S. Luo, S. Zheng, G. Ke, D. He, Y. Shen, and T.-Y. Liu,
“Do transformers really perform badly for graph representation?” Ad-
vances in Neural Information Processing Systems, vol. 34, pp. 28 877–
28 888, 2021.

[34] B. Lim and S. Zohren, “Time-series forecasting with deep learning: a
survey,” Philosophical Transactions of the Royal Society A, vol. 379,
no. 2194, p. 20200209, 2021.

[35] K. He, X. Zhang, S. Ren, and J. Sun, “Deep residual learning for image
recognition,” in Proceedings of the IEEE conference on computer vision
and pattern recognition, 2016, pp. 770–778.

[36] H. Ismail Fawaz, G. Forestier, J. Weber, L. Idoumghar, and P.-A. Muller,
“Deep learning for time series classification: a review,” Data mining and
knowledge discovery, vol. 33, no. 4, pp. 917–963, 2019.

[37] S. Li, X. Jin, Y. Xuan, X. Zhou, W. Chen, Y.-X. Wang, and X. Yan, “En-
hancing the locality and breaking the memory bottleneck of transformer
on time series forecasting,” Advances in neural information processing
systems, vol. 32, 2019.

[38] H. Chen, Y. Lin, M. Pan, L. Wang, C.-C. M. Yeh, X. Li, Y. Zheng,
F. Wang, and H. Yang, “Denoising self-attentive sequential recommen-
dation,” in Proceedings of the 16th ACM Conference on Recommender
Systems, 2022, pp. 92–101.

[39] J. Devlin, M.-W. Chang, K. Lee, and K. Toutanova, “Bert: Pre-training
of deep bidirectional transformers for language understanding,” arXiv
preprint arXiv:1810.04805, 2018.

[40] J. L. Ba, J. R. Kiros, and G. E. Hinton, “Layer normalization,” arXiv
preprint arXiv:1607.06450, 2016.

[41] The Author(s), “Supplementary materials,” 2023, https://sites.google.
com/view/subseq-egonet.

[42] Wikipedia contributors, “Dodger stadium — Wikipedia, the free ency-
clopedia,” https://en.wikipedia.org/w/index.php?title=Dodger Stadium&
oldid=1161454235, 2023, [Online; accessed 22-June-2023].

[43] C.-C. M. Yeh, Towards a near universal time series data mining tool:
Introducing the matrix profile. University of California, Riverside, 2018.

[44] C.-C. M. Yeh, H. Chen, X. Dai, Y. Zheng, J. Wang, V. Lai, Y. Fan,
A. Der, Z. Zhuang, L. Wang et al., “An efficient content-based time
series retrieval system,” in Proceedings of the 32nd ACM International
Conference on Information and Knowledge Management, 2023, pp.
4909–4915.

[45] C.-C. M. Yeh, H. Chen, X. Dai, Y. Zheng, Y. Fan, V. Lai, J. Wang,
A. Der, Z. Zhuang, L. Wang, and W. Zhang, “Temporal treasure hunt:
Content-based time series retrieval system for discovering insights,” in
2023 IEEE International Conference on Big Data (Big Data). IEEE,
2023.

[46] C.-C. M. Yeh, X. Dai, Y. Zheng, J. Wang, H. Chen, Y. Fan, A. Der,
Z. Zhuang, L. Wang, and W. Zhang, “Multitask learning for time series
data with 2d convolution,” arXiv preprint arXiv:2310.03925, 2023.

[47] Q. Ma, Z. Liu, Z. Zheng, Z. Huang, S. Zhu, Z. Yu, and J. T.
Kwok, “A survey on time-series pre-trained models,” arXiv preprint
arXiv:2305.10716, 2023.

[48] C.-C. M. Yeh, X. Dai, H. Chen, Y. Zheng, Y. Fan, A. Der, V. Lai,
Z. Zhuang, J. Wang, L. Wang et al., “Toward a foundation model for time
series data,” in Proceedings of the 32nd ACM International Conference
on Information and Knowledge Management, 2023, pp. 4400–4404.

[49] C.-C. M. Yeh, M. Gu, Y. Zheng, H. Chen, J. Ebrahimi, Z. Zhuang,
J. Wang, L. Wang, and W. Zhang, “Embedding compression with
hashing for efficient representation learning in large-scale graph,” in
Proceedings of the 28th ACM SIGKDD Conference on Knowledge
Discovery and Data Mining, 2022, pp. 4391–4401.

[50] C.-C. M. Yeh, Y. Zheng, M. Pan, H. Chen, Z. Zhuang, J. Wang, L. Wang,
W. Zhang, J. M. Phillips, and E. Keogh, “Sketching multidimensional
time series for fast discord mining,” in 2023 IEEE International Con-
ference on Big Data (Big Data). IEEE, 2023.

[51] A. Der, C.-C. M. Yeh, Y. Zheng, J. Wang, H. Chen, Z. Zhuang, L. Wang,
W. Zhang, and E. Keogh, “Time series synthesis using the matrix profile
for anonymization,” in 2023 IEEE International Conference on Big Data
(Big Data). IEEE, 2023.

https://sites.google.com/view/subseq-egonet
https://sites.google.com/view/subseq-egonet
https://en.wikipedia.org/w/index.php?title=Dodger_Stadium&oldid=1161454235
https://en.wikipedia.org/w/index.php?title=Dodger_Stadium&oldid=1161454235

	Introduction
	Background
	Problem Statement
	Related Work

	Time Series Subsequence Graph
	Models and Methodology
	Ego-Network Transformer Model
	Backbone Temporal Model
	Model Training and Inference
	Temporal Consistency Post-processing

	Experiment
	Dataset
	Performance Measure
	Baseline Methods
	Experiment Result
	Case study: Traffic Time Series

	Conclusion
	References

