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Abstract—Time series discords are a useful primitive for time
series anomaly detection, and the matrix profile is capable of
capturing discord effectively. There exist many research efforts
to improve the scalability of discord discovery with respect to
the length of time series. However, there is surprisingly little
work focused on reducing the time complexity of matrix profile
computation associated with dimensionality of a multidimensional
time series. In this work, we propose a sketch for discord
mining among multi-dimensional time series. After an initial
pre-processing of the sketch as fast as reading the data, the
discord mining has runtime independent of the dimensionality
of the original data. On several real world examples from water
treatment and transportation, the proposed algorithm improves
the throughput by at least an order of magnitude (50X) and only
has minimal impact on the quality of the approximated solution.
Additionally, the proposed method can handle the dynamic
addition or deletion of dimensions inconsequential overhead. This
allows a data analyst to consider “what-if” scenarios in real time
while exploring the data.

Index Terms—multidimensional time series, discord mining,
similarity join

I. INTRODUCTION

Time series discords are a simple, effective, and robust prim-
itive for detecting anomalies in time series data [1–3]. While
there have been dozens of algorithms proposed to compute
discords in the last twenty years, in recent years the matrix
profile (MP) has emerged as the most effective and versatile
computation tool for discovering discords [4, 5]. There have
been numerous efforts on improving the scalability of the MP.
For example, Zimmerman et al. [6] improve the computational
speed by exploiting hardware, Zhu et al. [7] introduced an
anytime algorithm with a fast convergence rate, and efficient
approximation of the MP is proposed in [8]. However, all these
ideas only consider univariate time series. In other words, these
works focus on reducing the time complexity with respect to
the length of the input time series, while the runtime cost
that is associated with dimensionality of multidimensional time
series is unchecked. The word “dimensionality” is used incon-
sistently in the time series literature. To be clear, in this work
dimensionality means the number of individual and concurrent
streams, for example, a three-dimensional medical time series
might contain {ECG|respiration|temperature}.

The ability to scale with respect to dimensionality is crucial
in many domains. For instance, there are hundreds of millions
of merchants in modern-day financial transaction networks.
If a regulatory agency wants to monitor the activity of each

merchant for detecting suspicious behavior in real-time, it will
need to maintain hundreds of millions of MPs for discord
discovery. In this paper, we propose a sketching algorithm
on multidimensional time series for discord mining so that it
can dramatically reduce the cost associated with monitoring
multiple dimensions simultaneously.

Tsum=T1+T2+T3+T4+T5

Psum
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T3

T5

Fig. 1: In the multidimensional time series T = [T1, ..., T5],
the time series discord occurs in T1 can be discovered even if
the matrix profile Psum is computed using the summed time
series Tsum = T1 + · · ·+ T5.

To preview our ideas, consider the example shown in Fig. 1
which demonstrates how simple addition-based dimension
reduction works for multidimensional time series discord min-
ing. The multidimensional time series T has five dimensions
[T1, ..., T5], and the time series discord occurs in T1. We
can add all the dimensions together (i.e., Tsum) and compute
the associated MP (i.e., Psum). Due to the robustness of the
MP method, Psum still reveals the temporal location of the
discord that occurred only in T1 despite the existence of the
other irrelevant dimensions. Because we only need to compute
one MP instead of five MPs, a 5X improvement in speed is
achieved. Before continuing, we wish to ward off a potential
misunderstanding. Clearly, it is not meaningful to add dollars
and yen, much less dollars and temperature. However, we can
meaningfully add z-normalized time series of arbitrary origin.
The z-normalization step converts the data into unitless shapes.

As pointed out in [9], if more and more irrelevant dimen-
sions are included, eventually the discord in T1 will be missed
if only the MP of the summed time series is examined. To
solve this problem, we designed a sketch [10–12] where MP
can be built on the sketch of the multidimensional time series
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and discord property can be preserved. The contributions of
this paper include:
• This is the first work to apply sketching techniques to

multidimensional time series discord mining with theoretical
guarantees.

• After computing the sketch in time as fast as reading the
data, we guarantee to find time points of significant discords
with high probability efficiently and in time independent of
the number of dimensions.

• Experiments demonstrate that with an insignificant drop
in accuracy, the sketched discord mining can achieve a
50X speed-up. This utility is realized on several real-world
data sets from water treatment, distributed systems, and
transportation.

II. BACKGROUND

A. Related Work

Our proposed ideas have an interesting historic context, in
that they resemble Dorfman testing (group testing, pooled
testing, etc.) [13]. This is a procedure used to reduce the
cost of screening a large number of individuals for infectious
diseases. It works by compositing a set of individual specimens
(e.g., blood or urine) into a common pool. If the pool tests
negative, all individuals within it are diagnosed as negative. If
the pool tests positive, retesting is needed to find the positive
individual(s). The reader will appreciate that in our example
in Fig. 1, we had a “pool” of five time series, and the summed
time series did indeed “test positive” for a discord.

How to efficiently pool data into a compressed repre-
sentation while provably preserving critical information has
taken on the name of sketching. These ideas have proven
invaluable in domains such as network monitoring [10, 14],
linear algebra [15, 16], machine learning [11, 17, 18], and
spatial statistics [19]. To the best of our knowledge, this is the
first time that Dorfman testing or sketching has been used in
time series analysis.

In recent years, there has been an increasing focus on
multidimensional time series [9, 20–24]. For example, Yeh
et al. [9] adopted the matrix profile [4] idea for mining motifs
in multidimensional time series. Gao et al. [22] developed
a variable-length subdimensional motif discovery system for
multidimensional time series. Similar to our work, the system
introduced in [20] also used a type of random projection
as a subroutine. However, instead of using it for mining
time series discords, the proposed system in [20] is a sub-
dimensional motif discovery system similar to [22]. Other
tasks, such as time series forecasting [23, 24] and anomaly
detection [21] have also been studied for multidimensional
time series. Among these works, research efforts on time series
anomaly detection are more relevant to our work because time
series discords not only can be utilized to solve the anomaly
detection problem but many independent papers have shown
they are very competitive compared to the state-of-the-art [3,
25–27]. However, none of these prior works provide a scalable
discord mining algorithm for multidimensional time series.

The matrix profile is an efficient way to discover discords in
time series [4]. In recent years, there have been many attempts
to further improve the computational speed of the matrix
profile algorithm through approximation [7, 8, 28]. Never-
theless, all of the aforementioned works focused on reducing
the computational cost associated with the length of the input
time series rather than the dimensionality of the time series.
These works cannot be used to resolve the scalability problem
raised in this paper. Dimensionality reduction methods such
as PAA [29], DWT [30], and DFT [31] are widely used in
time series data mining to reduce run time [32]. However, as
we noted earlier, here dimensionality refers to the length of
the time series, not the number of time series; therefore, they
also do not address the scalability problem associated with
dimensionality.

B. Definitions and Notation
We begin by defining the data type of interest, time series

and multidimensional time series:

Definition 1. A time series T ∈ Rn is an array of real valued
numbers ti ∈ R : T = [t1, t2, ..., tn] where n is the length of
T . A multidimensional time series T ∈ Rd×n is a collection
of single dimensional time series T =

[
T (1), T (2), ..., T (d)

]
where d is the dimensionality of T.

Since time series discords are a local property of a time
series, we are not interested in the global properties of a time
series, but the local subsequences [5]:

Definition 2. A subsequence Ti,m ∈ Rm of a time series T is
a length m contiguous subarray of T starting from position i.
Formally, Ti,m = [ti, ti+1, ..., ti+m−1]. Note, we use T

(j)
i,m to

denote the ith subsequence in jth dimension of a multidimen-
sional time series T.

Because time series discords concern the nearest neighbor
(1NN) relation between a query subsequence and all subse-
quences of a given time series, we define a 1NN dist function
which computes the nearest neighbor distance between the
query subsequence with a given time series.

Definition 3. Given a query subsequence Tq,m ∈ Rm

and a time series T ∈ Rn, a 1NN distance func-
tion 1NN dist(Tq,m, T ) computes and returns the distance
between Tq,m and the nearest neighbor subsequence in T ,
i.e., minTi,m∈T dist(Tq,m, Ti,m) where dist(·, ·) computes the
z-normalized Euclidean distance between the two inputs.

We use z-normalized Euclidean distance function in this
work. Note, 1NN dist(·, ·) and dist(·, ·) look similar, but they
are very different functions. 1NN dist() computes the one
nearest neighbor distance between a subsequence and a time
series and dist() computes the distance (e.g., z-normalized
Euclidean distance) between two subsequences. The partic-
ular local properties that we seek to capture are time series
discords:

Definition 4. Given a training time series Ttrain, a testing
time series Ttest and a subsequence length m, the time series



discord of Ttest is the subsequence of length m in Ttest with
largest nearest neighbor distance to subsequences in Ttrain,
i.e., argmaxTi,m∈Ttest

1NN dist(Ti,m, Ttrain). When detecting
the discord within a single time series, i.e. Ttest = Ttrain, the
definition is also applied.

Additionally, since we are considering multidimensional
time series, we extend the aforementioned single-dimensional
time series discord to the following:

Definition 5. Given a multidimensional training time se-
ries Ttrain =

[
T

(1)
train, T

(2)
train, ..., T

(d)
train

]
, a multidimensional testing

time series Ttest =
[
T

(1)
test , T

(2)
test , ..., T

(d)
test

]
and a subsequence

length m, the time series discord of Ttest is the subsequence
of length m in Ttest with the largest nearest neighbor distance
(where the nearest neighbors are in Ttrain of the same dimen-
sion as the subsequence). Formally:

T
(j∗)
i∗,m = argmax

T
(j)
i,m∈T

(j)
test

T
(j)
test ∈Ttest

1NN dist(T
(j)
i,m, T

(j)
train)

The basic time series discord only needs to return the time in-
dex i∗ at the start of the subsequence, T (j∗)

i∗,m. The dimensional
time series discord identifies both the time index i∗, and also
the dimension j∗ in which this most anomalous pattern occurs.

The most efficient method of locating the single dimension
time series discord exactly is the matrix profile [4, 5].

Definition 6. A ab-join matrix profile [5] P ∈ Rntest−m+1 of
a time series Ttest ∈ Rntest and a time series Ttrain ∈ Rntrain

is a meta time series annotating Ttest that stores the distance
between each subsequence of length m in Ttest and its nearest
neighbor in Ttrain. When Ttest = Ttrain, it is the definition of
self-join matrix profile [5].

The matrix profile P of a time series T (|T | = n) is
shown in Fig. 2. The length of P is n − m + 1 where m
is the subsequence length. By examining the location of the
largest value in P , the embedded time series discord can be
discovered.

m

discordTtest, test time series

Ttrain, training time series
P, matrix profile

Fig. 2: The matrix profile P of the time series Ttest is obtained
by joining it with another time series Ttrain. The highest point
on P correspond to the locations of discord (red).

The matrix profile can be computed exactly in O(ntrainntest)
time complexity. Since the multidimensional time series dis-
cord is defined as the single dimension discord with largest
nearest neighbor distance (Def. 5), the multidimensional time
series discord can be discovered exactly by running matrix
profile d times for a d dimensional time series. In other words,

the time complexity for this basic solution is O(d · ntrainntest),
and the goal of this work is to further reduce this complexity.

III. ALGORITHM

The proposed method has two stages: 1) the sketching
stage and 2) the detection stage. In the sketching stage, each
dimension is randomly assigned to different groups. With the
group assignment initialized, the sketched time series are used
in the second stage for fast detection of time series discords.
In addition to introducing the two stages of the proposed
method, we also discuss how the proposed method handles
the addition/deletion of dimensions.

A. Sketching

The sketching method is based on a count sketch [10]. It
maps from d time series (one for each dimension) to k time
series, one for each group. The count sketch uses two pair-
wise independent hash functions h ∈ H with h : [d] → [k]
and s ∈ S with s : [d] → {−1,+1}. We use [d] as a
short hand for {0, 1, . . . , d − 1}. The first hash function h
maps each dimension to a group, the second one endows each
dimension with a sign. Recall that the hash functions h and s
are deterministic, but their selection from the families H and
S is random.

For a multidimensional time series T =[
T (1), T (2), ..., T (d)

]
and each group index g ∈ [k], let

Jg = {j ∈ [d] | h(j) = g} be the set of dimensions mapped
to group g. Then these encode an aggregated time series
R(g) =

∑
j∈Jg

s(j)T (j).
As is common in sketching, the algorithm (see Alg. 1)

is simple, and in this case takes O(nd) time, basically just
reading the input data. This can be done to create Rtrain ←
SKETCH(T̄train, k) and Rtest ← SKETCH(T̄test, k) using the
same hashing functions, where T̄train and T̄test are the z-
normalized multidimensional time series of the train and test
data, respectively.

Algorithm 1 Sketching Algorithm

Input: multidimensional time series T ∈ Rd×n, sketch dimension k
Output: sketched matrix R ∈ Rk×n

1 function SKETCH(T, k)
2 R← zero matrix with size k × n
3 for j ∈ [0, · · · , d− 1] do
4 i = h(j)
5 R(i) = R(i) + s(j)T (j)

6 Return R

B. Detection

Given the sketch matrices Rtrain and Rtest for the training
and testing multidimensional time series, and the subsequence
length m, we can use Alg. 2 to find the top-1 time series
discord. The function ABJOINMP(·) returns both the index
and the score for the discord.

The discord detection algorithm runs in two phases. In
the first phase to detect the time of the discord, Alg. 2, it
only considers the sketched time series Rtrain and Rtest, and
identifies the time of the discord subsequence in the test data



Algorithm 2 Discord Time Detection Algorithm
Input: sketched training time series Rtrain, testing time series Rtest,
subsequence length m
Output: discord time index i∗, discord group g∗,

1 function TIME-DETECTION(Rtrain, Rtest, m)
2 ŝbsf ← 0
3 for g ∈ [0, · · · , k − 1] do
4 i, s(g) ← ABJOINMP(R(g)

train, R
(g)
test ,m) ▷ Def. 6

5 if s(g) > ŝbsf then
6 gbsf ← g, ŝbsf ← ŝ(g), ibsf ← i

7 return i∗ ← ibsf, g∗ ← gbsf

Algorithm 3 Discord Dimension Detection Algorithm
Input: training time series Ttrain, testing time series subsequences Tm,
subsequence length m, group of time series Jg
Output: discord dimension index j∗

1 function DIMENSION-DETECTION(Ttrain, Tm, m, Jg∗ )
2 sbsf ← 0
3 for j ∈ Jg∗ do
4 , s(j) ← ABJOINMP(T (j)

train, T
(j)
m ,m) ▷ Def. 6

5 if s(j) > sbsf then
6 j∗ ← j, sbsf ← s(j)

7 return j∗

i∗, and the group g∗ of dimensions which may contain the
discord subsequence. To do this, it treats the sketched time
series as just k-dimensional time series, and checks each of
the k possible sketched-to dimensions. Since this phase only
operates on the sketched data, its runtime is independent of
the number of dimensions d.

In the second phase showed in Alg. 3, it recovers the
dimension which leads to the discord. It takes in the test data
subsequences Tm of multidimensional time series, starting at
index i for a length of m that contains all dimensions from
the test set for that time window; it actually only needs those
for indexes j ∈ Jg∗ in group g∗. Then for this fixed time
window in the test data, it checks each of the dimensions that
contributed to group g∗ to see which one is the discord using
standard Matrix Profile ab-join. Note that users have the option
to refine the current approximated solution by performing an
additional Matrix Profile join operation on the entire sequence
of the identified dimension to find a subsequence with an even
higher discord score. This functionality has been implemented
in the released source code.

We use the matrix profile [5] method to locate and score
the time series discord within a given pair of training/testing
single-dimension time series for the TIME-DETECTION al-
gorithm. In particular, we use the SCAMP algorithm [6] to
compute the matrix profile. Because SCAMP is not the only
matrix profile algorithm, it is possible to replace it with a faster
and approximated algorithm from [7, 8, 28].

The time complexity of the discord time detection is
O(k ·ntrainntest), where the ntrainntest part of the big-O notation
is from the matrix profile algorithm (see Def. 6). To detect
the dimension of the discord, another O((d/k)ntrain) time is
needed. The exact multidimensional discord mining algorithm,
without the O(d(ntrain+ntest)) sketching step is O(d·ntrainntest).

To extend the proposed method to the single time series

scenario, the user can input the same multidimensional time
series to both Ttrain and Ttest; then use the self-join variate of
the matrix profile algorithm instead of the ab-join variant in
Alg. 2. It is also possible to extend the method to streamline
time series. To achieve such extension, lines 4-5 in Alg. 1 need
to be implemented to only invoke whenever a new test data
is received. The matrix profile algorithm used in Alg. 2 will
also need to be replaced with a streaming variant such as the
ones presented in [5, 8, 28].

C. Addition/Deletion of Dimensions

The proposed method can also be extended to handle the
addition or deletion of dimensions. Since the count sketch
is “linear” it can be updated, via additions, deletions, and
modifications. Such scenarios could happen when sensors are
added or removed from a system. For instance, in the case
where dimension j ∈ [d] is deleted, the gth sketched time
series where g = h(j) is updated as R(g) = R(g) − s(j)T(j).
If only the ith time point of the jth dimension is updated,
to increase its value by a value δ, then we can update
R

(g)
i = R

(g)
i +s(j)δ. The detection algorithms are unchanged.

As a technical issue, it may not be appropriate to add a
new time series dimension that is only available for part of the
training time. At the beginning of the membership, it could
create an artificial “step” shape. While we may be able to mark
this start point as to be avoided in the Discord Time Detection
algorithm, we mostly recommend avoiding this complication,
and suggest that only time series that starts at the same time
should be added together.

D. Analysis of Accuracy of Algorithm

We analyze the accuracy of the algorithm by extending the
analysis of the CountSketch [10]. In particular, we analyze the
probability that a discord subsequence of length m is detected
as the discord in the sketched representation. The details of
the analysis are in Appendix. We show several results.

First, if a time series T (j) is randomly placed in group g, and
multiplied by sign s(j) ∈ {−1,+1} in the sketched time series
R(g), then for any point i the expected value E[s(j) ·R(g)

i ] =

T
(j)
i (see Lemma 1 in Appendix). This expectation is only

over randomness in the choice of h ∈ H and s ∈ S.
Next we consider how large a discord score of time series

dimension T (j) needs to be to show up as the discord in the
sketched time series R(g) We provide a fairly crude bound
that does not depend on the randomness of the data, only
using that the dimensions are each z-normalized. Set k =√
d and consider a discord T

(j)
i,m that has distance of ∥∆∥ =

dist(T
(j)
i,m, T

(j)
i′,m) where T

(j)
i′,m is the nearest neighbor of T (j)

i,m

in the training set. Then if ∥∆∥ > τ = 1√
δ
md1/4, then it will

be detected as a discord in R(g) with probability at least 1−δ.
The above bound requires τ grows with d1/4 and generally

must be much larger than 1 standard deviation in data value, so
we analyze a stronger bound if we assume some noisy periodic
structure in each time series. Under the η-periodic assumption,
we assume each time series basically has a repeated structure



where each element deviates from that sequence with standard
deviation at most η (after z-normalizing). Under this setting,
with high probability (the probability of failure decreases
exponentially as ntrain grows), if ∥∆∥ > τ > 2mη, then it will
be detected as the discord in R(g) (see Lemma 2 in Appendix).

IV. EXPERIMENTS

We first employ synthetic data to assess the quality of the
approximated solution. Next, we provide case studies with
a public transportation dataset and a financial transactions
dataset to demonstrate the broad applicability of the pro-
posed method. Finally, we utilize a water treatment/distribution
system dataset to evaluate the effectiveness of the proposed
algorithm in the anomaly detection task. It is important to note
that anomalies and discord are distinct concepts. Anomalies
are defined within the specific context and semantics of
the dataset, often annotated manually. Conversely, discords
are domain-independent, can be used to identify potential
anomalies, and are explicitly defined using Def. 5. The source
code can be found in [33].

A. Synthetic Data

In this section, we use synthetic data to evaluate the quality
of the approximated solution compared to the exact solution.
The quality of the solution is measured by how well the
proposed algorithm solves the equation from Def. 5.
Experiment Setup: We generate synthetic datasets by creating
random walk time series. It is important to note that random
walk time series pose a significant challenge for time series
discord mining, as the discord does not exhibit a visually
distinct pattern compared to the rest of the time series. The
length of the generated time series is fixed at 10,000, and we
vary the dimensionality d of the time series. We specifically
focus on exploring different values of d since it is the primary
challenge addressed by our proposed method. We set d to
the following values: 250, 500, 1,000, 2,500, 5,000, 7,500,
and 10,000. During the experiment, we use a subsequence
length of 100. The experiment is repeated 100 times. We set
hyperparameter k to ⌈

√
d⌉ to optimize the O(k + d/k) term

from combining phases of detection Algs. 2 and 3.
Performance Measurement: The objective of this section is
to evaluate the accuracy of the approximated solution in com-
parison to the exact solution. To begin with, we calculate the
discord score, which represents the nearest neighbor distance,
for each subsequence across all dimensions. Subsequently,
we generate a ranked list by assigning ranks to all the
subsequences based on their discord scores. To measure the
quality of the approximated solution, we compute the success
rate over 100 trials. We consider the approximated algorithm
successful when the identified discord is ranked within the top
0.01% of the list.
Result: The results of the experiments are illustrated in Fig. 3.
The speedup presented takes into account the total runtime,
which includes both the sketching and detection processes.

The proposed method demonstrates a noticeable improve-
ment in terms of speedup as we increase the value of d. At
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Fig. 3: The proposed method improves throughput by 50X
while maintaining almost perfect success rate when d = 10000.

the highest tested value of d (i.e., 10,000), the speedup reaches
50X with an almost 100% success rate.

To gain further insights into the quality of the approximate
solution, we analyze the distribution of discord scores (i.e., the
nearest neighbor distance) for three sets of subsequences. The
first set encompasses all subsequences, representing the overall
distribution of discord scores. The second set comprises the
true discords discovered using the exact algorithm, while the
last set consists of the discords identified using the proposed
sketching method. Fig. 4 displays the density plots illustrating
the distribution associated with each set of subsequences. The
d is set to 1,000 in this figure. Notably, the distribution of
discords obtained through the proposed approximate method
is distinctly different compared to the distribution of discord
scores for all subsequences. The distribution of the approx-
imated discords is much more similar to the distribution of
discords obtained through the exact method. It is important to
note that the task of discord mining in the random walk dataset
presents a greater level of difficulty compared to other datasets.
This increased challenge arises from the fact that the discord,
representing the most unusual subsequence (red distribution),
is not as easily distinguishable from the other subsequences.
In the real datasets (see Section IV-D and Section IV-C), the
discord scores between the exact discord and the sketched
ones are much smaller. In Fig.6, the discord score of the
subsequence discovered by the exact algorithm deviates from
the mean of the subsequences discovered by the approximated
algorithm by 1.97 standard deviations. Similarly, in Fig.8,
the discord score of the subsequence discovered by the exact
algorithm deviates from the mean by 2.11 standard deviations.
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Fig. 4: The density distribution of discord scores for all
subsequences (gray), the discords found using the proposed
approximation method (green), and the discords found using
the exact method (red).



B. Taipei Mass Rapid Transit (MRT)

The Taipei MRT system is a metro system that moves
over two million people daily in Taipei and its surrounding
satellite towns. It could be actionable to bring the operator’s
attention to the unusual patterns in the ridership data. For
example, a traffic manager may spot an anomaly, perhaps a
sudden exodus from a station caused by customers fleeing a
crime [34], and she may be able to intervene stopping trains
before they arrive at that station. In this section, we apply the
proposed algorithm to discover multidimensional time series
discord from the per-hour ridership data. Discords typically
correspond to interesting and unique events.
Dataset: The original dataset is downloaded from [35], and
we use the version organized by the authors of [36]. The
dataset consists of time series measuring the number of people
entering and exiting each station per hour from November 1,
2015 to March 31, 2017. There are 108 stations in the dataset.
Experiment Setup: We focus on the time series corresponding
to the number of people entering and exiting each of the 108
stations. We set the subsequence length m to two days (i.e.,
48) and the sketching parameters to k = ⌈

√
d⌉ when applying

the proposed method. A list of discovered discords is returned
by the algorithm order based on the nearest neighbor distance
(i.e., discord score) from large to small. We ignore citywide
incidents like typhoon days when inspecting the returned
discords.
Result: The discord with the largest discord score is shown
in Fig. 5, and it is discovered from Nangang Software Park
Station.

07/22 (Fri)
07/23 (Sat)

07/24 (Sun)
07/25 (Mon)

07/26 (Tue)

0

2500

07/15 (Fri)
07/16 (Sat)

07/17 (Sun)
07/18 (Mon)

07/19 (Tue)

0

2500

Fig. 5: The time series is from Nangang Software Park station
in 2017. The top figure shows the discovered time series
discord (red) with additional context. The y-axis is the number
of people entering and exiting the station per hour.

In the top figure, we show the discovered discord with extra
dates preceding and following the discord for context. Be-
cause the area around Nangang Software Park Station consists
mostly of office buildings, it has morning and afternoon peaks
during workdays. The afternoon peaks that happen during
the weekend are very unusual for the station. As shown in
Fig. 5.bottom, the time series from the previous week has
no peak during the weekends. In other words, the discovered
discord indeed captures some special events that happen
around the station. After inspecting the area surrounding the
station on a street map, there is a parking lot called Nangang
C3 Field [37] that can also be used as a concert ground for
40,000 attendances. Upon inspecting the event schedule for the

venue [37], there were indeed concerts held on both 7/23 and
7/24 by a popular rock band Mayday [38]. The rock concert
explains the peaks/discord discovered on 7/23 and 7/24.

In addition to the exploratory analysis, we compare the
distribution densities using a methodology similar to that
described in Section IV-A. The resulting figure is presented
in Fig. 6. It is evident that the discovered discords are
clearly outliers when compared to the distribution of all
subsequences. Furthermore, the proposed method achieved an
average speedup of 3.6X compared to the exact solution.
Please note that in this particular case, there is only one
dataset, and as a result, there is also only one true discord
indicated by a single line.
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Fig. 6: The density distribution of discord scores for all subse-
quences (gray) and the discords found using the approximation
method (green). The discord score of the discord found using
the exact method is indicated by a red line.

C. Payment Network.

There are millions of transactions among different entities
processed daily on a modern payment network. It is important
to monitor the activity of these entities for unusual patterns
(i.e., discords) as such events could have undesirable effects
on the software or hardware infrastructures built around the
payment network. For example, a sudden fluctuation in the
transaction volume could lead to undesirable declines if the
fluctuation is not attended to. To demonstrate the utility of
the proposed method, we apply our discord mining algorithm
to the per-hour transaction volume multidimensional time
series where different dimensions are different categories of
merchants. Similar to Section IV-B, multiple discords are
returned by our algorithm and we order them based on the
“discordness” of the returned pattern (i.e., the distance with
the pattern’s nearest neighbor).
Dataset: We prepare the multidimensional time series from
our internal transaction database. The per category per hour
time series is aggregated using transaction data from January
1st, 2018 to July 1st, 2021. The length of the time series is
30,600, and the number of categories is around 1,000.
Experiment Setup: When applying the proposed method, we
set the subsequence length m to 36 or 1.5 days. The sketching
parameter is set to k = ⌈

√
d⌉. Because it is beneficial

to examine the second/third discord in the time series, our
algorithm once again returns multiple discords as we did in
Section IV-B. The discords are ordered based on the nearest
neighbor distance (i.e., discord score) from large to small.
Result: The top three discovered discords are shown in Fig. 7.
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Fig. 7: The top three discovered time series discords. The
discords (red) are plotted with additional context, and total
of 14 days (336 hours) of time series are plotted.

The first discovered discord (i.e., Discord 1) consists of a
period of time with relatively small numbers of transactions
with a small bump around the 7th-day mark. The second
discovered discord (i.e., Discord 2) also captures a period
of time where the number of transactions is relatively low.
However, there is a sharp spike near the middle of the 7th day.
One possible reason for the low transaction volume could be
that majority of merchants from the corresponding categories
are closed during that time. The small bump around the 7th-
day mark in Discord 1 indicates there might be a subset of
merchants still doing business during that time. For Discord 2,
the sharp spike that happens right before the normal business
volume around the 8th-day mark could mean that merchants of
the Discard 2 category could still be accepting orders, but push
the payment process to the beginning of the next business day.
The third discovered discord (i.e., Discord 3) could indicate
the occurrence of a special sales event. Time series discords
are capable of capturing both high and low-volume events that
occur in the payment network. The speedup of the proposed
method in throughput relative to the exact solution is 13 for
this dataset.

We further compared the distribution densities similar to
the experiment conducted with the MRT data. The resulting
figure is displayed in Fig. 8, showcasing that the discovered
discords are distinctly outliers in comparison to the distribution
of all subsequences. The discord identified by the approximate
method exhibits a significantly higher similarity to the exact
discord compared to the synthetic dataset (Figure 4), which
demonstrates the effectiveness of the sketching algorithm on
the real-world dataset.
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Fig. 8: The density distribution of discord scores for all subse-
quences (gray) and the discords found using the approximation
method (green). The discord score of the discord found using
the exact method is indicated by a red line.

D. Water Treatment and Distribution

In order to showcase the efficacy of the approximate sketch-
ing algorithm in anomaly detection, we employ a dataset
obtained from a water treatment and distribution system. Our
primary objective is to conduct a quantitative comparison
between the proposed discord mining algorithm and other
existing methods commonly used for anomaly detection.
Dataset: We performed experiments with SWaT [39] and
WADI datasets [40] in detecting attacks on cyber physical
systems. SWaT dataset contains the measurement of a scaled-
down version of a real-world industrial water treatment plant
under the normal and attacked scenarios [39]. A total of 51
sensors and actuators are measured for 11 days with a 1 Hz
sampling rate. The first 7 days consist of the measurement
from normal operation. The system is attacked 41 times during
the last 4 days. WADI dataset consists of measurements from a
water distribution system with 123 sensors and actuators [40].
The measurement takes place in 16 days where the system
operates normally in the first 14 days and is attacked 14 times
in the last 2 days. The data sampling rate is 1 Hz.
Experiment Setup: We compare the proposed approximated
multidimensional discord mining matrix profile (Discord/Fast)
to methods like exact multidimensional discord mining ma-
trix profile (Discord/Exact), 1NN [41], LOF [41, 42], OC-
SVM [41, 43, 44], and MAD-GAN [21]. MAD-GAN is one
of the state-of-the-arts for the datasets, and the other methods
are classic anomaly detection algorithms [21].

We follow the following procedure to apply discord-based
methods (Discord/Fast and Discord/Exact) to the anomaly
detection problem. First, we identify the dimension that con-
tains the multidimensional discord using either the exact
multidimensional discord mining algorithm or the proposed
sketching algorithm. Let us assume that the discord is found
in dimension j. In the anomaly detection test dataset, we
have the label of each subsequence, so the next step is to
compute the anomaly score associated with each subsequence.
We extract the jth dimension of the test time series T

(j)
test

and join it with T
(j)
train using the matrix profile algorithm. In

other words, for each subsequence in T
(j)
test , we find its nearest

neighbor in T
(j)
train and compute the distance between each pair

of nearest neighbors. We use these nearest neighbor distances
as the anomaly score for each subsequence in T

(j)
test . We set

k = ⌈
√
d⌉ when using the Discord/Fast method.

Performance Measurement: With the label and anomaly
score of each subsequence in T

(j)
test , the performance measure-

ments adopted for both datasets are ROC-AUC (AUC) scores.
We choose to use AUC score instead of the more common F1
score for these datasets because the anomaly scores need to
be converted to binary predictions for evaluating the F1 score
of a method. As pointed out by Kim et al. [45], converting
the anomaly scores to binary labels for time series anomaly
detection is itself a challenging problem. Since our paper is
focusing on mining time series discord, we use AUC score to
avoid the additional complication associated with the anomaly
score conversion.



TABLE I: The proposed method achieves comparable perfor-
mance to the best alternative with reduced runtime.

SWaT WADI
Method AUC Time (sec.) AUC Time (sec.)
1NN 0.82 8,534 0.47 5,057
LOF 0.79 18,778 0.47 30,241
OC-SVM 0.82 42,934 0.52 130,221
MAD-GAN 0.81 3,273 0.45 3,627
Discord/Exact 0.83 2,488 0.62 2,544
Discord/Fast 0.76 821 0.72 653

Result: The AUC scores for all the tested methods on both
datasets are summarized in Table I. For the SWaT dataset, all
methods achieve comparable AUC scores. Since the proposed
method also has similar performance in terms of AUC, its
advantage in running time makes it more desirable than the
others. The performance difference between different methods
on the WADI dataset is even greater. The discord-based
methods are noticeably better than the alternatives. Note that
the dimension located by the exact discord-based method
could sometimes be inferior compared to the one found by
approximated method because accurate discord mining does
not necessarily translate to accurate anomaly detection.

To evaluate the robustness of different methods, we add
200 random walk time series to each dataset and redo the
experiments in Table II. The expanded SWaT dataset consists
of 251 and the expanded WADI consists of 323 dimensions.

TABLE II: The proposed method is robust against added
random walk dimensions.

SWaT WADI
Method AUC Time (sec.) AUC Time (sec.)
1NN 0.66 9,857 0.47 6,010
LOF 0.76 28,282 0.42 35,038
OC-SVM 0.79 186,623 0.47 368,884
MAD-GAN 0.49 7,814 0.46 5,318
Discord/Exact 0.83 12,755 0.62 7,731
Discord/Fast 0.76 2,261 0.64 1,382

When contrasting the performances in Table II with the ones
in Table I, the SWaT dataset’s AUC degrades more compared
to the WADI dataset. Out of all the tested methods, LOF and
the proposed method are more robust against the added noise.
For the discord-based methods, we found that the discovered
discords are from one of the original dimensions rather than
the added noisy dimensions. The proposed discord-based
methods better ignore the noisy dimensions when detecting an
anomaly. The speedup of the approximated method compared
to the exact method is around 5.6X for both datasets.

V. CONCLUSION

The paper proposed an efficient sketching-based multidi-
mensional discord mining algorithm to quickly identify the
discord. The algorithm improves the throughput by almost
50x and provably maintains high accuracy compared to the
exact discord mining algorithm. Experiments are performed
with four datasets from various domains to demonstrate the
effectiveness and utility of the proposed algorithm. For future

work, we consider extending the sketching-based method for
subsequence classification [46] or to explore the data privacy
issues associated with time series [47].
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APPENDIX

In this section we provide an analysis of why our algorithm
provides high probability of recovery. We borrow from the
analysis of the classic Count-Sketch [10] for finding heavy
hitters among data streams from a domain size [d].

a) Modeling of Algorithm.: As mentioned above, we say
h is drawn from a 2-universal family H of hashing functions,
that is, so that for any two distinct dimensions j, j′ ∈ [d] that
Prh∼H[h(j) = h(j′)] = 1/k.

We now argue that when we estimate the value T
(j)
i of the

jth time series at a time point i. In particular, we use s(j)R
(g)
i

where j ∈ Jg so g = h(j). Following the standard analysis of
the Count-Sketch [10] we obtain the following.

Lemma 1. For g = h(j) then for any time point i we have
an unbiased estimate E[s(j)R

(g)
i ] = T

(j)
i

and its variance is V ar[s(j)R
(g)
i ] = 1

k

∑
j′ ̸=j T

(j′)
i .

Proof. Let Yj′,g = 1 if h(j′) = g and 0 otherwise. The ex-
pected value of the sketched time series s(j)R(g)

i for g = h(j)
can be factored as follows:

E[s(j)R
(g)
i ] = s(j)s(j)T

(j)
i +

∑
j′ ̸=j

E[Yj′,gs(j)s(j
′)T

(j′)
i ].

Since s is pairwise independent and independent of h

E[Yj′,gs(j)s(j
′)T

(j′)
i ] = E[Yj′,gs(j)]E[s(j′)]T

(j′)
i

= E[Yj′,gs(j)] · 0 · T
(j′)
i = 0.

All that remains is s(j)s(j)T
(j)
i = T

(j)
i , as desired.
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To bound the variance, using our expectation bound, we
calculate

V ar[s(j)R
(g)
i ] = E[(s(j)R

(g)
i − E[s(j)R

(g)
i ])2]

= E[(
∑
j′ ̸=j

s(j)s(j′)Yj′,gT
(j′)
i )2]

= E[
∑
j′ ̸=j

∑
j′′ ̸=j

s(j′′)s(j′)Yj′,gYj′′,gT
(j′)
i T

(j′′)
i ]

=
∑
j′ ̸=j

∑
j′′ ̸=j

T
(j′)
i T

(j′′)
i E[s(j′′)s(j′)Yj′,gYj′′,g ]

Since s is pairwise independent, E[s(j′)s(j′′)] =
E[s(j′)]E[s(j′′)] = 0 for j′ ̸= j′′. Hence all that remains
from the variance are terms when j′ = j′′ as

V ar[s(j)R
(g)
i ] =

∑
j′ ̸=j

(T
(j′)
i )2E[Y 2

j′,g ] =
∑
j′ ̸=j

(T
(j′)
i )2E[Yj′,g ]

=
1

k

∑
j′ ̸=j

(T
(j′)
i )2.

Now recall that we have z-normalized every time series, so
the expected value of (T (j′)

i )2 (over the choice of t) is 1. Thus

V ar[s[j]R
(g)
i ] =

1

k

∑
j′ ̸=j

(T
(j′)
i )2 =

d− 1

k
.

b) Analysis of Subsequences with Large Discord Scores.:
Next consider that time series T (j) has a discord with large
discord scores, we can now show it is likely to appear as
a discord in R(g) – the sketched time series of T, where
g = h(j). Considering the time series with subsequences
of length m, for a subsequence Ti,m in the test set, if the
closest subsequence in the training set T

(j)
i′,m is a perfect

match (e.g., T
(j)
i,m = T

(j)
i′,m), then we have that for the

corresponding spots in the associated sketched time series R(g)

that E[s(j)R
(g)
i,m] = T

(j)
i,m = T

(j)
i′,m = E[s(j)R

(g)
i′,m]. On the

other hand, consider a discord that has large discord score, so
Ti,m − Ti′,m = ∆ ∈ Rm, and ∥∆∥ is large. In this case

E[s(j)R
(g)
i,m] = T

(j)
i,m = T

(j)
i′,m +∆ = E[s(j)R

(g)
i′,m] + ∆.

So in expectation, the large discord score ∆, measured on the
aggregated times series is in expectation still ∆.

We want to understand how large does ∥∆∥ need to be
to show up against the noise inherent in the sketched aggre-
gation step. To do this, we can calculate the variance of a
subsequence. In particular we have

V ar[R
(g)
i,m] = V ar[

∑
t∈[i,...,i+m]

R
(g)
t ] = m2V ar[R

(g)
i,m] = m2 d− 1

k
.

So if ∥∆∥2 = ∥R(g)
i,m − R

(g)
i′,m∥2 = dist(R

(g)
i,m, R

(g)
i′,m)2 is

much larger than the variance, it will be consistently detected.
We can formalize this with a Chebyshev bound.

Pr[dist(R
(g)
i,m, R

(g)
i′,m)2 ≥ α] ≤

V ar[R
(g)
i,m]

α2
=

m2 d−1
k

α2
.

If we set k =
√
d (as we do in the implementation), and

α = 1√
δ
md1/4, then we have for any δ ∈ (0, 1) that

Pr[dist(R
(g)
i,m, R

(g)
i′,m) ≥

1
√
δ
md1/4] ≤ δ.

Thus if the discord is sufficiently large, it will be detected
with high (at least 1 − δ) probability. Notably, this is with

regard to the randomness in the selection of the hash func-
tions (placement in group, and the {-1,+1} choice), and not
randomness in the data. So this bound is assumption free and
can handle adversarial data.

c) Modeling of Non-adversarial Data.: We can refine
this analysis to show high probability of recovering a large
discord by considering non-adversarial modeling of the data.
Without these assumptions, adversarial unlikely settings may
occur. For instance, if each test data subsequence has exactly
one similar subsequence in the training data (standard discord
analysis will show small discord scores, but it is not robust).
Moreover, these matches could be misaligned temporally
across dimensions, so the sketched time series presents these
non-robust matches as significant discords. If many such cases
occur, this can causes a large difference between the discord
found by searching sketched time series (as in our algorithm)
and from searching the time series for discords individually.

Specifically we now consider an η-periodic assumption:
that is, that each time series T (j) has a period pj (it has a
rough pattern that repeats after pj time steps), and for any
two time series T (j) and T (j′) that pj and pj′ have a small
common factor. That is, there exist small positive integers
aj and aj′ so that P = pjaj = pj′aj′ . This ensures that
all time series have some common latent structure which
controls their frequency, and every period P they re-align.
For example, periods could be daily, weekly, or hourly and
moreover common structural shifts (e.g., day-light-savings-
time) affect the latent structure but keeps the general periodic
alignment in place. This assumption ensures that for each
time window in the test data, that for each period P in the
test data there exists a corresponding time window in the
training data that has a similar phase across all individual
time series. Within each alignment there may of course be
small fluctuations, and noise, but not structural ones – unless
there is a true large discord. In particular, we assume after z-
normalizing, that each T

(j)
i has variance V ar[T

(j)
i ] ≤ η2. So

if T (j)
i in the test aligns to its corresponding point T (j)

i′ in the
training, their difference has expected value E[T

(j)
i −T

(j)
i′ ] = 0

and variance V ar[T
(j)
i −T

(j)
i′ ] ≤ 2η2. This is interesting when

η is significantly smaller than 1. And we assume there are
many periods of length P within the span of the training
data, and thus the difference in the number of periods for
an individual time series of length pj will not be too different
from the number of periods of length P .

Now analyzing the variance under the periodic assumption,
we show with high probability that if there is a large discord
score, the sketched time series preserves it.

Lemma 2. Under the η-periodic assumption with joint period
P , then if there is a single subsequence T

(j)
i,m of size m, with

most similar subsequence in the training data as T
(j)
i′,m and

dist(T
(j)
i,m, T

(j)
i′,m) > 2ηm, then with high probability (at least

1− dntest/2
ntrain/P ), that subsequence will be detected.

Proof. Via Lemma 1 we have V ar[s(j)R
(g)
i ] ≤



1
k

∑
j′ ̸=j T

(j′)
i , where g = h(j). Now on a subsequence

from the jth time series, T (j)
i,m in the test data, and its periodic

match in the training data T
(j)
i′,m, we can analyze their

difference ∆ = T
(j)
i,m − T

(j)
i′,m. By the η-periodic assumption

that assumes for aligning elements E[T
(j)
i,m(t)− T

(j)
i′,m(t)] = 0

then and E[∆(t)] = 0 for each index t. Moreover, using that
V ar[T

(j)
i,m(t)] ≤ η2 we have

E[∥∆∥2] =
m∑
t=1

E[(T
(j)
i,m(t)− T

(j)
i′,m(t))2]

=
m∑
t=1

E[(T
(j)
i,m(t)− T

(j)
i′,m(t))2 − E[T

(j)
i,m(t)− T

(j)
i′,m(t)]2]

=

m∑
t=1

V ar[(T
(j)
i,m(t)− T

(j)
i′,m(t))]

≤
m∑
t=1

V ar[T
(j)
i,m(t)] + V ar[T

(j)
i′,m(t)] ≤ 2mη2.

Now we bound the variance of ∥∆∥2 assuming that noise on
each time point is independent.

V ar[∥∆∥2] = E[∥∆∥4]− E[∥∆∥2]2

≤ E[∥∆∥4] =
∑

t,t′∈[1...m]

E[∆(t)2∆(t′)2]

=
∑

t,t′∈[1...m]

E[∆(t)2]E[∆(t′)2]

=
∑

t,t′∈[1...m]

(2mη2)(2mη2) = 4m4η4

Recall that a Chebyshev inequality for a random variable X
states that Pr[|X−E[X]| ≥ α] ≤ V ar[X]/α2 for any α > 0.
Now assume there is a discord with large discord scores that
has dist(T

(j)
i,m, T

(j)
i′,m) = τ , we can bound the probability at

another in-period sequence pair T (j)
q,m, T

(j)
q′,m with ∆′ = T

(j)
q,m−

T
(j)
q′,m exceeds that distance with a Chebyshev bound

Pr[dist(T
(j)
q,m, T

(j)
q′,m) > τ ] ≤ Pr[|∥∆′∥2 − E[∥∆′∥2]| > τ2−E[∥∆′∥2]]

≤
V ar[∥∆′∥2]

(τ2 − E[∥∆′∥2])2
.

If we set τ2 = 4mη2(1 + m/
√
δ) or more simply τ >

2mηδ−1/4, then with some algebra we can achieve

Pr[dist(T
(j)
q,m, Tq′,m) > τ ] ≤ δ.

This is for a simple potential match. If there are n′ =
ntrain/P potential matches (under the periodic assumption),
then the distance must exceed this for all n′ matches. Let
∥∆′

∗∥ = minℓ∈1...n′ dist(T
(j)
q,m, T

(j)
q′,m). By a union bound, we

have ∥∆′
∗∥ > τ only if no n′ potential matches exceeds τ

which happens with probability at most δn
′

if their noise is
independent. Setting δ = 1/2, then if τ > (23/4)mη > 2mη
then Pr[∥∆′

∗∥ ≥ τ ] ≤ 1/2n
′
.

Next we need to consider the dntest different subsequences
from the d time series which may show up as false discords.
Within a time series, these overlap, so are not independent.
But we can use a union bound to address the concern than if
any of these has more than τ distance from its closest match
in the training set it will show up as the discord. If we set

δ′ = (1/2n
′
)dntest, and have τ > 2mη, then with probability

at least 1− (1/2n
′ ·d ·ntest), if an discord has ∥∆∥ > τ it will

show up as the discord.
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